Review on the Geophysical and UAV-Based Methods Applied to Landslides
Abstract
:1. Introduction
- (i)
- Subsurface data, e.g., geological, geophysical, hydrological, and geotechnical engineering properties of deposits (soils and rocks),
- (ii)
- Surface data, e.g., topographic/geodetic data related to terrains, slope angle and geometries, as well as land use changes (spatial data),
- (iii)
- “Beyond-surface” data, e.g., other data related to weather (meteorological data), climate conditions, and natural activities such as earthquakes and volcanic eruptions.
2. Overview of GM Applied for Landslides
2.1. Emitted Signal-Based (ESb) Method
2.2. ANb Techniques
2.2.1. HVSR and Polarization
2.2.2. ANI
2.3. Other Geophysical Techniques
3. Overview of UAV-Based Photogrammetric Techniques Applied for LS
4. Applications of GM and UAV Integration
4.1. GM and LS Investigation
4.2. GM and LS Dynamics
4.3. UAV Applications
5. Suitability of GM and UAV Methods
6. The Integration of UAV-Based Photogrammetry and Geophysical Data within the GIS Environment
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Notations
ANb | Ambient Noise-based |
DSMs | Digital Surface Models |
dV/V | Relative Change in Velocity |
ERT | Electrical Resistivity Tomography |
ESb | Emitted Signal-based |
GM | Geophysical method |
GIS | Geographical Information System |
GPR | Ground Penetrating Radar |
HVSR | Horizontal-to-Vertical Ratio |
InSAR | Interferometric Synthetic Aperture Radar |
LQs | Landslidequakes |
LS | Landslides |
LSDP | Landslide Dynamic Properties |
LSSP | Landslide Static Properties |
MASW | Multichannel Analysis of Surface Waves |
MRC | Mass Rock Creep |
NM | Nanoseismic Monitoring |
SAR | Synthetic Aperture Radar |
SfM | Structure from Motion |
SQs | Slidequakes |
SRT | Seismic Refraction Tomography |
UAV | Unmanned Aerial Vehicle (or drone) |
VHR | Very High-Resolution |
References
- Hearn, G.; Petley, D.; Hart, A.; Massey, C.; Chant, C. Landslide Risk Assessment in the Rural Sector: Guidelines on Best Practice; Department for International Development: London, UK, 2003. [Google Scholar]
- Chae, B.-G.; Park, H.-J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Schlögel, R.; Doubre, C.; Malet, J.-P.; Masson, F. Landslide deformation monitoring with ALOS/PALSAR imagery: A D-InSAR geomorphological interpretation method. Geomorphology 2015, 231, 314–330. [Google Scholar] [CrossRef]
- Agbasi, O.E.; Aziz, N.A.; Abdulrazzaq, Z.T.; Etuk, S.E. Integrated Geophysical Data and GIS Technique to Forecast the Potential Groundwater Locations in Part of South Eastern Nigeria. Iraqi J. Sci. 2019, 60, 1013–1022. [Google Scholar] [CrossRef]
- Abuzied, S.M.; Alrefaee, H.A. Spatial prediction of landslide-susceptible zones in El-Qaá area, Egypt, using an integrated approach based on GIS statistical analysis. Bull. Eng. Geol. Environ. 2018, 78, 2169–2195. [Google Scholar] [CrossRef]
- Klemas, V.V. Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview. J. Coast. Res. 2015, 31, 1260–1267. [Google Scholar] [CrossRef]
- Hamza, O.; De Vargas, T.; Boff, F.E.; Hussain, Y.; Sian Davies-Vollum, K. Geohazard Assessment of Landslides in South Brazil: Case Study. Geotech. Geol. Eng. 2019, 38, 971–984. [Google Scholar] [CrossRef]
