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Abstract: Modern space missions provide a great number of height profiles of ionospheric electron
density, measured by the remote sensing technique of radio occultation (RO). The deducing of the
profiles from the RO measurements suffers from bias, resulting in negative values of the electron den-
sity. We developed a machine learning technique that allows automatic identification of ionospheric
layers and avoids the bias problem. An algorithm of convolutional neural networks was applied for
the classification of the height profiles. Six classes of the profiles were distinguished on the base of
prominent ionospheric layers F2, Es, E, F1 and F3, as well as distorted profiles (Sc). For the models,
we selected the ground truth of more than 712 height profiles measured by the COSMIC/Formosat-3
mission above Taiwan from 2011 to 2013. Two different models, a 1D convolutional neural network
(CNN) and fully convolutional network (FCN), were applied for classification. It was found that
both models demonstrate the best classification performance, with the average accuracy around 0.8
for prediction of the F2 layer-related class and the E layer-related class. The F1 layer is classified by
the models with good performance (>0.7). The CNN model can effectively classify the Es layer with
an accuracy of 0.75. The FCN model has good classification performance (0.72) for the Sc-related
profiles. The lowest performance (<0.4) was found for the F3 layer-related class. It was shown that the
more complex FCN model has better classification performance for both large-scale and small-scale
variations in the height profiles of the ionospheric electron density.

Keywords: radio occultation; ionospheric layers; machine learning; convolutional neural networks

1. Introduction

The ionosphere is a region of the partially ionized upper atmosphere [1]. The iono-
sphere consists of several layers, which are characterized by enhanced levels of ionization.
The innermost D-layer is located at heights from 50 to 90 km, the E-layer at 90-150 km, and
the outermost F-layer extends from above 150 km. Radio waves propagate through the
ionosphere at different group velocities and split into different wave modes, depending on
frequency, the electron density, the magnetic field, etc. Various experimental techniques
are used for measuring the profiles of electron density (it is also called the electron content
or EC) in the ionospheric layers, including ground-based ionosondes, incoherent scatter
radars and the spaceborne radio occultation technique.

The GPS radio occultation (at present, it is known as GNSS RO) is a remote sensing
technique for vertical profile information on EC in the ionosphere from the height of a
low-Earth’s orbit (LEO) satellite down to the bottomside, e.g., as shown in [2—4]. The
technique of radio occultation is based on the detection of a change in radio signals as
they pass from Global Positioning System (GPS) or Global Navigation Satellite System
(GNSS) satellites, located at altitudes of about 20,000 km, through the ionosphere to LEO
satellites, located at altitudes of several hundred km [5]. Electromagnetic waves of different
frequencies pass the ionized medium at different speeds. The dispersion depends on the
amount of ionization. Hence, the electron density can be related to the phase delay for radio
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signals of different frequencies by using an Abel inversion [6]. The Abel transform contains
a bias term (constant along each GNSS-LEO ray trace). In the real RO measurements, the
ray traces vary substantially such that the bias is not constant, which makes the problem
even more complicated. Various techniques are used to eliminate the bias [7,8]. In routine
GNSS RO measurements, the effect of bias term cannot be always eliminated. This results in
unexpected negative values in the resultant EC profiles in the bottomside ionosphere [9,10].

Recently, two constellations of six satellites FORMOSAT-3/COSMIC (FS-3/C-1) and
FORMOSAT-7/COSMIC-2 (FS-7/C-2) have been launched to low-height orbits (below
800 km). Using a GPS occultation experiment (GOX), FS-3/C-1 measures EC profiles from
60 to 800 km at high inclination orbits [11]. The comparison of the FS-3/C-1 RO technique
with the standard techniques of ground-based digisonde and incoherent scatter radars at
middle latitudes demonstrated very good agreement between the EC profiles obtained by
different techniques, both in the bottom and topside ionosphere [12]. The mission FS-7/C-2
has a low inclination. It is equipped with a TriGNSS radio occultation system (TGRS) that
receives the signals from numerous GNSS satellites [13]. That makes it possible to scan the
low-latitude ionosphere in detail and provides up to 4000 RO profiles per day.

