New Insights into Surface Deposits in the Balmer-Kapteyn Cryptomare Region Provided by Chang’E-2 Microwave Radiometer Data
Abstract
:1. Introduction
2. Numerical Simulation
2.1. Radiative Transfer Simulation of Cryptomare Deposits
2.2. Simulation Results of Cryptomare Deposits
2.3. Penetration Depth
3. Data Processing
3.1. Study Area and Regional Geology
3.2. TB Map Generation
3.3. Normalized TB (nTB) Maps
3.4. TB Difference (dTB) Maps
4. Results
4.1. Mare Unit
4.2. Cryptomare Unit
4.3. Highland Materials
5. Discussions
5.1. A New View of the Surface Deposits in the B-K Region
5.1.1. Mare-Like Cryptomare Deposits
5.1.2. A Construct-like Volcanic Feature
5.2. Discovering Special Materials with Strong Heat-Storage Capacity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Head, J.W.; Wilson, L. Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Et Cosmochim. Acta 1992, 56, 2155–2175. [Google Scholar] [CrossRef]
- Antonenko, I.; Head, J.W.; Mustard, J.F.; Ray Hawke, B. Criteria for the detection of lunar cryptomaria. Earth Moon Planets 1995, 69, 141–172. [Google Scholar]
- Schultz, P.H.; Spudis, P.D. Evidence for ancient mare volcanism. Lunar Planet. Sci. Conf. Proc. 1979, 3, 2899–2918. [Google Scholar]
- Hawke, B.R.; Bell, J.F. Spectral Reflectance Studies of Dark-Haloed Impact Craters: Implications for the Composition and Distribution of Ancient Lunar Basalts. In Proceedings of the Lunar and Planetary Science Conference, University of Hawaii, School of Earth and Ocean Sciences. Manoa, HI, USA, 1 March 1983; pp. 287–288. [Google Scholar]
- Hawke, B.R.; Gillis, J.J.; Giguere, T.A.; Blewett, D.T.; Lawrence, D.J.; Lucey, P.G.; Smith, G.A.; Spudis, P.D.; Taylor, G.J. Remote sensing and geologic studies of the Balmer-Kapteyn region of the Moon. J. Geophys. Res. Planets 2005, 110, E6. [Google Scholar] [CrossRef]
- Whitten, J.L.; Head, J.W. Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism. Icarus 2015, 247, 150–171. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, D. Lunar Cryptomare: New Insights Into the Balmer-Kapteyn Region. J. Geophys. Res. Planets 2018, 123, 3238–3255. [Google Scholar] [CrossRef]
- Antonenko, I. Global Estimates of Cryptomare Deposits: Implications for Lunar Volcanism. In Proceedings of the 30th Annual Lunar and Planetary Science Conference, Houston, TX, USA, 15–19 March 1999; p. 1703. [Google Scholar]
- Campbell, B.A.; Hawke, B.R. Radar mapping of lunar cryptomaria east of Orientale basin. J. Geophys. Res. Planets 2005, 110. [Google Scholar] [CrossRef]
- Antonenko, I.; Head, J. Cryptomaria in the Schiller-Schickard, Mare Humorum and Western Oceanus Procellarum Areas: Studies Using Dark-Halo Craters. Lunar Planet. Sci. Conf. 1994, 25, 35. [Google Scholar]
- Kaydash, V.; Shkuratov, Y.; Videen, G. Dark halos and rays of young lunar craters: A new insight into interpretation. Icarus 2014, 231, 22–33. [Google Scholar] [CrossRef]
- Lucey, P.G.; Blewett, D.T.; Taylor, G.J.; Hawke, B.R. Imaging of lunar surface maturity. J. Geophys. Res. Planets 2000, 105, 20377–20386. [Google Scholar] [CrossRef]
