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Abstract: The accuracy and consistency of a quintuple collocation analysis of ocean surface vector
winds from buoys, scatterometers, and NWP forecasts is established. A new solution method is
introduced for the general multiple collocation problem formulated in terms of covariance equations.
By a logarithmic transformation, the covariance equations reduce to ordinary linear equations
that can be handled using standard methods. The method can be applied to each determined or
overdetermined subset of the covariance equations. Representativeness errors are estimated from
differences in spatial variances. The results are in good agreement with those from quadruple
collocation analyses reported elsewhere. The geometric mean of all solutions from determined
subsets of the covariance equations equals the least-squares solution of all equations. The accuracy of
the solutions is estimated from synthetic data sets with random Gaussian errors that are constructed
from the buoy data using the values of the calibration coefficients and error variances from the
quintuple collocation analysis. For the calibration coefficients, the spread in the models is smaller
than the accuracy, but for the observation error variances, the spread and the accuracy are about
equal only for representativeness errors evaluated at a scale of 200 km for u and 100 km for v.
Some average error covariances differ significantly from zero, indicating weak inconsistencies in the
underlying error model. Possible causes for this are discussed. With a data set of 2454 collocations,
the accuracy in the observation error standard deviation is 0.02 to 0.03 m/s at the one-sigma level for
all observing systems.

Keywords: quintuple collocation analysis; ocean surface winds; ASCAT; ScatSat

1. Introduction

The triple collocation method was introduced by Stoffelen [1] in order to assess the
intercalibration coefficients and error variances of three systems observing ocean surface
vector winds. It is an extension of regression analysis to three dimensions under the
assumptions that linear calibration is sufficient, the errors are random and independent
of the measured value (also referred to as error orthogonality), and the correlations in
the errors of the observing systems are known or can be neglected. Triple collocation
has been applied to a variety of geophysical parameters such as ocean surface vector
winds [2,3], ocean surface wind speed [4], ocean surface current [5], sea surface salinity [6],
precipitation [7,8], soil moisture [9,10], etc. The list is far from exhaustive and the reader is
referred to the references and the references therein.

Stoffelen [1] already realized that the assumption of uncorrelated errors is, in most
cases, violated because differences in the spatial and/or temporal resolutions between
the observation systems give rise to representativeness errors which express themselves
as error covariances; also, in cases where the measurements are completely indepen-
dent. Unfortunately, the term representativeness error has different meanings in different
communities [11]. In this paper, we follow the meteorological convention and consider
representativeness errors as caused by differences in resolution between the various sys-
tems in order to distinguish them from error correlations caused by interdependence of

Remote Sens. 2022, 14, 4552. https://doi.org/10.3390/rs14184552 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14184552
https://doi.org/10.3390/rs14184552
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3798-8705
https://orcid.org/0000-0002-4018-4073
https://doi.org/10.3390/rs14184552
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14184552?type=check_update&version=2


Remote Sens. 2022, 14, 4552 2 of 16

the measurement system errors. Spatial representativeness errors can be estimated from
spectral analysis [1,2], constraints on the intercalibration [12], or spatial analysis [13]. An-
other approach is to estimate spatial representativeness errors, or error covariances in
general, using more than three observation systems. This is enabled by the increase in
satellite observations, but can also be achieved by introducing instrumental variables, i.e.,
using model forecasts or hindcasts with different analysis times [4,5,14] or time-lagged
variables [15]. These developments led to so-called extended collocation analyses, although
that term has also been used in [16] for a generalization of the correlation coefficient from
linear regression to triple collocation.

A number of methods has been proposed to solve the multiple collocation problem
for four or more observing systems. The methods depend on the spatial and temporal
statistical properties of the quantity under consideration and on the availability of a cali-
bration reference. The most popular one is to change variables, cast the problem in matrix
form, and solve the resulting overdetermined system of equations using a least-squares
method [9,17]. This is equivalent to minimizing a quadratic cost function for the unknowns.
A different approach has been followed in [3] for quadruple collocations where each subset
of four equations from the six off-diagonal covariance equations is solved analytically.
There are 15 such subsets, further referred to as models, of which 12 are soluble. The
remaining two equations of each soluble model can be solved for two error covariances.
The number of possibilities grows rapidly with the number of observing systems, and for
quintuple collocation there are already 252 models. It is clear that the analytical solution of
the problem becomes increasingly cumbersome.

In [3], it was found that different models give different solutions, and the question
arises whether these differences are due to statistical noise or to inconsistencies in the
underlying error model. This question can best be answered in a quintuple or higher
collocation analysis in order to have better statistics over the models. Two more things are
needed to obtain an answer: an efficient method to solve the covariance equations for all
models and a method to estimate the accuracy of the solutions.