The large amount of EC profiles requires automatic identification of the ionospheric
layers. However, the bias problem is a serious obstacle. Namely, it is difficult to establish
a firm threshold of EC for each ionospheric layer because the zero level is different for
different EC profiles. Alternative techniques are required in order to eliminate the bias
problem. One of them is a technique of deep learning for the classification and identification
of the ionospheric layers. Recently, this technique was applied to the ionograms scanned by
the ground-based ionosondes [14]. It was shown that a deep-learning method for ionogram
automatic scaling (DIAS) can distinguish the signals of ionospheric layers with very high
performance. The DIAS method is based on a U-shape structure, which consists of an
encoder network and a decoder network. The technique provides the F-score of ~0.91, in
contrast to F~0.81, which is provided by the standard method of Automatic Real-Time
Ionogram Scaling (ARTIST, e.g., [15]).

In the present paper, we propose a new approach for the identification and classifica-
tion of the ionospheric layers. The approach is based on the application of machine learning
for the analysis and modeling of EC height profiles, acquired from the spaceborne RO
GPS technique in the FS-3/C-1 mission. This technique makes it possible to automatically
treat the great amount of EC data for the determination of the key ionospheric layers
and avoid the bias problem. It can also be easily applied to the data acquired from the
FS-7/C-2 mission.

The study is organized as follows:

- Section 2 is a description of the experimental data. Six classes of the EC height profiles
are introduced for the modeling process.

- Section 3 describes the two convolutional neural network (CNN, [16,17]) models used
in this study for classification of the EC profiles.

- Section 4 demonstrates the result of the CNN model applications for classification of
the EC profiles and determination of the key ionospheric layers, such as E (including
sporadic) and F1, F2 and F3 layers.

- Section 5 is a discussion and comparison of the results obtained from different
CNN models.

- Section 6 presents the conclusions.

N

. Experimental Data

We use the data of the EC height profiles acquired from the GPS RO experiment on-
board the FS-3/C-1 mission in the range from 60 to ~800 km [18]. The profiles are measured
with 1 sec time resolution, such that the height step varies around 1 to 2 km. For the
modeling process, the profiles are interpolated with omni-distant steps of 2 km in the range
of heights from 80 to 600 km. As a result, the interpolated EC profile consists of 261 points.
We selected low-latitude profiles in a 20-degree vicinity of the Taiwan region located under
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the bulge of the equatorial ionization anomaly (EIA). This region is characterized by strong
variability in the ionospheric layers, often including the appearance of the sporadic E-layer
(Es) and high-altitude F3 layer.

Examples of the height profiles of interpolated electron density (IEC) are shown in
Figure 1. We distinguish six mutually exclusive kinds of the profiles, representing different
ionospheric layers and features. Each panel in Figure 1 shows the IEC height profile (left)
and the trajectory of perigee of RO trace (right). Figure 1a represents a class of purely the
F2 layer (F2) with its maximum value located in the altitude range from 200 to 400 km.
The second class (Figure 1b) corresponds to profiles with a narrow sporadic E-layer (F2E),
located at heights around 100 km. The third class (Figure 1c) contains profiles with a large-
scale enhancement of EC below 200 km that corresponds to the intense E-layer (F2ED). The
fourth class (Figure 1d) is an intense F1 layer, located below the F2 layer (F2F1) at heights
around 200 km. The fifth class (Figure le) represents profiles with the F3 layer developed
above the F2 layer (F2F3). The maximum value of the F3 layer is weaker than that of the F2
layer. The sixth class (Figure 1f) contains profiles distorted by strong noise fluctuations (Sc).
The fluctuations might relate to ionospheric scintillations or other kinds of disturbances.
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Figure 1. Examples of the height profiles of interpolated electron density (IEC) measured by the
technique of GPS radio occultation by the mission FORMOSAT-3/COSMIC above Taiwan: (a) pure
F2 layer; (b) F2 and prominent sporadic E layer; (c) F2 and prominent E layer; (d) F2 and prominent
F1 layer; (e) F2 and prominent F3 layer; (f) distorted profile. Each panel shows the EC height profile
(left) and the trajectory of perigee of RO trace (right). Diamond indicates the location of Hualien

ionosonde in Taiwan.
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We analyzed around seven thousand RO profiles obtained during the years from
2011 to 2013 (solar maximum) and manually selected only those containing the prominent
features described above (in total, 712 profiles). The number of samples selected for each
class is listed in Table 1. All the samples of each class are presented in Supplementary
Materials. They are used as a ground truth for the classification models (as shown in
the next section). It should be noted that we excluded from the consideration bad or
corrupted RO profiles. We also did not consider profiles that contained simultaneously
several prominent layers, such as Es, F1 and F2 layers, in order to avoid misclassifications
during the modeling process.