- McCann, D.; Forster, A. Reconnaissance geophysical methods in landslide investigations. Eng. Geol. 1990, 29, 59–78. [Google Scholar] [CrossRef]
- Jongmans, D.; Garambois, S. Geophysical investigation of landslides: A review. BSGF Earth Sci. Bull. 2007, 178, 101–112. [Google Scholar] [CrossRef]
- Maurer, H.; Spillmann, T.; Heincke, B.; Hauck, C.; Loew, S.; Springman, S.; Green, A. Geophysical characterization of slope instabilities. First Break 2010, 28, 40746. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Del Gaudio, V.; Derron, M.-H.; Grandjean, G.; Jongmans, D. Characterizing and monitoring landslide processes using remote sensing and geophysics. Eng. Geol. 2019, 259, 105167. [Google Scholar] [CrossRef]
- Pazzi, V.; Morelli, S.; Fanti, R. A Review of the Advantages and Limitations of Geophysical Investigations in Landslide Studies. Int. J. Geophys. 2019, 2019, 1–27. [Google Scholar] [CrossRef]
- Danneels, G.; Bourdeau, C.; Torgoev, I.; Havenith, H.-B. Geophysical investigation and dynamic modelling of unstable slopes: Case-study of Kainama (Kyrgyzstan). Geophys. J. Int. 2008, 175, 17–34. [Google Scholar] [CrossRef]
- Villalpando, F.; Tuxpan, J.; Ramos-Leal, J.A.; Carranco-Lozada, S. New Framework Based on Fusion Information from Multiple Landslide Data Sources and 3D Visualization. J. Earth Sci. 2020, 31, 159–168. [Google Scholar] [CrossRef]
- Marciniak, A.; Kowalczyk, S.; Gontar, T.; Owoc, B.; Nawrot, A.; Luks, B.; Cader, J.; Majdański, M. Integrated geophysical imaging of a mountain landslide—A case study from the Outer Carpathians, Poland. J. Appl. Geophys. 2021, 191, 104364. [Google Scholar] [CrossRef]
- Zhong, C.; Liu, Y.; Gao, P.; Chen, W.; Li, H.; Hou, Y.; Nuremanguli, T.; Ma, H. Landslide mapping with remote sensing: Challenges and opportunities. Int. J. Remote Sens. 2020, 41, 1555–1581. [Google Scholar] [CrossRef]
- Karantanellis, E.; Marinos, V.; Vassilakis, E.; Hölbling, D. Evaluation of Machine Learning Algorithms for Object-Based Mapping of Landslide Zones Using UAV Data. Geosciences 2021, 11, 305. [Google Scholar] [CrossRef]
- Stott, E.; Williams, R.D.; Hoey, T.B. Ground Control Point Distribution for Accurate Kilometre-Scale Topographic Mapping Using an RTK-GNSS Unmanned Aerial Vehicle and SfM Photogrammetry. Drones 2020, 4, 55. [Google Scholar] [CrossRef]
- Thiebes, B.; Tomelleri, E.; Mejia-Aguilar, A.; Rabanser, M.; Schlögel, R.; Mulas, M.; Corsini, A. Assessment of the 2006 to 2015 Corvara Landslide Evolution Using a UAV-Derived DSM and Orthophoto. In Landslides and Engineered Slopes. In Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 2018; pp. 1897–1902. ISBN 1315375001. [Google Scholar]
- Zieher, T.; Toschi, I.; Remondino, F.; Rutzinger, M.; Kofler, C.; Mejia-Aguilar, A.; Schlögel, R. Sensor- and Scene-Guided Integration of Tls and Photogrammetric Point Clouds for Landslide Monitoring. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; ISPRS: Hanover, Germany, 2018; Volume 42. [Google Scholar] [CrossRef]
- Aslan, G.; Foumelis, M.; Raucoules, D.; De Michele, M.; Bernardie, S.; Cakir, Z. Landslide Mapping and Monitoring Using Persistent Scatterer Interferometry (PSI) Technique in the French Alps. Remote Sens. 2020, 12, 1305. [Google Scholar] [CrossRef]
