Precipitation over the U.S. Coastal Land/Water Using Gauge-Corrected Multi-Radar/Multi-Sensor System and Three Satellite Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Precipitation Products
2.2. Reference Data
- (1)
- For the three-year precipitation climatology, the monthly mean RQI values were used, since selecting grids with daily RQI greater than 80 would cause the data to become less continuous.
- (2)
- For extreme precipitation, the 3-year mean RQI values greater than 80 were used to filter the data to select the top percentiles of precipitation data.
- (3)
- For the case study, pixels with a daily mean RQI higher than 80 were used because of the short period (4 days).
2.3. Methods
3. Results
3.1. MRMS Precipitation Distributions over Coastal Land/Water
3.2. Satellite Precipitation Products’ Evaluation
3.3. Case study: Extreme Precipitation Event on 10–13 November 2020
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cheng, L.; AghaKouchak, A. Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate. Sci. Rep. 2014, 4, 7093. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef]
- Verdin, A.; Funk, C.; Rajagopalan, B.; Kleiber, W. Kriging and Local Polynomial Methods for Blending Satellite-Derived and Gauge Precipitation Estimates to Support Hydrologic Early Warning Systems. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2552–2562. [Google Scholar] [CrossRef]
- Gabler, C.A.; Osland, M.J.; Grace, J.B.; Stagg, C.; Day, R.; Hartley, S.B.; Enwright, N.M.; From, A.S.; McCoy, M.L.; McLeod, J.L. Macroclimatic change expected to transform coastal wetland ecosystems this century. Nat. Clim. Chang. 2017, 7, 142–147. [Google Scholar] [CrossRef]
- Wang, H.; Steyer, G.D.; Couvillion, B.R.; Rybczyk, J.M.; Beck, H.J.; Sleavin, W.J.; Meselhe, E.A.; Allison, M.A.; Boustany, R.G.; Fischenich, C.J.; et al. Forecasting landscape effects of Mississippi River diversions on elevation and accretion in Louisiana deltaic wetlands under future environmental uncertainty scenarios. Estuar. Coast. Shelf Sci. 2014, 138, 57–68. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R.J. A Global Analysis of Human Settlement in Coastal Zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Klein, R.J.T.; Nicholls, R.; Thomalla, F.J. Resilience to natural hazards: How useful is this concept? Glob. Environ. Chang. B Environ. Hazards 2003, 5, 35–45. [Google Scholar] [CrossRef]
- Curtis, S. Means and Long-Term Trends of Global Coastal Zone Precipitation. Sci. Rep. 2019, 9, 5401. [Google Scholar] [CrossRef]
- Coppin, D.; Bellon, G.; Pletzer, A.; Scott, C. Detecting and Tracking Coastal Precipitation in the Tropics: Methods and Insights into Multiscale Variability of Tropical Precipitation. J. Clim. 2020, 33, 6689–6705. [Google Scholar] [CrossRef]
- Derin, Y.; Kirstetter, P.-E.; Gourley, J.J. Evaluation of IMERG satellite precipitation over the land-coast-ocean continuum—Part I: Detection. J. Hydrometeorol. 2021, 22, 2843–2859. [Google Scholar] [CrossRef]
- Prigent, C. Precipitation retrieval from space: An overview. Comptes Rendus Geosci. 2010, 342, 380–389. [Google Scholar] [CrossRef]
- Hayden, L.; Liu, C. Differences in the Diurnal Variation of Precipitation Estimated by Spaceborne Radar, Passive Microwave Radiometer, and IMERG. J. Geophys. Res. Atmos. 2021, 126, e2020JD033020. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Shao, H.; Chen, S.; Liu, T.; Chen, C.; Ding, Q.; Du, H. Evaluation and Intercomparison of High-Resolution Satellite Precipitation Estimates—GPM, TRMM, and CMORPH in the Tianshan Mountain Area. Remote Sens. 2018, 10, 1543. [Google Scholar] [CrossRef]
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. IMERG V06: Changes to the Morphing Algorithm. J. Atmos. Ocean. Technol. 2019, 36, 2471–2482. [Google Scholar] [CrossRef]