Table 1. Statistics of different classes for the modeling.

Class Description Number of Samples
F2 F2 layer only 131
F2E F2 and prominent sporadic E layer 118
F2ED F2 and prominent E layer 135
F2F1 F2 and prominent F1 layer 165
F2F3 F2 and prominent F3 layer 95
Sc Distorted profiles 68

As one can observe in Figure 1, the values of EC vary across a very wide range up
to 20 (¥10°/cm3). In addition, the EC height profiles can have negative values due to the
bias problem (as shown in panels (c) and (f) in Figure 1), which is still unresolved in the
GOX experiment onboard the FS-3/C-1 mission [9,10]. These features make it difficult to
automatically identify the ionospheric layers in several thousand profiles per day, as well
as cause issues in the identification of the noisy/disturbed profiles for further detailed
analysis. To resolve this problem, we determine the type of each profile by recognition of its
pattern in relative units, such that the exact values of EC in the data are not important in this
classification task. Therefore, the bias problem is avoided. Considering this characteristic,
we normalized each profile, dividing the EC by its maximum value for the model training.
This makes it possible to reduce the difficulty of convoluting the diverse values.

We evenly split the six classes into training and test sets by the percentage 80% and
20%, respectively. Due to the insufficient size of the data, we did not further split the
validation set from the training set. For the same reason, we applied cross-validation to
reduce the bias of the model evaluation. The exact number of samples in the training and
the test set, with respect to each class, is shown in Table 2.

Table 2. Number of samples in the training set and the test set, with respect to the six classes.

Total F2 F2E F2ED F2F1 F2F3 Sc
Train 571 105 95 108 132 76 55
Test 141 26 23 27 33 19 13

The procedure of cross-validation is described as follows. First, the whole dataset is
randomly shuffled, and divided into five subsets. One of the subsets is used as the test
set to evaluate the model, and the rest are used to train the model. There are five models
trained, and their average performance (specified in Section 4) are taken as the performance
of the model.

3. Classification Models

For the classification of EC height profiles, we used two different CNN models. The
models are constructed using the Keras library under the Tensorflow framework [19]. The
input layer of the models consists of 261 nodes, corresponding to the number of points in
the EC height profiles interpolated from 80 to 600 km with the 2-km step. The output layer
consists of six nodes, corresponding to the number of EC profile classes.

The first model is a simple CNN model based on the work of Kiranyaz et al. [16]. This
model is a basic and simple one-dimensional-CNN, with two types of different layers. It
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can be distinguished by two parts. As shown in Figure 2, the first part is composed of
1D-convolutional layers and each of the convolutional layers is followed by an activation
and max-pooling layer. The convolution kernel can extract features from the RO profile.
The max-pooling layer down-samples the profile, which allows the next convolution kernel
to extract more rough features. We choose to repeat it four times to extract the feature
by convolution kernels. Then, the data of the feature map are sent into the second part,
which is composed of fully connected layers, known as a multi-layer perceptron (MLP).
In this part, the output array from the convolutional layers is firstly flattened into a one-
dimensional-array, which is then imported to three fully connected (FC) layers and two
dropout layers, which randomly sets the input to zero to reduce the overfitting [20]. In
the end of the MLP, the output is set to be six, corresponding to our six classes in the data.
Combining these two parts, the CNN model contains 27,110 training parameters.
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Figure 2. Illustration of the CNN model architecture with convolution part (ConvlD, ReLU and
MaxPooling) and MLP part (fully connected, dropout layer and soft-max). The input is the 1D array
of the profile data, consisting of 261 points and the output is the array of 6 classes of our data.

