Generating a Long-Term Spatiotemporally Continuous Melt Pond Fraction Dataset for Arctic Sea Ice Using an Artificial Neural Network and a Statistical-Based Temporal Filter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. MODIS Daily Surface Reflectance Data
2.1.2. MPF Data
2.1.3. Validation Data
2.2. Methods
2.2.1. GA-BPNN Model
2.2.2. Statistical-Based Temporal Filter
3. Results and Discussion
3.1. Accuracy of the GA-BPNN Model
3.2. Accuracy of Statistical-Based Temporal Filter
3.3. Validation Results
3.4. Comparison Results
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eicken, H.; Grenfell, T.C.; Perovich, J.A.; Richter-Menge, J.A.; Frey, K. Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res. Ocean. 2004, 109, C08007. [Google Scholar] [CrossRef]
- Li, P. The Arctic sea ice and climate change. J. Glaciol. Geocryol. 1996, 18, 74–82. [Google Scholar]
- Taskjelle, T.R.; Hudson, S.R.; Granskog, M.A.; Nicolaus, M.; Lei, R.; Gerland, S.; Stamnes, J.J.; Hamre, B.R. Spectral albedo and transmittance of thin young Arctic sea ice. J. Geophys. Res. Ocean. 2016, 121, 540–553. [Google Scholar] [CrossRef]
- Malinka, A.; Zege, E.; Istomina, L.; Heygster, G.; Spreen, G.; Perovich, D.; Polashenski, C. Reflective properties of melt ponds on sea ice. Cryosphere 2018, 12, 1921–1937. [Google Scholar] [CrossRef]
- Flocco, D.; Feltham, D.L. A continuum model of melt pond evolution on Arctic sea ice. J. Geophys. Res. Ocean. 2007, 112, C08016. [Google Scholar] [CrossRef]
- Polashenski, C.; Perovich, D.; Courville, Z. The mechanisms of sea ice melt pond formation and evolution. J. Geophys. Res. Ocean. 2012, 117, C01001. [Google Scholar] [CrossRef]
- Fetterer, F.; Untersteiner, N. Observations of melt ponds on Arctic sea ice. J. Geophys. Res. Ocean. 1998, 103, 24821–24835. [Google Scholar] [CrossRef]
- Peng, Z.; Ding, Y.; Qu, Y.; Wang, M.; Li, X. An artificial neural network framework for estimating melt pond fraction of Arctic sea ice from MODIS data. In Proceedings of the IEEE 2022 International Geoscience and Remote Sensing Symposium (IGARSS 2022), Kuala Lumpur, Malaysia, 18 July 2022. [Google Scholar]
- Perovich, D.; Grenfell, T.; Light, B.; Elder, B.; Harbeck, J.; Polashenski, C.; Tucker, W.; Stelmach, C. Transpolar observations of the morphological properties of Arctic sea ice. J. Geophys. Res. Ocean. 2009, 114, C00A04. [Google Scholar] [CrossRef]
- Perovich, D.K.; Grenfell, T.C.; Light, B.; Hobbs, P.V. Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res. Ocean. 2002, 107, 8044. [Google Scholar] [CrossRef]
- Grenfell, T.C.; Perovich, D.K. Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment. J. Geo Phys. Res. Ocean. 2004, 109, C01001. [Google Scholar] [CrossRef]
- Inoue, J.; Curry, J. Application of aerosondes to melt-pond observations over Arctic sea ice. J. Atmos. Ocean. Technol. 2008, 25, 327–334. [Google Scholar] [CrossRef]
- Perovich, D.K.; Polashenski, C. Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett. 2012, 39, L08501. [Google Scholar] [CrossRef]
- Hanesiak, J.M.; Barber, D.G.; De Abreu, R.A.; Yackel, J.J. Local and regional albedo observations of arctic first-year sea ice during melt ponding. J. Geophys. Res. Ocean. 2001, 106, 1005–1016. [Google Scholar] [CrossRef]
- Grenfell, T.C.; Maykut, G.A. The optical properties of ice and snow in the Arctic Basin. J. Glaciol. 1977, 18, 445–463. [Google Scholar] [CrossRef]
- Eicken, H.; Krouse, H.R.; Kadko, D.; Perovich, D.K. Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res. Ocean. 2002, 107, 21–22. [Google Scholar] [CrossRef]