- Sadeghi, M.; Nguyen, P.; Naeini, M.R.; Hsu, K.; Braithwaite, D.; Sorooshian, S. PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies. Sci. Data 2021, 8, 157. [Google Scholar] [CrossRef]
- Zeweldi, D.A.; Gebremichael, M. Evaluation of CMORPH Precipitation Products at Fine Space–Time Scales. J. Hydrometeorol. 2009, 10, 300–307. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Sui, X.; Li, Z.; Ma, Z.; Xu, J.; Zhu, S.; Liu, H. Ground Validation and Error Sources Identification for GPM IMERG Product over the Southeast Coastal Regions of China. Remote Sens. 2020, 12, 4154. [Google Scholar] [CrossRef]
- Singh, A.K.; Tripathi, J.; Singh, K.; Singh, V.; Sateesh, M. Comparison of different satellite-derived rainfall products with IMD gridded data over Indian meteorological subdivisions during Indian Summer Monsoon (ISM) 2016 at weekly temporal resolution. J. Hydrol. 2019, 575, 1371–1379. [Google Scholar] [CrossRef]
- Wang, J.; Wolff, D.B.; Tan, J.; Marks, D.A.; Pippitt, J.L.; Huffman, G.J. Validation of IMERG Oceanic Precipitation over Kwajalein. Remote Sens. 2022, 14, 3753. [Google Scholar] [CrossRef]
- Carr, N.; Kirstetter, P.-E.; Hong, Y.; Gourley, J.J.; Schwaller, M.; Petersen, W.; Wang, N.-Y.; Ferraro, R.R.; Xue, X. The Influence of Surface and Precipitation Characteristics on TRMM Microwave Imager Rainfall Retrieval Uncertainty. J. Hydrometeorol. 2015, 16, 1596–1614. [Google Scholar] [CrossRef]
- Derin, Y.; Kirstetter, P.-E.; Brauer, N.; Gourley, J.J.; Wang, J. Evaluation of IMERG satellite precipitation over the land-coast-ocean continuum—Part II: Quantification. J. Hydrometeorol. 2022, 23, 1297–1314. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated. 7 February 2018. Available online: https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2_0.pdf (accessed on 17 December 2021).
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Diurnal Cycle of IMERG V06 Precipitation. Geophys. Res. Lett. 2019, 46, 13584–13592. [Google Scholar] [CrossRef]
- Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 2013, 5, 71–99. [Google Scholar] [CrossRef]
- Adler, R.F.; Sapiano, M.R.P.; Huffman, G.J.; Wang, J.-J.; Gu, G.; Bolvin, D.; Chiu, L.; Schneider, U.; Becker, A.; Nelkin, E.; et al. The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. Atmosphere 2018, 9, 138. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.-H.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation Estimates from 1998. J. Hydrometeorol. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.W.; Langston, C.; Kaney, B.; Qi, Y.; Tang, L.; Grams, H.; Wang, Y.; Cocks, S.; Martinaitis, S.M.; et al. Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 621–638. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, Y.; Langston, C.; Kaney, B. Radar Quality Index (RQI)—A combined measure for beam blockage and VPR effects in a national network. Weather Radar Hydrol. 2012, 351, 388–393. [Google Scholar]
- World Meteorological Organization. 2021. Available online: https://public.wmo.int/en (accessed on 20 December 2021).
- Purnell, D.J.; Kirshbaum, D.J. Synoptic Control over Orographic Precipitation Distributions during the Olympics Mountains Experiment (OLYMPEX). Mon. Weather Rev. 2018, 146, 1023–1044. [Google Scholar] [CrossRef]
- Zhang, Z.; Ralph, F.M.; Zheng, M. The Relationship Between Extratropical Cyclone Strength and Atmospheric River Intensity and Position. Geophys. Res. Lett. 2019, 46, 1814–1823. [Google Scholar] [CrossRef]
- Minobe, S.; Kuwano-Yoshida, A.; Komori, N.; Xie, S.-P.; Small, R.J. Influence of the Gulf Stream on the troposphere. Nature 2008, 452, 206–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, R. USA—Deadly Flash Floods in North Carolina. Floodlist. 13 November 2020. Available online: https://floodlist.com/america/usa/north-carolina-floods-november-2020 (accessed on 16 December 2021).