In this paper, a new method is introduced for solving all possible models. The error
variances of the observing systems are found from the diagonal covariance equations, while
a determined subset of the off-diagonal equations is solved for the calibration scalings
and the common variance. By taking logarithms, this system of covariance equations
is transformed into a set of ordinary linear equations that can be solved using standard
methods. The determinant of the system indicates whether a solution exists, and solution
by matrix inversion enables reconstruction of the analytical solution. The method proves to
be fast and accurate, and can also be applied to any overdetermined subset of the covariance
equations. This is important since the increase in satellite sensors will increase the use of
multiple collocation analyses. Results are shown here for quintuple collocations of ocean
vector surface winds, while up to octuple collocations have been tested (not shown here
for brevity). Representativeness errors are included as differences in spatial variances,
and results will be shown as a function of the scale at which the representativeness errors
are evaluated.

The accuracy of the solutions is estimated from synthetic data sets. Selecting the
reference system as truth, all other systems are constructed from it for each model using
the calibration coefficients obtained from the analysis of the real data and adding Gaussian
random errors with appropriate variance. This is repeated 10,000 times and statistics is
calculated for each model as well as the least-squares solution. In [2], a formula is given for
the accuracy of the observation error variances in triple collocation, but the method used
here also gives accuracy estimates for the calibration coefficients and the error covariances,
and is applicable to quadruple and higher collocation analysis.

It will be shown that with the appropriate choice of representativeness errors, the
spreading in the model solutions is about equal to their estimated accuracy. However, some
average error covariances differ significantly from zero, indicating weak inconsistencies in
the underlying error model. Possible causes for this are discussed.
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In Section 2, the quintuple collocation data are described briefly. The multiple colloca-
tion problem is formulated in Section 3. The new solution method is introduced and an
iterative solution scheme is presented in which representativeness errors can be readily
included. The method for accuracy estimation is also presented in this section. The methods
are applied to a quintuple collocation data set consisting of ocean surface vector winds
observed by buoys, three different scatterometers (ASCAT-A, ASCAT-B, and ScatSat), and
ECMWF model forecasts in Section 4. Section 5 contains a short discussion of the results.
The paper ends with the conclusions in Section 6.

2. Data

In this study the same data are used as in [3], so the reader is referred thereto for
a more detailed description of these data. The quadruple collocation files of buoy (b),
ASCAT-B (B) or ASCAT-A (A), ScatSat (S), and ECMWF (E) were combined into one bBASE
quintuple collocation file with 2454 collocations. The data were acquired between 6 October
2016 and 22 July 2017, when ScatSat was in the same orbital plane as ASCAT-A and
ASCAT-B, and the ScatSat data were generated using version 1.1.3 of the L1B processor.
The maximum time difference was set to 1 h because of the 50 min time difference between
ASCAT-A and ASCAT-B overpasses, while the maximum distance between buoy location
and scatterometer grid center was 25 km.

3. Methods
3.1. Multiple Collocation Formalism

Suppose we have a set of K collocated measurements made by n observation systems,{
x(k)i

}
, with k the collocation index, k = 1, . . . , K, and i the observation system index,

i = 1, . . . , n. Assuming that linear calibration is sufficient for intercalibration and omitting
the collocation index k, we can pose the following simplified observation error model

xi = ai(t + εi) + bi (1)

where t is the signal common to all observation systems (also referred to as the truth), ai
the calibration scaling, bi the calibration bias, and εi a random measurement error with
zero average and variance σ2

i . It is assumed that εi is uncorrelated with the common
signal t, 〈tεi〉 = 0, where the brackets 〈 〉 stand for averaging over all measurements
k. In the literature, this condition is also referred to as error orthogonality. Of course,
the assumptions made on linearity and error orthogonality should be checked first by
inspecting scatter plots. Note that xi is an uncalibrated measurement while t is calibrated,
so (1) actually constitutes an inverse calibration transformation.

Without loss of generality, we can select the first observation system as calibration
reference, so a1 = 1 and b1 = 0. By forming first moments (averages) and second moments
from (1) and introducing covariances, the general collocation problem can be cast in the
form [3,16]

bi = Mi − ai M1 (2)

with Mi = 〈xi〉 the averages of the observations, and

Cij = aiaj
(
T + eij

)
(3)

with Cij = Mij −Mi Mj the (co-)variances of the observations, Mij =
〈

xixj
〉

the (mixed)
second moments of the observations, T =

〈
t2〉−M2

1 the common variance, and eij =
〈
εiε j
〉

the error covariances. Note that Cij and eij are symmetric in their indices.
At this point, it must be emphasized that the approach outlined above is geared toward

ocean surface vector winds. Their statistical properties in time and space are well-studied.
In particular, their spectra follow power laws, and the observing systems with highest
resolution show the largest variations. Therefore, buoy winds are widely accepted as
calibration standard. This need not be the case for other quantities, and slightly different



Remote Sens. 2022, 14, 4552 4 of 16

approaches have been developed to account for this. Nevertheless, much of what follows
can be easily adapted to those approaches.