- Thackeray, C.W.; Hall, A. An emergent constraint on future Arctic sea-ice albedo feedback. Nat. Clim. Chang. 2019, 9, 972–978. [Google Scholar] [CrossRef]
- Wendisch, M.; Brückner, M.; Burrows, J.; Crewell, S.; Dethloff, K.; Ebell, K.; Lüpkes, C.; Macke, A.; Notholt, J.; Quaas, J.; et al. Understanding Causes and Effects of Rapid Warming in the Arctic. Eos 2017, 98. [Google Scholar] [CrossRef]
- Flocco, D.; Schroeder, D.; Feltham, D.L.; Hunke, E.C. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J. Geophys. Res. Ocean. 2012, 117, C09032. [Google Scholar] [CrossRef]
- Schroeder, D.; Feltham, D.L.; Flocco, D.; Tsamados, M. September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nat. Clim. Chang. 2014, 4, 353–357. [Google Scholar] [CrossRef]
- Howell, S.; Scharien, R.; Landy, J.; Brady, M. Spring melt pond fraction in the Canadian Arctic Archipelago predicted from RADARSAT-2. Cryosphere 2020, 14, 4675–4686. [Google Scholar] [CrossRef]
- Ding, Y.; Cheng, X.; Liu, J.; Hui, F.; Wang, Z.; Chen, S. Retrieval of melt pond fraction over Arctic sea ice during 2000—2019 Using an Ensemble-Based Deep Neural Network. Remote Sens. 2020, 12, 2746. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, Y.; Cheng, Q.; Wong, K.; Li, Y.; Yeu Tsou, J. Effect of melt ponds fraction on sea ice anomalies in the Arctic Ocean. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102297. [Google Scholar] [CrossRef]
- Birnbaum, G.; Dierking, W.; Hartmann, J.; Lüpkes, C.; Ehrlich, A.; Garbrecht, T.; Sellmann, L. The campaign MELTEX with research aircraft “POLAR 5” in the Arctic in 2008. Rep. Polar Mar. Res. 2009, 593, 3–85. [Google Scholar]
- Derksen, C.; Piwowar, J.; LeDrew, E. Sea-ice melt-pond fraction as determined from low level aerial photographs. Arct. Alp. Res. 1997, 29, 345–351. [Google Scholar] [CrossRef]
- Rösel, A.; Kaleschke, L. Comparison of different retrieval techniques for melt ponds on Arctic sea ice from Landsat and MODIS satellite data. Ann. Glaciol. 2011, 52, 185–191. [Google Scholar] [CrossRef]
- El Naggar, S.; Garrity, C.; Ramseier, R.O. The modelling of sea ice melt-water ponds for the high Arctic using an airborne line scan camera, and applied to the satellite special sensor microwave/imager (SSM/I). Int. J. Remote Sens. 1998, 19, 2373–2394. [Google Scholar] [CrossRef]
- Tschudi, M.; Curry, J.; Maslanik, J. Determination of areal surface-feature coverage in the Beaufort Sea using aircraft video data. Ann. Glaciol. 1997, 25, 434–438. [Google Scholar] [CrossRef]
- Makynen, M.; Kern, S.; Roesel, A.; Pedersen, L.T. On the Estimation of melt pond fraction on the Arctic sea ice with ENVISAT WSM Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7366–7379. [Google Scholar] [CrossRef]
- Fors, A.S.; Divine, D.V.; Doulgeris, A.P.; Renner, A.H.H.; Gerland, S. Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery. Cryosphere 2017, 11, 755–771. [Google Scholar] [CrossRef]
- Guo, J.; Sun, B.; Li, Q.; Lei, R.; Li, B.; Li, N. Application and development of the buoys based on polar sea ice. Chin. J. Polar Res. 2011, 23, 149–157. [Google Scholar] [CrossRef]
- Zhang, R.; Ke, C.; Xie, H.; Sun, B. Surface Albedo Measurements over Sea Ice in the Arctic Ocean during Summer 2010. Chin. J. Polar Res. 2012, 24, 299–306. [Google Scholar] [CrossRef]
- Sankelo, P.; Haapala, J.; Heiler, I.; Rinne, E. Melt pond formation and temporal evolution at the drifting station Tara during summer 2007. Polar Res. 2010, 29, 311–321. [Google Scholar] [CrossRef]
- Nicolaus, M.; Katlein, C.; Maslanik, J.A.; Hendricks, S. Sea ice conditions during the POLARSTERN cruise ARK-XXVI/3 (TransArc) in 2011. Geophys. Res. Lett. 2012, 39, L24501. [Google Scholar] [CrossRef]