- Ji, H.; Peng, D.; Gu, Y.; Liang, Y.; Luo, X. Evaluation of multiple satellite precipitation products and their potential utilities in the Yarlung Zangbo River Basin. Sci. Rep. 2022, 12, 13334. [Google Scholar] [CrossRef]
- Cui, W.; Dong, X.; Xi, B.; Feng, Z.; Fan, J. Can the GPM IMERG Final Product Accurately Represent MCSs’ Precipitation Characteristics over the Central and Eastern United States? J. Hydrometeorol. 2020, 21, 39–57. [Google Scholar] [CrossRef]
- Wang, J.; Petersen, W.; Wolff, D. Validation of Satellite-Based Precipitation Products from TRMM to GPM. Remote Sens. 2021, 13, 1745. [Google Scholar] [CrossRef]
- Martinaitis, S.M.; Cocks, S.B.; Simpson, M.J.; Osborne, A.P.; Harkema, S.S.; Grams, H.M.; Zhang, J.; Howard, K.W. Advancements and Characteristics of Gauge Ingest and Quality Control within the Multi-Radar Multi-Sensor System. J. Hydrometeorol. 2021, 22, 2455–2474. [Google Scholar] [CrossRef]
- Bytheway, J.L.; Hughes, M.; Mahoney, K.; Cifelli, R. A Multiscale Evaluation of Multisensor Quantitative Precipitation Estimates in the Russian River Basin. J. Hydrometeorol. 2019, 20, 447–466. [Google Scholar] [CrossRef]
Products | Temporal Resolution | Spatial Resolution | Sensor | Bias Correction (Land) | Bias Correction (Ocean) |
---|---|---|---|---|---|
IMERG-F V06 | Daily | 0.1° | Radar, MW, and IR | GPCP & GPCC | GPCP |
IMERG-L V06 | Daily | 0.1° | Radar, MW, and IR | GPCP | GPCP |
PERSIANN | Daily | 0.04° | IR | GPCP | GPCP |
CMORPH | Daily | 0.25° | MW and IR | CPC | GPCP |
Product | MB (mm/day) | MAE (mm/day) | ||||
---|---|---|---|---|---|---|
Land | Ocean | Difference | Land | Ocean | Difference | |
IMERG-F | 0.10 | 0.95 | 0.85 | 0.73 | 1.33 | 0.60 |
IMERG-L | 0.61 | 1.14 | 0.53 | 1.32 | 1.53 | 0.21 |
PERSIANN | 0.22 | 0.50 | 0.28 | 1.13 | 1.22 | 0.09 |
CMORPH | −0.65 | 0.35 | 1.00 | 1.11 | 1.03 | −0.08 |
Product | R2 (−) | MB (R99p; mm/yr) | ||||
Land | Ocean | Difference | Land | Ocean | Difference | |
IMERG-F | 0.71 | 0.64 | −0.07 | 30.82 | 123.86 | 93.04 |
IMERG-L | 0.47 | 0.58 | 0.11 | 93.92 | 145.20 | 51.28 |
PERSIANN | 0.48 | 0.51 | 0.03 | 30.53 | 58.05 | 27.52 |
CMORPH | 0.52 | 0.69 | 0.17 | 11.47 | 61.60 | 50.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Arevalo, J.; Ouyed, A.; Zeng, X. Precipitation over the U.S. Coastal Land/Water Using Gauge-Corrected Multi-Radar/Multi-Sensor System and Three Satellite Products. Remote Sens. 2022, 14, 4557. https://doi.org/10.3390/rs14184557
Xu Y, Arevalo J, Ouyed A, Zeng X. Precipitation over the U.S. Coastal Land/Water Using Gauge-Corrected Multi-Radar/Multi-Sensor System and Three Satellite Products. Remote Sensing. 2022; 14(18):4557. https://doi.org/10.3390/rs14184557
Chicago/Turabian StyleXu, Yike, Jorge Arevalo, Amir Ouyed, and Xubin Zeng. 2022. "Precipitation over the U.S. Coastal Land/Water Using Gauge-Corrected Multi-Radar/Multi-Sensor System and Three Satellite Products" Remote Sensing 14, no. 18: 4557. https://doi.org/10.3390/rs14184557
APA StyleXu, Y., Arevalo, J., Ouyed, A., & Zeng, X. (2022). Precipitation over the U.S. Coastal Land/Water Using Gauge-Corrected Multi-Radar/Multi-Sensor System and Three Satellite Products. Remote Sensing, 14(18), 4557. https://doi.org/10.3390/rs14184557