- Kyriou, A.; Nikolakopoulos, K.; Koukouvelas, I.; Lampropoulou, P. Repeated UAV Campaigns, GNSS Measurements, GIS, and Petrographic Analyses for Landslide Mapping and Monitoring. Minerals 2021, 11, 300. [Google Scholar] [CrossRef]
- Hussain, Y.; Cardenas-Soto, M.; Martino, S.; Moreira, C.; Borges, W.; Hamza, O.; Prado, R.; Uagoda, R.; Rodríguez-Rebolledo, J.; Silva, R.C.; et al. Multiple Geophysical Techniques for Investigation and Monitoring of Sobradinho Landslide, Brazil. Sustainability 2019, 11, 6672. [Google Scholar] [CrossRef]
- Havevith, H.-B.; Jongmans, D.; Abdrakhmatov, K.; Trefois, P.; Delvaux, D.; Torgoev, I.A. Geophysical Investigations of Seismically Induced Surface Effects: Case Study of A Landslide In The Suusamyr Valley, Kyrgyzstan. Surv. Geophys. 2000, 21, 351–370. [Google Scholar] [CrossRef]
- Hussain, Y.; Hamza, O.; Cárdenas-Soto, M.; Borges, W.R.; Dou, J.; Rebolledo, J.F.R.; Prado, R.L. Characterization of Sobradinho landslide in fluvial valley using MASW and ERT methods. REM Int. Eng. J. 2020, 73, 487–497. [Google Scholar] [CrossRef]
- Da Silva, A.C.; Resende, I.; da Costa, R.C.; Uagoda, R.E.S.; Avelar, A.D.S. Geophysical for granitic joint patern and subsurface hydrology related to slope instability. J. Appl. Geophys. 2022, 199, 104607. [Google Scholar] [CrossRef]
- Harutoonian, P.; Leo, C.J.; Doanh, T.; Castellaro, S.; Zou, J.J.; Liyanapathirana, D.S.; Wong, H.; Tokeshi, K. Microtremor measurements of rolling compacted ground. Soil Dyn. Earthq. Eng. 2012, 41, 23–31. [Google Scholar] [CrossRef]
- Chávez-García, F.J.; Natarajan, T.; Cárdenas-Soto, M.; Rajendran, K. Landslide characterization using active and passive seismic imaging techniques: A case study from Kerala, India. Nat. Hazards 2021, 105, 1623–1642. [Google Scholar] [CrossRef]
- Whiteley, J.S.; Watlet, A.; Uhlemann, S.; Wilkinson, P.; Boyd, J.P.; Jordan, C.; Kendall, J.M.; Chambers, J.E. Rapid characterisation of landslide heterogeneity using unsupervised classification of electrical resistivity and seismic refraction surveys. Eng. Geol. 2021, 290, 106189. [Google Scholar] [CrossRef]
- Got, J.-L.; Mourot, P.; Grangeon, J. Pre-failure behaviour of an unstable limestone cliff from displacement and seismic data. Nat. Hazards Earth Syst. Sci. 2010, 10, 819–829. [Google Scholar] [CrossRef]
- Bottelin, P.; Baillet, L.; Larose, E.; Jongmans, D.; Hantz, D.; Brenguier, O.; Cadet, H.; Helmstetter, A. Monitoring rock reinforcement works with ambient vibrations: La Bourne case study (Vercors, France). Eng. Geol. 2017, 226, 136–145. [Google Scholar] [CrossRef]
- Walter, M.; Arnhardt, C.; Joswig, M. Seismic monitoring of rockfalls, slide quakes, and fissure development at the Super-Sauze mudslide, French Alps. Eng. Geol. 2012, 128, 12–22. [Google Scholar] [CrossRef]
- Vouillamoz, N.; Rothmund, S.; Joswig, M. Characterizing the complexity of microseismic signals at slow-moving clay-rich debris slides: The Super-Sauze (southeastern France) and Pechgraben (Upper Austria) case studies. Earth Surf. Dyn. 2018, 6, 525–550. [Google Scholar] [CrossRef]