Equations (2) and (3) completely define the multiple collocation problem for error
model (1). Once the calibration scalings ai are known, the calibration biases bi follow from
(2). The remaining unknowns, in particular the essential unknowns (the calibration scalings
ai, the error variances σ2

i = eii, and the common variance T), must be obtained from the
covariance Equation (3).

For triple collocation, n = 3, there are six equations. Setting the off-diagonal error
covariances eij to zero, the covariance equations can be solved analytically for the essential
unknowns. For quadruple and higher-order collocations, there are more equations than
essential unknowns: the number of equations is n(n + 1)/2 while the number of essential
unknowns equals 2n.

The common approach is to solve (3) as an overdetermined system with a least-squares
method by introducing new variables yk = aiajT if the error covariance eij is neglected or
yk = aiaj

(
T + eij

)
if it is included as unknown. Using boldface for vectors and matrices,

the covariance equations are written in matrix-vector form as Ay = b with bk = Cij and A
a matrix with elements zero or one, see [9] for more details. The solution reads

y =
(

ATA
)−1

ATb (4)

provided the inverse of ATA exists. In cases where no calibration reference is selected, the
error variances are included in the variables, e.g., [9].

3.2. Linearization of the Covariance Equations

The n error variances σ2
i only appear in the n diagonal covariance equations, so

these are easily calculated when ai and T are known. The remaining n(n− 1)/2 off-
diagonal covariance equations only contain the n essential variables ai and T (a1 = 1
because system 1 is the calibration reference) plus the error covariances eij. For quadruple
collocations, the authors take all possible sets of n off-diagonal covariance equations, neglect
the error covariances in these so the equations take the form Cij = aiajT, and solve each
set analytically for ai and T [3]. There are 15 possible sets, further referred to as models, of
which 12 have a solution. Three models cannot be solved, and such models will be referred
to as unsolvable. Besides the essential unknowns, each solvable model also yields two error
covariances from the remaining two covariance equations that were not used to solve ai
and T. See also Appendix A for an example. The number of models grows rapidly with
the number of observing systems, see Table 1. For quintuple collocation there are already
252 models, and analytical solution is practically impossible.

Table 1. Number of observing systems, number of equations, number of models, and number of
solvable and unsolvable models.

Observing Systems Off-Diagonal
Equations Models Solvable Unsolvable

3 3 1 1 0
4 6 15 12 3
5 10 252 162 90
6 15 5005 2530 2475
7 21 116,280 45,615 70,665
8 28 3,108,105 937,440 2,170,665
9 36 94,143,280 21,685,132 72,458,148

Taking a closer look at the covariance equations with the error covariances neglected,
one sees that the unknowns ai and T appear as a product on one side and the coefficients
Cij, calculated from the data, on the other. By taking logarithms on both sides, the un-
knowns are separated and the equations reduce to an ordinary system of linear equations.
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Suppose a model has been defined by a selection of n off-diagonal covariance equations{
C(m)

ij = aiajT
}

in which the error covariances are neglected, with j > i and labeled with

index m = 1, . . . , n. Setting z1 = log T, zm = log am for m = 2, . . . , n, and dm = log C(m)
ij ,

the off-diagonal covariances read in matrix-vector notation

Dz = d (5)

where the matrix D has for each row the value 1 in the first column, Dm1 = 1, and one
or two additional values 1 in the remaining columns, Dmi = 1 if i > 1, and Dmj = 1. All
other elements of D are zero. The determinant of D can thus only take integer values; the
zero-value indicating that system (5) has no solution. See Appendix A for an example.

It may seem awkward to take logarithms, but (5) yields the same solution as the origi-
nal set of equations

{
C(m)

ij = aiajT
}

as long as all variables are positive. This is certainly
the case here. The calibration scalings am are generally close to 1, so their logarithms are
around 0, and the observed covariances Cij are nonnegative; also when representativeness
errors are taken into account (see further down). The common variance T is of the same
order of magnitude as the Cij. Therefore, problem (5) is well-posed and can be solved
numerically with standard methods.