- Xie, H.; Lei, R.; Ke, C.; Wang, H.; Li, Z.; Zhao, J.; Ackley, S.F. Summer sea ice characteristics and morphology in the Pacific Arctic sector as observed during the CHINARE 2010 cruise. Cryosphere 2013, 7, 1057–1072. [Google Scholar] [CrossRef]
- Wang, M.; Su, J.; Li, T.; Wang, X.; Ji, Q.; Cao, Y.; Lin, L.; Liu, Y. Study on the method of extracting Arctic melt pond and roughness information on sea ice surface based on UAV observation. Chin. J. Polar Res. 2017, 29, 436–445. [Google Scholar]
- Miao, X.; Xie, H.; Ackley, S.; Perovich, D.; Ke, C. Object-based detection of Arctic sea ice and melt ponds using high spatial resolution aerial photographs. Cold Reg. Sci. Technol. 2015, 119, 787–791. [Google Scholar] [CrossRef]
- Tschudi, M.A.; Curry, J.A.; Maslanik, J.A. Airborne observations of summertime surface features and their effect on surface albedo during FIRE/SHEBA. J. Geophys. Res. Atmos. 2001, 106, 15335–15344. [Google Scholar] [CrossRef]
- Markus, T.; Cavalieri, D.J.; Ivanoff, A. The potential of using Landsat 7 ETM+ for the classification of sea-ice surface conditions during summer. Ann. Glaciol. 2002, 34, 415–419. [Google Scholar] [CrossRef]
- Markus, T.; Cavalieri, D.J.; Tschudi, M.A.; Ivanoff, A. Comparison of aerial video and Landsat 7 data over ponded sea ice. Remote Sens. Environ. 2003, 86, 458–469. [Google Scholar] [CrossRef]
- Wright, N.C.; Polashenski, C.M. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery. Cryosphere 2018, 12, 1307–1329. [Google Scholar] [CrossRef]
- Yackel, J.J.; Nandan, V.; Mahmud, M.; Scharien, R.; Kang, J.W.; Geldsetzer, T. A spectral mixture analysis approach to quantify Arctic first-year sea ice melt pond fraction using QuickBird and MODIS reflectance data. Remote Sens. Environ. 2018, 204, 704–716. [Google Scholar] [CrossRef]
- Wang, M.; Su, J.; Landy, J.; Leppäranta, M.; Guan, L. A new algorithm for sea ice melt pond fraction estimation from high-resolution optical satellite imagery. J. Geophys. Res. Ocean. 2020, 125, e2019JC015716. [Google Scholar] [CrossRef]
- Huang, W.; Lu, P.; Lei, R.; Xie, H.; Li, Z. Melt pond distribution and geometry in high Arctic sea ice derived from aerial investigations. Ann. Glaciol. 2016, 57, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Perovich, D.K. Aerial observations of the evolution of ice surface conditions during summer. J. Geophys. Res. 2002, 107, 21–24. [Google Scholar] [CrossRef]
- Qin, Y.; Su, J.; Wang, M. Melt pond retrieval based on the LinearPolar algorithm using Landsat data. Remote Sens. 2021, 13, 4674. [Google Scholar] [CrossRef]
- Lu, P.; Li, Z.; Cheng, B.; Lei, R.; Zhang, R. Sea ice surface features in Arctic summer 2008: Aerial observations. Remote Sens. Environ. 2010, 114, 693–699. [Google Scholar] [CrossRef]
- Renner, A.H.H.; Gerland, S.; Haas, C.; Spreen, G.; Beckers, J.F.; Hansen, E.; Nicolaus, M.; Goodwin, H. Evidence of Arctic sea ice thinning from direct observations. Geophys. Res. Lett. 2014, 41, 5029–5036. [Google Scholar] [CrossRef]
- Arntsen, A.E.; Song, A.J.; Perovich, D.K.; Richter-Menge, J.A. Observations of the summer breakup of an Arctic sea ice cover. Geophys. Res. Lett. 2015, 42, 8057–8063. [Google Scholar] [CrossRef]
- Tschudi, M.A.; Maslanik, J.A.; Perovich, D.K. Derivation of melt pond coverage on Arctic sea ice using MODIS observations. Remote Sens. Environ. 2008, 112, 2605–2614. [Google Scholar] [CrossRef]
- Istomina, L.; Heygster, G.; Huntemann, M.; Marks, H.; Melsheimer, C.; Zege, E.; Malinka, A.; Prikhach, A.; Katsev, I. Melt pond fraction and spectral sea ice albedo retrieval from MERIS data—Part 2: Case studies and trends of sea ice albedo and melt ponds in the Arctic for years 2002-2011. Cryosphere 2015, 9, 1567–1578. [Google Scholar] [CrossRef]