- Hussain, Y.; Hussain, S.M.; Martino, S.; Cardenas-Soto, M.; Hamza, O.; Rodriguez-Rebolledo, J.F.; Uagoda, R.; Martinez-Carvajal, H. Typological analysis of slidequakes emitted from landslides: Experiments on an expander body pile and Sobradinho landslide (Brasilia, Brazil). Rev. Esc. Minas 2019, 72, 453–460. [Google Scholar] [CrossRef]
- Le Breton, M.; Bontemps, N.; Guillemot, A.; Baillet, L.; Larose, É. Landslide monitoring using seismic ambient noise correlation: Challenges and applications. Earth-Sci. Rev. 2021, 216, 103518. [Google Scholar] [CrossRef]
- Bottelin, P.; Levy, C.; Baillet, L.; Jongmans, D.; Gueguen, P. Modal and thermal analysis of Les Arches unstable rock column (Vercors massif, French Alps). Geophys. J. Int. 2013, 194, 849–858. [Google Scholar] [CrossRef]
- D’Angiò, D.; Fantini, A.; Fiorucci, M.; Iannucci, R.; Lenti, L.; Marmoni, G.M.; Martino, S. Environmental forcings and micro-seismic monitoring in a rock wall prone to fall during the 2018 Buran winter storm. Nat. Hazards 2021, 106, 2599–2617. [Google Scholar] [CrossRef]
- Gomberg, J.; Schulz, W.; Bodin, P.; Kean, J. Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory. J. Geophys. Res. Solid Earth 2011, 116, jb008304. [Google Scholar] [CrossRef]
- Hussain, Y.; Martinez-Carvajal, H.; Cárdenas-Soto, M.; Martino, S. Introductory Review of Potential Applications of Nanoseismic Monitoring in Seismic Energy Characterization. J. Eng. Res. 2019, 7, 2. [Google Scholar]
- Guillemot, A.; Baillet, L.; Larose, E.; Bottelin, P. Changes in resonance frequency of rock columns due to thermoelastic effects on a daily scale: Observations, modelling and insights to improve monitoring systems. Geophys. J. Int. 2022, 231, 894–906. [Google Scholar] [CrossRef]
- Hussain, Y.; Cardenas-Soto, M.; Uagoda, R.; Martino, S.; Rodriguez-Rebolledo, J.; Hamza, O.; Martinez-Carvajal, H. Monitoring of Sobradinho landslide (Brasília, Brazil) and a prototype vertical slope by time-lapse interferometry. Braz. J. Geol. 2019, 49. [Google Scholar] [CrossRef]
- Pazzi, V.; Di Filippo, M.; Di Nezza, M.; Carlà, T.; Bardi, F.; Marini, F.; Fontanelli, K.; Intrieri, E.; Fanti, R. Integrated geophysical survey in a sinkhole-prone area: Microgravity, electrical resistivity tomographies, and seismic noise measurements to delimit its extension. Eng. Geol. 2018, 243, 282–293. [Google Scholar] [CrossRef]
- Pazzi, V.; Tanteri, L.; Bicocchi, G.; D’Ambrosio, M.; Caselli, A.; Fanti, R. H/V measurements as an effective tool for the reliable detection of landslide slip surfaces: Case studies of Castagnola (La Spezia, Italy) and Roccalbegna (Grosseto, Italy). Phys. Chem. Earth 2017, 98, 136–153. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, S.; Shooshpasha, I.; Rezaei, H. Evaluation of landslides using ambient noise measurements (case study: Nargeschal landslide). Int. J. Geotech. Eng. 2018, 14, 409–419. [Google Scholar] [CrossRef]
- Abdelrahman, K.; Al-Otaibi, N.; Ibrahim, E.; Binsadoon, A. Landslide susceptibility assessment and their disastrous impact on Makkah Al-Mukarramah urban Expansion, Saudi Arabia, using microtremor measurements. J. King Saud Univ. Sci. 2021, 33, 101450. [Google Scholar] [CrossRef]