In this work, the inverse of D is calculated using Gaussian elimination, and the solution
reads z = D−1d. This has the advantage that the analytical solution can be reconstructed,
since in components

zm = ∑n
l=1 D−1

ml dl (6)

which implies that after exponentiating

T = ∏n
l=1

(
C(l)

ij

)D−1
1l (7)

am = ∏n
l=1

(
C(l)

ij

)D−1
ml , m > 1 (8)

so the analytical solutions for the common variance T and the calibration scalings am are
products of observed covariances raised to a power determined by the components of D−1.
The error variances are given by σ2

m = Cmm − a2
mT, and from (7) and (8), it follows that

σ2
1 = C11 −∏n

l=1

(
C(l)

ij

)D−1
1l (9)

σ2
m = Cmm −∏n

l=1

(
C(l)

ij

)D−1
1l +2D−1

ml , m > 1 (10)

Note that in (10), factors may cancel in the exponent.
The same logarithmic transformation can also be applied to all off-diagonal covariance

equations and solved with the least-squares method, having the advantage that the solution
is given directly in the logarithms of the basic unknowns rather than combinations of them.
If the number of equations permits, error covariances can be included by adding extra
variables zm = log

(
T + eij

)
with m > n.

The determinant of DTD in the least-squares solution equals the number of solu-
ble models for quadruple and quintuple collocations. In the determined cases, matri-
ces D−1 have only integer elements, see Appendix A; in the overdetermined case, the
Moore–Penrose pseudoinverse

(
DTD

)−1DT also contains rational numbers. In Appendix B,
it is shown that the least-squares solution is the geometric mean of all model solutions,
a consequence of the fact that in logarithmic space the overdetermined solution is the
arithmetic average of the determined ones.
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A solution method equivalent to the least-squares solution is minimizing a quadratic
cost function J defined as

J = ∑n
i=1 ∑n

j=i+1

(
aiajT − Cij

)2 (11)

to ai and T using a standard conjugate-gradient method.

3.3. Iterative Solution

The covariance equations for each possible model are solved in an iterative scheme
that starts with assuming that the data are already perfectly calibrated, so a(0)i = 1 and

b(I)
i = 0, i = 1, 2, . . . , n, where the superscript I stands for the iteration index. The relation

between the calibrated measured values in iteration I, y(I)
i , and the original values, xi, is

y(I)
i =

xi − b(I)
i

a(I)
i

(12)

In each iteration, the averages and covariances are recalculated from the calibrated
data and the covariance equations are solved, but now the solution does not yield the
calibration coefficients ai and bi themselves, but their updates ∆ai and ∆bi. Of course,
∆b1 = 0 and ∆a1 = 1 because system 1 is chosen as calibration reference. The calibration
coefficients are updated as

b(I)
i = b(I−1)

i + ∆bi, a(I)
i = a(I−1)

i ∆ai, i = 2, 3, . . . , n (13)

Iteration has converged when |∆bi| < ε and |1− ∆ai| < ε, with ε = 10−6. This usually
takes about ten steps.

This iteration scheme has two advantages. First, in each iteration, the standard
deviation of the difference between each pair of calibrated measurements, σ

(I)
ij , can be

calculated, and this can be used in the next iteration to detect (and exclude) outliers. The
iteration starts with a large value σ

(0)
ij = 3 m2s−2, and collocations are excluded whenever∣∣∣y(I)

i − y(I)
j

∣∣∣ > 4σ
(I−1)
ij (14)

(hence the name “4-sigma test”).
Second, it allows for proper inclusion of representativeness errors calculated as dif-

ferences in spatial variances of the uncalibrated data. Suppose the observation systems
are sorted to decreasing spatial resolution and that r2

l is the representativeness error of
higher resolution system l with respect to lower resolution system l + 1. As shown in [3],
the (calibrated) representativeness errors can be incorporated in the observed covariances
by the substitution

Cij → Cij −∑n−1
l=max(i,j) r2

l (15)

In other words, the known representativeness errors are put to the other side of the
covariance Equation (3) together with the known covariances Cij. Error covariances that
are known a priori can be incorporated in this way.

3.4. Representativeness Errors

In general, the representativeness errors cannot be retrieved from the error covariances.
The number of off-diagonal covariance equations is nod = n(n− 1)/2, so the number of
error covariances that can be retrieved is nec = nod − n = n(n− 3)/2. The number of repre-
sentativeness errors is nre = (n− 1)(n− 2)/2 = nec + 1, so there is always one off-diagonal
covariance equation lacking. This can be circumvented when the two coarsest resolution
systems have the same spatial and temporal resolution. In the case considered here, one
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could try ECMWF forecasts with different analysis times. However, as already remarked
in [3], this would introduce an additional error covariance between the two forecasts, and
the resulting model has no solution.