- Hawke, B.R.; Spudis, P.D. Geochemical anomalies on the eastern limb and farside of the moon. In Proceedings of the Lunar Highlands Crust, Houston, Tex., USA, 1 January 1980; pp. 467–481. [Google Scholar]
- Hawke, B.R.; Spudis, P.D.; Clark, P.E. The origin of selected lunar geochemical anomalies Implications for early volcanism and the formation of light plains. Earth Moon Planets 1985, 32, 257–273. [Google Scholar] [CrossRef]
- Davis, P.A., Jr. Iron and titanium distribution on the moon from orbital gamma ray spectrometry with implications for crustal evolutionary models. J. Geophys. Res. Solid Earth 1980, 85, 3209–3224. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Feldman, W.C.; Elphic, R.C.; Little, R.C.; Prettyman, T.H.; Maurice, S.; Lucey, P.G.; Binder, A.B. Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. J. Geophys. Res. Planets 2002, 107, 13-1–13-26. [Google Scholar] [CrossRef]
- Head, J.W.; Murchie, S.; Mustard, J.F.; Pieters, C.M.; Neukum, G.; McEwen, A.; Greeley, R.; Nagel, E.; Belton, M.J.S. Lunar impact basins: New data for the western limb and far side (Orientale and South Pole-Aitken Basins) from the first Galileo flyby. J. Geophys. Res. Planets 1993, 98, 17149–17181. [Google Scholar] [CrossRef]
- Giguere, T.A.; Hawke, B.R.; Blewett, D.T.; Bussey, D.B.J.; Lucey, P.G.; Smith, G.A.; Spudis, P.D.; Taylor, G.J. Remote sensing studies of the Lomonosov-Fleming region of the Moon. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Sori, M.M.; Zuber, M.T.; Head, J.W.; Kiefer, W.S. Gravitational search for cryptovolcanism on the Moon: Evidence for large volumes of early igneous activity. Icarus 2016, 273, 284–295. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Tsang, K.T.; Chan, K.L.; Zou, Y.L.; Zhang, F.; Ouyang, Z.Y. First microwave map of the Moon with Chang’E-1 data: The role of local time in global imaging. Icarus 2012, 219, 194–210. [Google Scholar] [CrossRef]
- Zheng, Y.; Chan, K.L.; Tsang, K.T.; Zhu, Y.; Hu, G.P.; Blewett, D.T.; Neish, C. Analysis of Chang’E-2 brightness temperature data and production of high spatial resolution microwave maps of the Moon. Icarus 2019, 319, 627–644. [Google Scholar]
- Meng, Z.; Lei, J.; Qian, Y.; Xiao, L.; Head, J.W.; Chen, S.; Cheng, W.; Shi, J.; Ping, J.; Kang, Z. Thermophysical Features of the Rümker Region in Northern Oceanus Procellarum: Insights from CE-2 CELMS Data. Remote Sens. 2020, 12, 3272. [Google Scholar] [CrossRef]
- Liu, C.; Mei, L.; Meng, Z.; Wang, Y.; Zhu, K.; Cheng, W.; Cai, Z.; Ping, J.; Gusev, A. Special Thermophysical Features of Floor Materials in Mare Smythii Indicated by CE-2 CELMS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8135–8143. [Google Scholar] [CrossRef]
- Siegler, M.A.; Feng, J.; Lucey, P.G.; Ghent, R.R.; Hayne, P.O.; White, M.N. Lunar Titanium and Frequency-Dependent Microwave Loss Tangent as Constrained by the Chang’E-2 MRM and LRO Diviner Lunar Radiometers. J. Geophys. Res. Planets 2020, 125, e2020JE006405. [Google Scholar] [CrossRef]