- Istomina, L.; Marks, H.; Huntemann, M.; Heygster, G.; Spreen, G. Improved cloud detection over sea ice and snow during Arctic summer using MERIS data. Atmos. Meas. Technol. 2020, 13, 6459–6472. [Google Scholar] [CrossRef]
- Lee, S.; Stroeve, J.; Tsamados, M.; Khan, A.L. Machine learning approaches to retrieve pan-Arctic melt ponds from visible satellite imagery. Remote Sens. Environ. 2020, 247, 111919. [Google Scholar] [CrossRef]
- Rösel, A.; Kaleschke, L.; Birnbaum, G. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network. Cryosphere 2012, 6, 431–446. [Google Scholar] [CrossRef] [Green Version]
- Rösel, A.; Kaleschke, L.; Kern, S.E. Gridded Melt Pond Cover Fraction on Arctic Sea Ice derived from TERRA-MODIS 8-Day Composite Reflectance Data Bias Corrected Version 02. World Data Center for Climate (WDCC) at DKRZ. Available online: https://www.wdc-climate.de/ui/entry?acronym=MODIS__Arctic__MPF_V02 (accessed on 1 October 2021).
- Zege, E.; Malinka, A.; Katsev, I.; Prikhach, A.; Heygster, G.; Istomina, L.; Birnbaum, G.; Schwarz, P. Algorithm to retrieve the melt pond fraction and the spectral albedo of Arctic summer ice from satellite optical data. Remote Sens. Environ. 2015, 163, 153–164. [Google Scholar] [CrossRef]
- Kokhanovsky, A.; Zege, E. Scattering Optics of Snow. Appl. Opt. 2004, 43, 1589–1602. [Google Scholar] [CrossRef]
- Malinka, A.; Zege, E.; Heygster, G.; Istomina, L. Reflective properties of white sea ice and snow. Cryosphere 2016, 10, 2541–2557. [Google Scholar] [CrossRef]
- Istomina, L.; Heygster, G.; Huntemann, M.; Schwarz, P.; Birnbaum, G.; Scharien, R.; Polashenski, C.; Perovich, D.; Zege, E.; Malinka, A.; et al. Melt pond fraction and spectral sea ice albedo retrieval from MERIS data-Part 1: Validation against in situ, aerial, and ship cruise data. Cryosphere 2015, 9, 1551–1566. [Google Scholar] [CrossRef]
- Istomina, L. Retrieval of sea ice surface melt using OLCI data onboard Sentinel-3. In AGU Fall Meeting 2020; American Geophysical Union: Washington, DC, USA, 2020. [Google Scholar]
- Ding, Y.; Liu, J.; Cheng, X.; Chen, S. Melt pond fraction over Arctic sea ice during 2000–2019. PANGAEA 2021. [Google Scholar] [CrossRef]
- Fetterer, F.; Wilds, S.; Sloan, J. Arctic Sea Ice Melt Pond Statistics and Maps, 1999–2001, Version 1; NSIDC: National Snow and Ice Data Center:: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Webster, M.A.; Rigor, I.G.; Perovich, D.K.; Richter Menge, J.A.; Polashenski, C.M.; Light, B. Seasonal evolution of melt ponds on Arctic sea ice. J. Geophys. Res. Ocean. 2015, 120, 5968–5982. [Google Scholar] [CrossRef]
- Qu, Y.; Liang, S.; Liu, Q.; Li, X.; Feng, Y.; Liu, S. Estimating Arctic sea-ice shortwave albedo from MODIS data. Remote Sens. Environ. 2016, 186, 32–46. [Google Scholar] [CrossRef]
- Ding, Y.; Qu, Y.; Peng, Z.; Wang, M.; Li, X. Estimating surface albedo of Arctic sea ice using an ensemble back-propagation neural network: Toward a better consideration of reflectance anisotropy and melt ponds. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4306017. [Google Scholar] [CrossRef]
- Wang, X.; Shi, F.; Yu, L.; Li, Y. Genetic Algorithm for Optimizing BP Neural Networks, in 43 Case Studies of MATLAB Neural Networks, 1st ed.; Beihang University Press: Beijing, China, 2013; pp. 20–31. [Google Scholar]