As a consequence, the representativeness errors must be estimated in a different
way. In this study, they are obtained from differences in spatial variance as a function of
sample length (further referred to as scale) [13]. Figure 1 shows the difference in spatial
variance ∆V(s) = Vscat(s)−VECMWF(s), as a function of scale s for ASCAT-B, ASCAT-A,
and ScatSat. Figure 1 is the same as Figure 2 in [3]. In the terminology of Equation (15),
the ScatSat representativeness error with respect to the ECMWF model, r2

4, is defined as
r2

4 = VScatSat(s)−VECMWF(s), the height of the dotted curve. The representativeness error
r2

3 of ASCAT-A relative to ScatSat equals the vertical distance between the dotted curve
and the solid curve, and that of ASCAT-B relative to ASCAT-A, r2

2, by the vertical distance
between the dashed and the solid curve. The representativeness error of ASCAT-B relative
to the ECMWF background equals r2

2 + r2
3 + r2

4, the height of the dashed curve, in Figure 1.
The representativeness errors increase with scale.
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Figure 1. Difference between the spatial variance of ASCAT-A, ASCAT-B, and ScatSat and that of
ECMWF, ∆V(s), as a function of s for the zonal wind component u (a) and for the meridional wind
component v (b).

Previous work indicated that the optimum scale for calculating the representativeness
errors is about 200 km for the zonal wind component u and about 100 km for the meridional
wind component v. Both correspond to a spatial representativeness wind vector component
variance of about 0.3 m2 s−2 for the ASCATs.

Note that the spatial variances Vscat and VECMWF should be divided by the square of
the calibration scaling before calculating the representativeness errors and applying (15)
in order not to mix up calibrated and uncalibrated quantities when applying the iterative
scheme presented in Section 3.3. Note also that the curves for ASCAT-A and ASCAT-B
are not identical. This is due to the time difference of about 50 min in the local overpass
time between the two sensors, mainly due to a different orbit phase. They, therefore,
sample different weather at a particular phase of the diurnal cycle (both sensors are in a
mid-morning sun-synchronous orbit). When mesoscale turbulent processes play a role,
ASCAT-A and ASCAT-B can give quite different wind fields [18].

3.5. Precision Estimate

The primary source of uncertainty is in the wind components xi. The calibration
scalings and common variance are functions of the covariances Cij which are second-order
statistics. To calculate the precision in the covariances would require fourth-order statistics,
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but these are very sensitive to outliers and give no usable results for data sets with the size
considered here. Therefore, a different approach is followed in this work.

The first step is to run a quintuple collocation analysis on the original data to calculate
calibration coefficients and the error variances. Then, the reference system is adopted as
common signal t and a synthetic data set is constructed using (1) with Gaussian random
errors. This yields a data set that is not precisely equivalent to the original data set because
the observation errors of the reference system are part of the signal, but it is close enough
for a good precision estimate. Next, a quintuple collocation analysis is performed on the
synthetic data set. The process is repeated a sufficient number of times (10,000 in the cases
presented here), and the first and second moments of each variable are updated. Finally,
averages and standard deviations are calculated for each model separately. The averages
lie close to the values used to construct the synthetic data (no results shown), while the
standard deviations give the precision estimates. Finally, the model results are averaged
over all models. The same procedure, except for the model averaging, is also followed for
the least-squares solution.

4. Results and Discussion

As a check, the numerical solutions, calculated in double precision, were compared to
the analytical ones for the quadruple collocations in [3] and were found to agree to at least
six decimal places.

4.1. Number of Solvable Models

Table 1 gives the number of observing systems, the number of off-diagonal covariance
equations, the number of models, and the number of solvable and unsolvable models
obtained from (6). The number of models, nm, satisfies

nm =

(
n(n− 1)/2

n

)
(16)

with n the number of observing systems. The fraction of solvable models decreases from
80% for quadruple collocation to about 23% for nonuple collocations, but still the number
of solvable models increases rapidly.

Table 1 shows that there are 162 solvable models for quintuple collocations. As for
quadruple collocations, different models lead to different solutions so it makes little sense
to present them all. Therefore, only statistical results will be shown, and the statistics will
be better than those from the 12 solvable models in a quadruple collocation analysis. The
model-averaged results will also be compared with those of the least-squares solution.