- Feng, J.; Siegler, M.A.; Hayne, P.O. New Constraints on Thermal and Dielectric Properties of Lunar Regolith from LRO Diviner and CE-2 Microwave Radiometer. J. Geophys. Res. Planets 2020, 125, e2019JE006130. [Google Scholar] [CrossRef]
- Heiken, G.; Vaniman, D.; French, B.M. Lunar Sourcebook—A User’s Guide to the Moon; Cambridge University Press: Cambridge, UK, 1991; 753p. [Google Scholar]
- Keihm, S.J.; Langseth, M.G. Lunar microwave brightness temperature observations reevaluated in the light of Apollo program findings. Icarus 1975, 24, 211–230. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Jiang, J.; Li, D. Lunar surface dielectric constant, regolith thickness, and 3He abundance distributions retrieved from the microwave brightness temperatures of CE-1 Lunar Microwave Sounder. Sci. China Earth Sci. 2010, 53, 1365–1378. [Google Scholar] [CrossRef]
- Liu, N.; Jin, Y.Q. A Radiative Transfer Model for MW Cold and IR Hot Spots of Chang’e and Diviner Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8184–8190. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, S.; Osei, E.M.; Wang, Z.; Cui, T. Research on water ice content in Cabeus crater using the data from the microwave radiometer onboard Chang’e-1 satellite. Sci. China Phys. Mech. Astron. 2010, 53, 2172–2178. [Google Scholar] [CrossRef]
- Berryman, J.G. Mixture Theories for Rock Properties. In Rock Physics & Phase Relations; American Geophysical Union Press: Washington DC, USA, 1995; pp. 205–228. [Google Scholar]
- Hu, G.P.; Chan, K.L.; Zheng, Y.C.; Xu, A.A. A Rock Model for the Cold and Hot Spots in the Chang’E Microwave Brightness Temperature Map. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5471–5480. [Google Scholar] [CrossRef]
- Meng, Z.; Lei, J.; Xiao, Z.; Cao, W.; Cai, Z.; Cheng, W.; Feng, X.; Ping, J. Re-Evaluating Influence of Rocks on Microwave Thermal Emission of Lunar Regolith Using CE-2 MRM Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Meng, Z.; Hu, S.; Wang, T.; Li, C.; Cai, Z.; Ping, J. Passive Microwave Probing Mare Basalts in Mare Imbrium Using CE-2 CELMS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3097–3104. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Minton, D.A.; Hirabayashi, M.; Elliott, J.R.; Richardson, J.E.; Fassett, C.I.; Zellner, N.E.B. Heterogeneous impact transport on the Moon. J. Geophys. Res. Planets 2017, 122, 1158–1180. [Google Scholar] [CrossRef]
- Fang, T.; Fa, W. High frequency thermal emission from the lunar surface and near surface temperature of the Moon from Chang’E-2 microwave radiometer. Icarus 2014, 232, 34–53. [Google Scholar] [CrossRef]
- Fa, W. Simulation for ground penetrating radar (GPR) study of the subsurface structure of the Moon. J. Appl. Geophys. 2013, 99, 98–108. [Google Scholar] [CrossRef]
- Kong, J.A. Electromagnetic Wave Theory; EMW Press: Cambridge, UK, 2005. [Google Scholar]
- Campbell, B.A.; Carter, L.M.; Hawke, B.R.; Campbell, D.B.; Ghent, R.R. Volcanic and impact deposits of the Moon’s Aristarchus Plateau: A new view from Earth-based radar images. Geology 2008, 36, 135–138. [Google Scholar] [CrossRef]