- Seivane, H.; García-Jerez, A.; Navarro, M.; Molina, L.; Navarro-Martínez, F. On the use of the microtremor HVSR for tracking velocity changes: A case study in Campo de Dalías basin (SE Spain). Geophys. J. Int. 2022, 230, ggac064. [Google Scholar] [CrossRef]
- Delgado, J.; Garrido, J.; Lenti, L.; Lopez-Casado, C.; Martino, S.; Sierra, F.J. Unconventional pseudostatic stability analysis of the Diezma landslide (Granada, Spain) based on a high-resolution engineering-geological model. Eng. Geol. 2015, 184, 81–95. [Google Scholar] [CrossRef]
- Martino, S.; Lenti, L.; Delgado, J.; Garrido, J.; Lopez-Casado, C. Application of a characteristic periods-based (CPB) approach to estimate earthquake-induced displacements of landslides through dynamic numerical modelling. Geophys. J. Int. 2016, 206, 85–102. [Google Scholar] [CrossRef]
- Sebastiano, D.; Francesco, P.; Salvatore, M.; Roberto, I.; Antonella, P.; Giuseppe, L.; Pauline, G.; Daniela, F. Ambient Noise Techniques to Study Near-Surface in Particular Geological Conditions: A Brief Review. In Innovation in Near-Surface Geophysics: Instrumentation, Application, and Data Processing Methods; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Bozzano, F.; Lenti, L.; Martino, S.; Paciello, A.; Mugnozza, G.S. Evidences of landslide earthquake triggering due to self-excitation process. Geol. Rundsch. 2010, 100, 861–879. [Google Scholar] [CrossRef]
- Bozzano, F.; Lenti, L.; Martino, S.; Paciello, A.; Mugnozza, G.S. Self-excitation process due to local seismic amplification responsible for the reactivation of the Salcito landslide (Italy) on 31 October 2002. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Vidale, J.E. Complex Polarization Analysis of Particle Motion. Bull. Seismol. Soc. Am. 1986, 76, 1393–1405. [Google Scholar]
- Imposa, S.; Grassi, S.; Fazio, F.; Rannisi, G.; Cino, P. Geophysical surveys to study a landslide body (north-eastern Sicily). Nat. Hazards 2016, 86, 327–343. [Google Scholar] [CrossRef]
- Valentin, J.; Capron, A.; Jongmans, D.; Baillet, L.; Bottelin, P.; Donze, F.; LaRose, E.; Mangeney, A. The dynamic response of prone-to-fall columns to ambient vibrations: Comparison between measurements and numerical modelling. Geophys. J. Int. 2016, 208, 1058–1076. [Google Scholar] [CrossRef]
- Burjánek, J.; Gassner-Stamm, G.; Poggi, V.; Moore, J.R.; Fäh, D. Ambient vibration analysis of an unstable mountain slope. Geophys. J. Int. 2010, 180, 820–828. [Google Scholar] [CrossRef] [Green Version]
- Burjánek, J.; Moore, J.R.; Molina, F.X.Y.; Fäh, D. Instrumental evidence of normal mode rock slope vibration. Geophys. J. Int. 2011, 188, 559–569. [Google Scholar] [CrossRef]
- Galea, P.; D’Amico, S.; Farrugia, D. Dynamic characteristics of an active coastal spreading area using ambient noise measurements—Anchor Bay, Malta. Geophys. J. Int. 2014, 199, 1166–1175. [Google Scholar] [CrossRef]
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S.; Galea, P. Engineering geological zonation of a complex landslide system through seismic ambient noise measurements at the Selmun Promontory (Malta). Geophys. J. Int. 2018, 213, 1146–1161. [Google Scholar] [CrossRef]
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S.; Galea, P. Investigation of cliff instability at Għajn Ħadid Tower (Selmun Promontory, Malta) by integrated passive seismic techniques. J. Seism. 2020, 24, 897–916. [Google Scholar] [CrossRef]