4.2. Calibration Coefficients and Error Standard Deviations

Figure 2a,b show the results for the calibration biases, Figure 2c,d for the calibration
scalings, and Figure 2e,f for the error variances. Figure 2a,c,e show results for the zonal
wind component u and Figure 2b,d,f for the meridional wind component v, all against
the scale s at which the representativeness errors are calculated. The curves give the
averages over all 162 model solutions. The calibration coefficients are given for the forward
calibration transformation, xcal

i = (xi − bi)/ai with xi the raw data of system i and xcal
i the

calibrated data.
Figure 2 shows that the results depend rather weakly on s. The strongest dependency

on the representativeness error is found for the ECMWF background at both u and v, and,
to a lesser extent, for the ScatSat error variance at v. This agrees with earlier triple and
quadruple collocation analyses for these systems.

The model averages in Figure 2 are the same as the least-squares solution to at least
three decimal places. In Appendix B, it is shown that the least-squares solution equals the
geometric mean of all model solutions.
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for v (f), all averaged over all models.

4.3. Statistical Accuracy and Model Spread

Figure 3 shows the results for the accuracy, i.e., the standard deviation (std) of the
solutions of all 10,000 synthetic data sets averaged over all models, and the model spread,
i.e., the standard deviation of all model solutions. The accuracy is almost the same for
each separate model so its average over all models is representative. The black curves
in Figure 3 give the accuracy; the gray ones, the model spread. The accuracy depends
weakly on the representativeness errors, while the model spread shows much stronger
dependency, especially for v, similar to the quadruple collocation results in [3]. For the
calibration biases, Figure 3a,b, the model spread is much smaller than the accuracy. For the
calibration scalings, Figure 3c,d, the model spread is smaller than the accuracy except for v
at large scales. For the observation error variances, Figure 3e,f, the model spread in σ2

u is
larger than the accuracy, but the two are about equal at s between 200 km and 300 km. The
spread in σ2

v shows a sharp minimum for v at s ≈ 100 km, like for quadruple collocation
analysis on the same data.
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Figure 3. Quintuple collocation results for the accuracy (black curves) and the model spread (gray
curves) as a function of the scale at which the representativeness errors are evaluated for the calibra-
tion biases for u (a), the calibration biases for v (b), the calibration scalings for u (c), the calibration
scalings for v (d), the error variances for u (e), and the error variances for v (f).

For the buoys and the ECMWF model, the spread at the minimum is about equal to
the accuracy, but for the scatterometers, it is twice as high. The results in Figure 3e,f for the
observation error variances show that only with proper values of the representativeness
errors, the model spread and the estimated statistical noise are close together, indicating
optimal—but not perfect—model consistency.

Figure 4 shows the accuracies of the model average (black curves) and of the least-
squares solution (gray curves) for the observation error variances. For the calibration
coefficients, the accuracy of the least-squares solution is the same as that of the model
average (no results shown), but for the observation error variances, it is smaller.
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Note that the observation error variances are more accurate than one would expect
from simple arguments. They are obtained from (3) as

σ2
i =

Cii

a2
i
− T (17)

Both terms on the right-hand side of Equation (17) are a quotient of an odd number
of covariances Cij with one covariance more in the numerator than in the denominator.
The common variance T is about 26 m2s−2 for u and about 18 m2s−2 for v. Its accuracy
is about 0.2 m2s−2 for both u and v, and the same accuracy can be expected for the other
term. If the terms were not correlated, the accuracy in the error variance would be about
0.4 m2s−2, but the correlations keep the accuracy down by two orders of magnitude to the
values shown in Figure 3. Nevertheless, the observation error variances are obtained as the
difference between two large numbers and are, therefore, sensitive to statistical noise. The
same applies to the observation error covariances.

4.4. Error Covariances

Figure 5 shows the observation error covariances eij averaged over all models (a, b)
and obtained from the least-squares solution (c, d), with the representativeness errors
evaluated at s = 200 km for u and s = 100 km for v. The model average is, of course, taken
only over those error covariances that are a solution of the model under consideration. The
dots give the values of the error covariances, while the error flags indicate their statistical
accuracy. System 1 stands for the buoys, system 2 for ASCAT-B, system 3 for ASCAT-A,
system 4 for ScatSat, and system 5 for the ECMWF forecasts. The numbers along the top of
each panel give the absolute value of the error covariance in units of its standard deviation
to indicate the statistical significance.

The observation error covariances from the least-squares solution are smaller than
those from the model average by a factor of about two. This seems odd because the
observation error variances of least-squares solution and model average agree to three
decimal places at least. The model average is taken strictly over those five error covariances
out of ten that can be solved for each model; the other five covariances were set to zero
in order to solve for the calibration scalings and error variance, and do not contribute
to the average. The least-squares solution is the geometric mean of the model solutions,
but apparently, the error covariances that are set to zero are also included in the average,
leading to an underestimation by a factor of two. The same happens for the second
moments so the accuracies of the least-squares solution are also underestimated, as can
be seen from Figure 5. This makes the least-squares method less-suited for analysis of the
error covariances.
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There are some observation error covariances that significantly (more than three
standard deviations) differ from zero. The first one is e15, the error covariance between
buoys and ECMWF. It could be possible that buoy measurements in the collocation data set
were assimilated in the ECMWF model and wind biases propagate to the ECMWF forecast
fields use here. However, that would lead to positive error covariances, while the values
for e15 in Figure 5 are all negative.