The second model is a fully convolutional network (FCN) model [17], composed of
1D convolution kernels, batch normalization layers, max-pooling layers, a dropout layer
and a fully connected layer. The batch normalization layer regularizes the input and can
accelerate the convergence [21]. In the model, 1D convolutions of kernel size k are repeated
by r times. Each time, there are n features extracted by the kernels. The convolution process
is followed by a batch normalization layer and a max-pooling layer to form a pooling
process. The pooling process is repeated by d times, and is then flattened with a dropout
rate of p. The flattened neurons are then fully connected, and output to a vector of six
elements using the soft-max function, representing the probabilities of each class. The
class with the highest probability is used as the classification result. An illustration of the
architecture of the FCN model is shown in Figure 3. A hyper-parameter search based on
the Bayesian optimization technique [22] is performed to find the most suitable set of the
hyper-parameters (k, , r, d, p). The search grid of kis 7,9, 11, nis 8,16,24,32,ris 1,2,3,d
is1,2,3,and pis 0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, respectively.
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Figure 3. Basic architecture of the convolutional neural network model. n features are extracted by
the 1D convolution Conv1D of kernel size k, and Conv1D is repeated r times, followed by a batch
normalization layer and a max-pooling layer. The pooling process is repeated d times, and then
flattened with a dropout rate p. The flattened neurons are then fully connected, and output to six
classes using the soft-max activation.

During each training epoch, the model is fed with a mini-batch from the training set.
A categorical cross-entropy function is used to measure the loss between the ground truths
and the inference of the model. The Adam optimizer [23] is used to obtain the gradients,
which update the parameters of the model, and reduce the loss. The learning rate to the
optimizer is set to 0.001 initially, and is reduced by a factor of 0.1 if no improvement is found
within 10 epochs. The training process is stopped early if the performance of the test set
does not improve within 20 epochs. After the training, the five models are evaluated using
the corresponding test set, and their performances are averaged. The maximum number
of trials on the hyperparameters is set to 30. The trial with the best average performance
among 30 trials is selected as the best performance of the FCN model.

4. Results

To measure the performance of the model, the following confusion matrix, accuracies,
and average accuracy are used.

5 nk
o5 =3 )y &( M)
acctY = C§Y 2
aeeV = Ly ey @)
¢ LG

i=1

where NF is the total number of samples for the i-th class in the k-th test set, n]}‘ is the total

number of samples classified as the j-th class in the k-th test set, Ci(l:v is the average of five
confusion matrices for the models evaluated by the corresponding test sets, acc-" is the
average accuracy of the i-th class over the five test sets, and acct is the average accuracy
over the five test sets and the six classes.

Figure 4a presents a confusion matrix Cgv for the predictions of our CNN model. By
extracting the diagonal of the confusion matrix, we obtain the average accuracy of 0.76,
0.75,0.85, 0.70, 0.33, and 0.22, respectively, for the classes F2, F2E, F2ED, F2F1, F2F3, Sc. The
average accuracy for all classes is 0.6. For this model, the F2ED class has the best prediction
accuracy and high accuracies (>0.7) can be found for the classes F2, F2E and F2F1. The
model performs the worst when identifying the F2F3 and Sc classes, with an accuracy lower
than 0.5. In Figure 4a, we can obviously observe that many profiles of F2F3 and Sc types
are predicted as F2E, F2ED and F2F1. In short, the model predicts mostly accurately the F2
layer and prominent bottomside layers D, E and F1. Very poor prediction is found for the
F3 layer and disturbed profiles Sc.

Of the 30 trials on the hyper-parameter searching for the FCN model, we found that
the combination (k, n, 1, d, p) = (7, 24, 3, 3, 0.2) and a batch-size of 4 produces the highest
acc“V. The resulting FCN model has 229,446 parameters in total, and its performance on
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acct is 0.69 across the six classes. The corresponding confusion matrix C%V is shown in

Figure 4b. The average accuracy is 0.86, 0.62, 0.80, 0.76, 0.39, 0.72, respectively, for each
class. The five test sets show that the models can produce accuracies above 0.67, and up to
0.96 for F2, F2ED, and F2F1, and that the accuracy can range from 0.52 to 0.77 for F2E and
Sc, 0.22 to 0.74 for F2F3.