- Martino, S.; Cercato, M.; Della Seta, M.; Esposito, C.; Hailemikael, S.; Iannucci, R.; Martini, G.; Paciello, A.; Mugnozza, G.S.; Seneca, D.; et al. Relevance of rock slope deformations in local seismic response and microzonation: Insights from the Accumoli case-study (central Apennines, Italy). Eng. Geol. 2020, 266, 105427. [Google Scholar] [CrossRef]
- Martino, S.; Caprari, P.; Della Seta, M.; Esposito, C.; Fiorucci, M.; Hailemikael, S.; Iannucci, R.; Marmoni, G.M.; Martini, G.; Paciello, A.; et al. Influence of geological complexities on local seismic response in the municipality of forio (Ischia Island, italy). Ital. J. Eng. Geol. Environ. 2020, 2020, 43–62. [Google Scholar] [CrossRef]
- Wapenaar, K. Relations between reflection and transmission responses of 3-D inhomogeneous media. SEG Tech. Progr. Expand. Abstr. 2003, 22, 1817683. [Google Scholar] [CrossRef]
- Larose, E.; Carrière, S.; Voisin, C.; Bottelin, P.; Baillet, L.; Guéguen, P.; Walter, F.; Jongmans, D.; Guillier, B.; Garambois, S.; et al. Environmental Seismology: What Can We Learn on Earth Surface Processes with Ambient Noise? J. Appl. Geophys. 2015, 116, 62–74. [Google Scholar] [CrossRef]
- Whiteley, J.S.; Chambers, J.E.; Uhlemann, S.; Wilkinson, P.B.; Kendall, J.M. Geophysical Monitoring of Moisture-Induced Landslides: A Review. Rev. Geophys. 2019, 57, 106–145. [Google Scholar] [CrossRef]
- Ducut, J.D.; Alipio, M.; Go, P.J.; Concepcion, R.; Vicerra, R.R.; Bandala, A.; Dadios, E. A Review of Electrical Resistivity Tomography Applications in Underground Imaging and Object Detection. Displays 2022, 73, 102208. [Google Scholar] [CrossRef]
- Wang, S.; Liu, G.; Jing, G.; Feng, Q.; Liu, H.; Guo, Y. State-of-the-Art Review of Ground Penetrating Radar (GPR) Applications for Railway Ballast Inspection. Sensors 2022, 22, 2450. [Google Scholar] [CrossRef] [PubMed]
- Baglari, D.; Dey, A.; Taipodia, J. A state-of-the-art review of passive MASW survey for subsurface profiling. Innov. Infrastruct. Solutions 2018, 3, 66. [Google Scholar] [CrossRef]
- Imani, P.; Abd El-Raouf, A.A.; Tian, G. Landslide Investigation Using Seismic Refraction Tomography Method: A Review. Ann. Geophys. 2021, 64, 8633. [Google Scholar] [CrossRef]
- Perrone, A. Lessons learned by 10 years of geophysical measurements with Civil Protection in Basilicata (Italy) landslide areas. Landslides 2020, 18, 1499–1508. [Google Scholar] [CrossRef]
- Wubda, M.; Descloitres, M.; Yalo, N.; Ribolzi, O.; Vouillamoz, J.M.; Boukari, M.; Hector, B.; Séguis, L. Time-lapse electrical surveys to locate infiltration zones in weathered hard rock tropical areas. J. Appl. Geophys. 2017, 142, 23–37. [Google Scholar] [CrossRef]
- Chambers, J.E.; Wilkinson, P.B.; Kuras, O.; Ford, J.R.; A Gunn, D.; I Meldrum, P.; Pennington, C.; Weller, A.; Hobbs, P.R.N.; Ogilvy, R. Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 2011, 125, 472–484. [Google Scholar] [CrossRef]
- Lapenna, V.; Perrone, A. Time-Lapse Electrical Resistivity Tomography (TL-ERT) for Landslide Monitoring: Recent Advances and Future Directions. Appl. Sci. 2022, 12, 1425. [Google Scholar] [CrossRef]