- Liu, N.; Liu, Q.; Wang, L.; Liang, S.; Wen, J.; Qu, Y.; Liu, S. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrol. Earth Syst. Sci. 2013, 17, 2121–2129. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Fan, X.; Li, X.; Liu, Q.; Qu, Y. Estimation of land surface albedo from MODIS and VIIRS data: A multi-sensor strategy based on the direct estimation algorithm and statistical-based temporal filter. Remote Sens. 2020, 12, 4131. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Qu, Y. Land surface albedo variations in Sanjiang Plain from 1982 to 2015: Assessing with GLASS data. Chin. Geogr. Sci. 2020, 30, 876–888. [Google Scholar] [CrossRef]
- Zhang, J.; Schweiger, A.; Webster, M.; Light, B.; Steele, M.; Ashjian, C.; Campbell, R.; Spitz, Y. Melt pond conditions on declining Arctic sea ice over 1979–2016: Model development, validation, and results. J. Geophys. Res. Ocean. 2018, 123, 7983–8003. [Google Scholar] [CrossRef]
- Wright, N.C.; Polashenski, C.M. How machine learning and high-resolution imagery can improve melt pond retrieval from MODIS over current spectral unmixing techniques. J. Geophys. Res. Ocean. 2020, 125, e2019JC015569. [Google Scholar] [CrossRef]
- Wen, J.; Wu, X.; Wang, J.; Tang, R.; Ma, D.; Zeng, Q.; Gong, B.; Xiao, Q. Characterizing the effect of spatial heterogeneity and the deployment of sampled plots on the uncertainty of ground “truth” on a coarse grid scale: Case study for near-infrared (NIR) surface reflectance. J. Geophys. Res. Atmos. 2022, 127, 2169–2897X. [Google Scholar] [CrossRef]
- Wu, X.; Wen, J.; Xiao, Q.; Bao, Y.; You, D.; Wang, J.; Ma, D.; Lin, X.; Gong, B. Quantification of the uncertainty caused by geometric registration errors in multiscale validation of satellite products. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8017905. [Google Scholar] [CrossRef]
- Jääskelainen, E.; Manninen, T.; Hakkarainen, J.; Tamminen, J. Filling gaps of black-sky surface albedo of the Arctic sea ice using gradient boosting and brightness temperature data. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102701. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Li, J.; Wang, Y.; Sun, F.; Zhang, L. Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019. Earth Syst. Sci. Data 2021, 13, 1385–1401. [Google Scholar] [CrossRef]
- Dong, J.; Yin, R.; Sun, X.; Li, Q.; Yang, Y.; Qin, K. Inpainting of remote sensing SST images with deep convolutional generative adversarial network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 18394376. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Ding, Y.; Qu, Y.; Wang, M.; Li, X. Generating a Long-Term Spatiotemporally Continuous Melt Pond Fraction Dataset for Arctic Sea Ice Using an Artificial Neural Network and a Statistical-Based Temporal Filter. Remote Sens. 2022, 14, 4538. https://doi.org/10.3390/rs14184538
Peng Z, Ding Y, Qu Y, Wang M, Li X. Generating a Long-Term Spatiotemporally Continuous Melt Pond Fraction Dataset for Arctic Sea Ice Using an Artificial Neural Network and a Statistical-Based Temporal Filter. Remote Sensing. 2022; 14(18):4538. https://doi.org/10.3390/rs14184538
Chicago/Turabian StylePeng, Zeli, Yinghui Ding, Ying Qu, Mengsi Wang, and Xijia Li. 2022. "Generating a Long-Term Spatiotemporally Continuous Melt Pond Fraction Dataset for Arctic Sea Ice Using an Artificial Neural Network and a Statistical-Based Temporal Filter" Remote Sensing 14, no. 18: 4538. https://doi.org/10.3390/rs14184538
APA StylePeng, Z., Ding, Y., Qu, Y., Wang, M., & Li, X. (2022). Generating a Long-Term Spatiotemporally Continuous Melt Pond Fraction Dataset for Arctic Sea Ice Using an Artificial Neural Network and a Statistical-Based Temporal Filter. Remote Sensing, 14(18), 4538. https://doi.org/10.3390/rs14184538