From Figure 4b, one can observe that the model has tendencies to predict the F2E class
as Sc and to predict F2F3 as F2ED. There are no specific tendencies for the other classes. On
average, the model has the best performance for classifying F2, and has poor performance
for classifying F2F3. To provide additional information for interested readers, we also
calculate the confusion matrix in terms of the exact numbers of samples for CNN and FCN,
as shown in Figures 4c and 4d respectively. The full list of the classification for the two
models is presented in the Supplementary Materials.
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Figure 4. The confusion matrices of six classes averaged over five subsets of the cross-validation.
Panels (a,b) show C%V, the ratio of cases for a ground truth label i predicted as label j, for our CNN
and FCN model, respectively. Panels (c,d) show the number of cases for a ground truth label i
predicted as the label j for the CNN and FCN models, respectively. The colors from dark blue to
yellow correspond to the ratios from 0 to 1 or absolute numbers from 0 to 170.

The performances of the CNN and FCN models are compared in Table 3. The CNN
model demonstrates better performances for the prediction of the F2E and F2ED classes.
The classes F2, F2F1, F2F3 and Sc are predicted better by the FCN model. It should be noted
that the FCN and CNN models have similar performances in the prediction of F2ED and
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F2F1 classes. However, the FCN model has much better performance in the classification of
the F2 and Sc classes. Both models have low performance in the prediction of the F2F3 class.

Table 3. Comparison of model performances.

Model Recall Rate Precision Binary Accuracy F1-Score Better Performance
CNN 0.60 0.63 0.89 0.59 F2E, F2ED
FCN 0.69 0.69 0.90 0.68 F2, F2F1, F2F3, Sc

In order to estimate the overall performances of the models, we also calculate the
standards scores, such as recall rate, precision, binary accuracy, and F1-score [24]. They are
defined as follows.

15168 Tp.k
Recall rate = — - 4
51;6;TPk+FNk @
1 5 6 Tp.k
Precision = Z ﬁ 5)
5= 6 {5 TPk + FP}
13 1.8 TPF+ TNF
Binary accuracy = — = E — % (6)
5065 N
1.6 2TPf
F1 — score = — - 7
Z 612 2TPk+FPk+ FNK 7
TPY + FPF 4 TNF + FNf = N¥ (8)

where TP]}‘, FP]k, TN]k, ENK are the true positive, false positive, true negative, and false
positive predictions for the j-th class in the evaluation of the k-th subset. The scores are
presented in Table 3.

5. Discussion

We have found that both models demonstrate the best classification performance
(around 0.8) for the prediction of the F2 and F2ED classes. The former one corresponds to a
simple F2 layer, which is mostly prominent at most height profiles. Hence, the recognition
of this feature is mostly easy. Another class with high performance is F2ED. This class is
characterized by a prominent smooth enhancement of EC at altitudes below 200 km, in the
region of the E and D layers. This large-scale structure is also very easy to recognize.

Both models demonstrate moderate accuracy (>0.6) in the identification of the sporadic
Es layer (F2E class) and F1 layer (F2F1 class). The numbers in the confusion tables indicate
that the two models either have a preference to classify F2E as Sc classes or to classify F2F3
as F2ED. This could be due to the loss of position information in the max-pooling [25]
or noisy RO structures. The lowest performance (<0.4) is found for the prediction of the
F2F3 class. This class corresponds to the prominent F3 layer. The statistics of this class are
relatively low (see Table 1) because the F3 layer is relatively rare, which might be a reason
for the low performance of the prediction. One must note that although the performance
for the F2F3 class is poor, it is still much higher than the estimation of 0.17. On the other
hand, the Sc class has the lowest statistics (see Table 1). This class of small-scale fluctuations
(scintillations) is predicted by the FCN model, with accuracy (0.72) much higher than that
of the CNN model (0.22). The latter one, however, has the highest performance for the
prediction of the large-scale structures of the F2E and F2ED classes. Hence, models with
different architectures have different performances for the prediction of different scale
structures.