- Cai, Z.; Lan, T. Lunar Brightness Temperature Model Based on the Microwave Radiometer Data of Chang’e-2. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5944–5955. [Google Scholar] [CrossRef]
- Amidror, I. Scattered data interpolation methods for electronic imaging systems: A survey. J. Electron. Imaging 2002, 11, 157–176. [Google Scholar] [CrossRef]
- Hu, G.P.; Zheng, Y.C.; Xu, A.A.; Tang, Z.S. Qualitative Verification of CE-2’s Microwave Measurement: Relative Calibration Based on Brightness Temperature Model and Data Fusion. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1598–1609. [Google Scholar] [CrossRef]
- Hu, G.-P.; Chan, K.; Zheng, Y.-C.; Tsang, K.; Xu, A.-A. Comparison and Evaluation of the Chang’E Microwave Radiometer Data Based on Theoretical Computation of Brightness Temperatures at the Apollo 15 and 17 Sites. Icarus 2017, 294, 72–80. [Google Scholar] [CrossRef]
- Wei, G.; Byrne, S.; Li, X.; Feng, J.; Siegler, M.A. A New Method to Evaluate and Modify Chang’E-2 Microwave Radiometer Low-Frequency Data Constrained from Diviner Thermal Measurements. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Yang, F.; Hu, G.P.; Chan, K.L.; Tsang, K.T.; Zheng, Y.C.; Xu, Y.; Yu, L.H.S. A Recalibration Model Based on the Statistical Regression Analysis Method to Align the Microwave Data of Chang’E-1 and Chang’E-2. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Ghent, R.R.; Vasavada, A.R.; Paige, D.A.; Lawrence, S.J.; Robinson, M.S. Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef]
- Xie, M.; Xiao, Z.; Zhang, X.; Xu, A. The Provenance of Regolith at the Chang’e-5 Candidate Landing Region. J. Geophys. Res. Planets 2020, 125, e2019JE006112. [Google Scholar] [CrossRef]
- Yue, Z.; Johnson, B.C.; Minton, D.A.; Melosh, H.J.; Di, K.; Hu, W.; Liu, Y. Projectile remnants in central peaks of lunar impact craters. Nat. Geosci. 2013, 6, 435–437. [Google Scholar] [CrossRef]
- Fa, W.; Jin, Y. A primary analysis of microwave brightness temperature of lunar surface from Chang-E 1 multi-channel radiometer observation and inversion of regolith layer thickness. Icarus 2010, 207, 605–615. [Google Scholar] [CrossRef]
- Fa, W.; Wieczorek, M.A. Regolith thickness over the lunar nearside: Results from Earth-based 70-cm Arecibo radar observations. Icarus 2012, 218, 771–787. [Google Scholar] [CrossRef]
- Qiu, D.; Li, F.; Yan, J.; Wang, X.; Gao, W.; Deng, Q.; Guo, X. New view of the Balmer-Kapteyn region: Cryptomare distribution and formation. Astron. Astrophys. 2022, 659, A4. [Google Scholar] [CrossRef]
- Schreiner, S.S.; Dominguez, J.A.; Sibille, L.; Hoffman, J.A. Thermophysical property models for lunar regolith. Adv. Space Res. 2016, 57, 1209–1222. [Google Scholar]
nTB at Noon | nTB at Night | dTB | ||||
---|---|---|---|---|---|---|
Channel | M | NR | M | NR | M | NR |
3.0 GHz | 1.007 | 0.996 | 0.999 | 1.001 | 4.07 K | 3.95 K |
7.8 GHz | 1.010 | 1.007 | 1.002 | 1.004 | 8.99 K | 8.52 K |
19.35 GHz | 1.006 | 1.001 | 1.007 | 1.007 | 19.52 K | 19.49 K |