- Rehman, Q.U.; Ahmed, W.; Waseem, M.; Khan, S.; Farid, A.; Shah, S.H.A. Geophysical Investigations of a Potential Landslide Area in Mayoon, Hunza District, Gilgit-Baltistan, Pakistan. Rud. Geol. Naft. Zb. 2021, 36, 127–141. [Google Scholar] [CrossRef]
- Meric, O.; Garambois, S.; Jongmans, D.; Wathelet, M.; Chatelain, J.-L.; Vengeon, J.M. Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France. Can. Geotech. J. 2005, 42, 1105–1115. [Google Scholar] [CrossRef]
- Singh, Y.; Haq, A.U.; Bhat, G.M.; Pandita, S.K.; Singh, A.; Sangra, R.; Hussain, G.; Kotwal, S.S. Rainfall-induced landslide in the active frontal fold–thrust belt of Northwestern Himalaya, Jammu: Dynamics inferred by geological evidences and Ground Penetrating Radar. Environ. Earth Sci. 2018, 77, 592. [Google Scholar] [CrossRef]
- Riedel, B.; Walther, A. InSAR processing for the recognition of landslides. Adv. Geosci. 2008, 14, 189–194. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Anders, N.; Masselink, R.; Keesstra, S.; Suomalainen, J. High-Res Digital Surface Modeling Using Fixed-Wing UAV-Based Photogrammetry. Geomorphometry 2013, 2013, 16–20. [Google Scholar]
- Nebiker, S.; Annen, A.; Scherrer, M.; Oesch, D. A Light-Weight Multispectral Sensor for Micro UAV—Opportunities for Very High Resolution Airborne Remote Sensing. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008; Volume XXXVI; pp. 1193–1200. [Google Scholar]
- Luhmann, T.; Chizhova, M.; Gorkovchuk, D. Fusion of UAV and Terrestrial Photogrammetry with Laser Scanning for 3D Reconstruction of Historic Churches in Georgia. Drones 2020, 4, 53. [Google Scholar] [CrossRef]
- Roncella, R.; Forlani, G.; Fornari, M.; Diotri, F. Landslide Monitoring by Fixed-Base Terrestrial Stereo-Photogrammetry. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Copernicus GmbH: Göttingen, Germany, 2014; Volume 2, pp. 297–304. [Google Scholar]
- Giordan, D.; Manconi, A.; Facello, A.; Baldo, M.; Dell’Anese, F.; Allasia, P.; Dutto, F. Brief Communication: The use of an unmanned aerial vehicle in a rockfall emergency scenario. Nat. Hazards Earth Syst. Sci. 2015, 15, 163–169. [Google Scholar] [CrossRef]
- Fernández, T.; Pérez, J.L.; Cardenal, J.; Gómez, J.M.; Colomo, C.; Delgado, J. Analysis of Landslide Evolution Affecting Olive Groves Using UAV and Photogrammetric Techniques. Remote Sens. 2016, 8, 837. [Google Scholar] [CrossRef]
- Niethammer, U.; Rothmund, S.; James, M.R.; Travelletti, J.; Joswig, M. UAV-Based Remote Sensing of Landslides. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 496–501. [Google Scholar]
- Karantanellis, E.; Marinos, V.; Vassilakis, E.; Christaras, B. Object-Based Analysis Using Unmanned Aerial Vehicles (UAVs) for Site-Specific Landslide Assessment. Remote Sens. 2020, 12, 1711. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Westoby, M.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Mauri, L.; Straffelini, E.; Cucchiaro, S.; Tarolli, P. UAV-SfM 4D mapping of landslides activated in a steep terraced agricultural area. J. Agric. Eng. 2021, 52, 1130. [Google Scholar] [CrossRef]
- Reigber, A.; Scheiber, R.; Jager, M.; Prats-Iraola, P.; Hajnsek, I.; Jagdhuber, T.; Papathanassiou, K.P.; Nannini, M.; Aguilera, E.; Baumgartner, S.; et al. Very-High-Resolution Airborne Synthetic Aperture Radar Imaging: Signal Processing and Applications. Proc. IEEE 2013, 101, 759–783. [Google Scholar] [CrossRef] [Green Version]