Figure 5 demonstrates examples of misclassifications, which occur very often for each
class. The F2 class can be mixed up with the F2F1 class, due to enhancements of EC at
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heights below 200 km (see Figure 5a). As shown in Figure 5b, the prominent E layer can
often be misclassified as the Sc class. A large-scale increase in EC at low altitudes in the
F2ED class can be interpreted as the F1 layer from the F2F1 class (Figure 5c). Similarly, an
increase in EC in the region of the F1 layer at heights above 100 km can be misclassified as
the E layer from the F2ED class (Figure 5d). Distorted EC profiles (Sc class) can be often
mixed up with other classes in the case of prominent features in the EC height profiles,
such as an enhanced E layer (see Figure 5f). The prediction of a relatively weak F3 layer is
difficult for both models and it is often misclassified as the F2ED class. In addition to poor
statistics, this shortcoming can also be the result of a problematic input dataset. As one can
observe in Figure 5e, the prominent F3 layer at heights >400 km is accompanied by a weak
EC enhancement in the bottomside ionosphere at heights <200 km. The latter is the distinct
feature of the F2ED class. This situation is often observed, meaning that it is very difficult
to select samples with the pure F3 layer.

Although adjusting the weighting in the loss function can improve the poor perfor-
mance of the imbalanced class [26], we found that the performance on the unaffected
classes also decreased accordingly. As mentioned earlier, due to the size of the dataset, we
apply the cross-validation technique to reduce the bias in the model evaluation. However,
it is still computationally expensive to analyze the change in error in the model evaluation,
with respect to the size of cross-validation [26-28]. As a result, further adjustments on
the weightings of the loss function, and a more detailed analysis of the splitting size of
cross-validation are considered future works.

The average level of accuracies obtained in this study is lower than that obtained in the
DIAS ground-based ionosonde technique, which gives the average score of ~0.91 [11]. For
the F2, F1 and E layers, our classification provides accuracies that are comparable with the
ARTIST technique [15]. The DIAS technique resolves the 2D image segmentation problem
for 19,000 ionograms. Hence, this very deep learning technique is based on a large number
(at least 17 million) of training parameters. While it is interesting to test whether a 1D
version of DIAS will benefit the classification of RO profiles, the number of parameters
may be too large to be trained for our small dataset. Moreover, it should be noted that the
space-borne RO technique of height profiles is essentially different from the ground-based
technique of ionograms. The former one might give a global covering of the whole globe,
while the latter one is restricted by an observation site, which is strictly localized. Hence,
direct comparison of classification accuracies may not be appropriate in the present case.
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Figure 5. This figure is the same as Figure 1 but for samples with misclassification: (a) F2 class was
predicted as F2F1 class; (b) F2E class was predicted as Sc class; (c) F2ED class was predicted as F2F1
class; (d) F2F1 class was predicted as F2ED class; (e) F2F3 class was predicted as F2ED class; (f) Sc

class was predicted as F2E class.

From the confusion matrices shown in Figure 4, it can be observed that the number
of misclassifications for most of classes is relatively small. In the future, it will be inter-
esting to consider the possibility of applying the present technique for the classification
of ionospheric height profiles acquired from the ground-based ionosondes, in addition to
the spaceborne RO data. This technique, with some modification, might be also useful for
ionospheric modeling, including global TEC models [29].

6. Conclusions
We applied a deep learning algorithm for the classification of various classes of EC

height profiles, measured by the radio occultation technique, in the COSMIC/Formosat-3
mission. We considered six different classes with prominent F2, Es, E, F1 and F3 layers,
as well as distorted profiles (Sc). Two different models, a 1D convolutional neural net-
work (CNN) and fully convolutional network (FCN), were applied for classification. The
following results were obtained:

1.  Both models demonstrate the best classification performance (around 0.8) for the
prediction of the simple F2 layer-related class and for the F2ED class related to the
prominent E layer.

2. The CNN model has high classification performance (0.75) for the class F2E related to
the intense sporadic Es layer.

3. Both models have high classification performance (>0.7) for the F2F1 class related to
the prominent F1 layer.
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4. The distorted profiles are well classified by the FCN model with classification perfor-
mance of 0.72.

5. Both models demonstrate the lowest performance (<0.4) in the classification of the
F2F3 class related to the F3 layer.

6.  The classification performance depends on the complexity of the height profile, as
well as on the model architecture. The deeper FCN model has better classification
performance for both large-scale and small-scale variations in the EC height profiles.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14184521 /51, Confusion matrix and data of the ground truth.
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