A second nonzero error covariance is e23, between ASCAT-A and ASCAT-B. Since the
data of both instruments are processed in the same way, deficiencies in the processing chain
could lead to error correlations. However, one would expect positive error covariances,
while all values of e23 in Figure 5 are negative.

The largest and positive error covariances are found for e35, between ASCAT-A and
ECMWF, in particular for v. Abdallah and De Chiara [4] also report error correlations
between ASCAT-A and ECMWF, but for wind speed. They attribute this to long-lasting
effects of ASCAT-A assimilation in the ECMWF model. However, this effect should then
also be observable in e25, the error covariance between ASCAT-B and ECMWF, since
the ASCAT-B wind fields have similar characteristics as those from ASCAT-A (though
differences may occur, as mentioned in Section 3.4). The values of e25 in Figure 5 differ not
significantly from zero for u and are negative for v.

A possible explanation for the results in Figure 5 is offered by the fact that the ECMWF
model contains systematic wind direction biases (e.g., [19]). These biases are known for
quite some time. They are a tough problem and any attempt so far to solve them led to
unacceptable deterioration of the forecast skill at other locations and forecast range. The
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multiple collocation analysis will treat the model biases as random errors, thus violating the
basic assumption that the observation errors are random. Furthermore, systematic errors in
the scatterometer winds caused by errors in the processing cannot be fully excluded.

5. Discussion

In [3], the authors posed the question of whether the model spread was due to statisti-
cal noise or to inconsistencies in the underlying error model (1). The answer is that both
effects play a role. If a synthetic data set without errors is used, all models give the same
solution (no results shown), so the model spread is at least partly generated by statistical
noise. On the other hand, the results for the observation error variances and covariances
show that the underlying error model is not fully consistent, notably for v, even with
appropriate values for the representativeness errors.

To conclude, Table 2 gives the results for the observation error standard deviation,
σ, with the estimated statistical accuracy obtained from the model average, std(σ). The
results are with representative errors evaluated at s = 200 km for u and s = 100 km for v.
Because the accuracies are estimated with Gaussian errors, which may be an optimistic
assumption, it is wise to treat the accuracies in Table 2 with care. Moreover, the accuracies
are given at the one-sigma level, and the collocation data set is but one realization of all
possible measurement error configurations.

Table 2. Observation error standard deviations and their accuracies.

Observing System σu std(σu) σv std(σv)
(m/s) (m/s) (m/s) (m/s)

buoys 0.914 0.017 1.063 0.020
ASCAT-A 0.372 0.022 0.505 0.029
ASCAT-B 0.390 0.025 0.444 0.020

ScatSat 0.683 0.018 0.594 0.021
ECMWF 0.845 0.017 1.006 0.021

6. Conclusions

The accuracy and consistency of a quintuple collocation analysis of ocean surface
vector winds from buoys, scatterometers, and NWP forecasts is studied. A new solution
method for the covariance equations is introduced. By a logarithmic transformation, the
covariance equations reduce to an ordinary system of linear equations that is efficiently
solved using matrix inversion. There are 252 possible determined subsets of the covariance
equations, referred to as models, of which 162 have a solution for the calibration coefficients,
the observation error variances, and five additional error covariances. Representativeness
errors are included as differences between spatial variances, and the results are presented as
a function of the scale at which the representativeness errors are evaluated. The logarithmic
transformation can also be applied to all covariance equations, leading to the least-squares
solution for the calibration coefficients and the observation error variances. The least-
squares solution is the geometric average over all model solutions. It is the same as the
average over all model solutions to three decimal places at least, except for the error
covariances which are underestimated.

The accuracy is estimated from synthetic data sets constructed by selecting the buoy
data as truth, applying the calibration coefficients from the quintuple collocation analysis
to construct the other data, and adding random Gaussian errors with standard deviations
also from the quintuple collocation analysis. This process is repeated 10,000 times for all
models as well as for the least-squares solution. Statistics of all variables are updated so
averages and standard deviations of the calibration coefficients and error (co-)variances
can be calculated.