37 GHz | 1.002 | 0.994 | 1.011 | 1.011 | 43.59 K | 43.45 K |
nTB at Noon | nTB at Night | dTB | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Channel | C | N | SW | R | C | N | SW | R | C | N | SW | R |
3.0 GHz | 1.003 | 1.002 | 1.005 | 0.998 | 0.996 | 0.998 | 1.000 | 0.991 | 3.78 K | 3.39 K | 3.49 K | 3.86 K |
7.8 GHz | 1.006 | 1.000 | 1.007 | 0.999 | 0.995 | 1.001 | 1.003 | 0.980 | 8.86 K | 7.04 K | 7.66 K | 10.87 K |
19.35 GHz | 1.007 | 0.994 | 1.003 | 1.006 | 0.994 | 1.003 | 1.005 | 0.969 | 22.76 K | 17.83 K | 18.45 K | 28.07 K |
37 GHz | 1.007 | 0.986 | 1.000 | 1.016 | 0.985 | 1.007 | 1.006 | 0.943 | 50.71 K | 41.05 K | 43.33 K | 61.57 K |
nTB at Noon | nTB at Night | dTB | ||||
---|---|---|---|---|---|---|
Channel | E | W | E | W | E | W |
3.0 GHz | 1.003 | 0.996 | 1.000 | 0.996 | 2.96 K | 2.39 K |
7.8 GHz | 1.005 | 0.997 | 0.999 | 0.995 | 7.82 K | 7.64 K |
19.35 GHz | 1.006 | 0.997 | 0.999 | 0.995 | 20.73 K | 19.68 K |
37 GHz | 1.007 | 0.995 | 0.995 | 0.989 | 47.82 K | 46.07 K |
nTB at Noon | nTB at Night | dTB | |||||||
---|---|---|---|---|---|---|---|---|---|
Channel | M | C | H | M | C | H | M | C | H |
3.0 GHz | 1.007 ± 0.00054 | 1.003 ± 0.00061 | 0.998 ± 0.00098 | 0.999 ± 0.00043 | 0.996 ± 0.00096 | 0.998 ± 0.00124 | 4.07 K ± 0.15593 | 3.78 K ± 0.14920 | 2.41 K ± 0.15643 |
7.8 GHz | 1.010 ± 0.00164 | 1.006 ± 0.00070 | 0.999 ± 0.00110 | 1.002 ± 0.00110 | 0.995 ± 0.00111 | 0.999 ± 0.00163 | 8.99 K ± 0.23262 | 8.86 K ± 0.16569 | 6.74 K ± 0.21549 |
19.35 GHz | 1.006 ± 0.00161 | 1.007 ± 0.00126 | 0.996 ± 0.00119 | 1.007 ± 0.00094 | 0.994 ± 0.00104 | 1.000 ± 0.00111 | 19.52 K ± 0.39395 | 22.76 K ± 0.35832 | 18.19 K ± 0.28697 |
37 GHz | 1.002 ± 0.00243 | 1.007 ± 0.00138 | 0.993 ± 0.00172 | 1.011 ± 0.00210 | 0.985 ± 0.00210 | 1.000 ± 0.00145 | 43.59 K ± 0.84514 | 50.71 K ± 0.59108 | 43.06 K ± 0.60858 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, T.; Meng, Z.; Lian, Y.; Xiao, Z.; Ping, J.; Cai, Z.; Zhang, X.; Dong, X.; Zhang, Y. New Insights into Surface Deposits in the Balmer-Kapteyn Cryptomare Region Provided by Chang’E-2 Microwave Radiometer Data. Remote Sens. 2022, 14, 4556. https://doi.org/10.3390/rs14184556
Tang T, Meng Z, Lian Y, Xiao Z, Ping J, Cai Z, Zhang X, Dong X, Zhang Y. New Insights into Surface Deposits in the Balmer-Kapteyn Cryptomare Region Provided by Chang’E-2 Microwave Radiometer Data. Remote Sensing. 2022; 14(18):4556. https://doi.org/10.3390/rs14184556
Chicago/Turabian StyleTang, Tianqi, Zhiguo Meng, Yi Lian, Zhiyong Xiao, Jingsong Ping, Zhanchuan Cai, Xiaoping Zhang, Xuegang Dong, and Yuanzhi Zhang. 2022. "New Insights into Surface Deposits in the Balmer-Kapteyn Cryptomare Region Provided by Chang’E-2 Microwave Radiometer Data" Remote Sensing 14, no. 18: 4556. https://doi.org/10.3390/rs14184556
APA StyleTang, T., Meng, Z., Lian, Y., Xiao, Z., Ping, J., Cai, Z., Zhang, X., Dong, X., & Zhang, Y. (2022). New Insights into Surface Deposits in the Balmer-Kapteyn Cryptomare Region Provided by Chang’E-2 Microwave Radiometer Data. Remote Sensing, 14(18), 4556. https://doi.org/10.3390/rs14184556