The accuracy obtained thus is compared to the spread in the 162 model solutions. For the
calibration coefficients, the spread is smaller than the accuracy; for the observation error vari-
ances, the spread and the accuracy are about equal, but only when representativeness errors
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are properly included, in particular, for the meridional wind component v. Further, some
error covariances differ significantly from zero, indicating that the underlying error model
is not fully consistent, even when representativeness errors are included properly. These
results cannot be explained by error correlations between various systems, but are more
likely caused by systematic errors in the ECMWF model and the scatterometer processing.

The accuracy of the observation error standard deviations is about 0.02 to 0.03 m/s at
the one-sigma level for a data set of 2454 collocations. Because the accuracy is estimated
from Gaussian errors, which may be too optimistic an assumption, it is wise to treat this
value with care.
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Appendix A. Definition and Solution of a Particular Model

To illustrate the selection and solution of a particular model, a quadruple collocation
example is worked out in more detail here. The example is model 1 in Appendix A of [3].
The error covariances set to zero in this model are e12, e13, e14, and e23. The corresponding
off-diagonal covariance equations read (note that system 1 is taken as calibration reference,
so a1 = 1)

C12 = a2T, C13 = a3T, C14 = a4T, C23 = a2a3T (A1)

with calibration scalings ai, i = 2, 3, 4, and common variance T. The solutions are readily
found to be

a2 =
C23

C13
, a3 =

C23

C12
, a4 =

C14C23

C12C13
, T =

C12C13

C23
(A2)

The remaining two off-diagonal covariance equations read

C24 = a2a4(T + e24), C34 = a3a4(T + e34) (A3)

and since the calibration scalings ai and the common variance T are known from (A2), these
may be solved for e24 and e34.

Setting
z = (logT, log a2, loga3, log a4) (A4)

d = (logC12, log C13, logC14, log C23) (A5)

https://www.eumetsat.int/eumetsat-data-centre
https://podaac.jpl.nasa.gov
https://doi.org/10.21944/quad_coll_data
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the covariance equations for this particular model can be cast in linearized form Dz = d with

D =


1 1 0 0
1 0 1 0
1 0 0 1
1 1 1 0

 (A6)

For quintuple collocations, the procedure works in the same way, but now there are
five essential unknowns, ai, i = 2, 3, 4, 5, and T, and ten off-diagonal covariance equations,
so the number of possibilities to choose five error covariances to set zero is much larger.

Appendix B. Relation between Average of Model Solutions and
Least-Squares Solution

For quadruple collocations, the least-squares solution can be obtained from z = D−1
MPd,

where D−1
MP =

(
DTD

)−1DT is the Moore–Penrose pseudoinverse, see Section 2, and where

z = (logT, log a2, loga3, log a4) (A7)

d = (logC12, log C13, logC14, log C23, logC24, log C34) (A8)

DT =


1
1

0
0

1
0

1
0

1
0
0
1

1
1

1
0

1
1

0
1

1
0
1
1

 (A9)

D−1
MP =

1
6


4
0
−3
−3

4
−3
0
−3

4
−3
−3
0

−2
3
3
0

−2
3
0
3

−2
0

3
3

 (A10)

In (A7) and (A8), the column vectors z and d are written as row vectors, and in (A10) a
common factor 1/6 has been taken out of the matrix for typographical reasons. From (A7),
(A8), and (A10), one readily finds for the least-squares solution

T(LS) =

(
C2

12C2
13C2

14
C23C24C34

) 1
3

(A11)

a(LS)
2 =

(
C23C24

C13C14

) 1
2
, a(LS)

3 =

(
C23C34

C12C14

) 1
2
, a(LS)

4 =

(
C24C34

C12C13

) 1
2

(A12)

From the analytical model solutions in Appendix A of [3], one easily verifies that

T(LS) =
(
∏nm

m=1 T(m)
) 1

nm , a(LS)
i =

(
∏nm

m=1 a(m)
i

) 1
nm (A13)

with m the model index, nm = 12 the number of solvable models for quadruple collocation
analysis, and i = 2, 3, 4 the observation system index.

For quintuple collocations, z and d are defined analogously to (A7), (A8), and DT, and
the Moore–Penrose pseudoinverse reads

DT =


1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

 (A14)
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D−1
MP =

1
6


3
0
−2
−2
−2

3
−2
0
−2
−2

3
−2
−2

0
−2

3
−2
−2
−2

0

−1
2
2
0
0

−1
2

0
2
0

−1
2

0
0
2

−1
0
2
2
0

−1
0

2
0
2

−1
0

0
2
2

 (A15)

A numerical calculation using (7) and (8) shows that (A13) also holds for quintuple
collocations. Since in logarithmic space the least-squares solution equals the arithmetic
mean of all model solutions, (A13) holds for any number of observation systems larger
than three.
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