- Lindner, G.; Schraml, K.; Mansberger, R.; Hübl, J. UAV monitoring and documentation of a large landslide. Appl. Geomatics 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Al-Rawabdeh, A.; He, F.; Moussa, A.; El-Sheimy, N.; Habib, A. Using an Unmanned Aerial Vehicle-Based Digital Imaging System to Derive a 3D Point Cloud for Landslide Scarp Recognition. Remote Sens. 2016, 8, 95. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; De Jong, S.M. Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef]
- Lucieer, A.; De Jong, S.M.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. Earth Environ. 2013, 38, 97–116. [Google Scholar] [CrossRef]
- Niethammer, U.; James, M.R.; Rothmund, S.; Travelletti, J.; Joswig, M. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng. Geol. 2012, 128, 2–11. [Google Scholar] [CrossRef]
- Godone, D.; Allasia, P.; Borrelli, L.; Gullà, G. UAV and Structure from Motion Approach to Monitor the Maierato Landslide Evolution. Remote Sens. 2020, 12, 1039. [Google Scholar] [CrossRef]
- Ma, S.; Xu, C.; Shao, X.; Zhang, P.; Liang, X.; Tian, Y. Geometric and kinematic features of a landslide in Mabian Sichuan, China, derived from UAV photography. Landslides 2018, 16, 373–381. [Google Scholar] [CrossRef]
- Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Moretti, S.; Casagli, N. Multitemporal UAV surveys for landslide mapping and characterization. Landslides 2018, 15, 1045–1052. [Google Scholar] [CrossRef]
- Barlow, J.; Gilham, J.; Ibarra Cofrã, I. Kinematic analysis of sea cliff stability using UAV photogrammetry. Int. J. Remote Sens. 2017, 38, 2464–2479. [Google Scholar] [CrossRef]
- Peppa, M.V.; Mills, J.P.; Moore, P.; Miller, P.E.; Chambers, J.E. ACCURACY ASSESSMENT OF A UAV-BASED LANDSLIDE MONITORING SYSTEM. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 895–902. [Google Scholar] [CrossRef] [Green Version]
- Renalier, F.; Jongmans, D.; Campillo, M.; Bard, P.-Y. Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. J. Geophys. Res. Earth Surf. 2010, 115, 1538. [Google Scholar] [CrossRef]
- Khan, M.Y.; Shafique, M.; Turab, S.A.; Ahmad, N. Characterization of an Unstable Slope Using Geophysical, UAV, and Geological Techniques: Karakoram Himalaya, Northern Pakistan. Front. Earth Sci. 2021, 9, 668011. [Google Scholar] [CrossRef]
- Michel, J.; Dario, C.; Marc-Henri, D.; Thierry, O.; Ivanna Marina, P.; Bejamin, R. A Review of Methods Used to Estimate Initial Landslide Failure Surface Depths and Volumes. Eng. Geol. 2020, 267, 105478. [Google Scholar] [CrossRef]
- Song, C.; Yu, C.; Li, Z.; Pazzi, V.; Del Soldato, M.; Cruz, A.; Utili, S. Landslide geometry and activity in Villa de la Independencia (Bolivia) revealed by InSAR and seismic noise measurements. Landslides 2021, 18, 2721–2737. [Google Scholar] [CrossRef]
- Bontemps, N.; Lacroix, P.; Doin, M.-P. Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru. Remote Sens. Environ. 2018, 210, 144–158. [Google Scholar] [CrossRef]
- Manconi, A.; Mondini, A.C.; the AlpArray working group. Landslides caught on seismic networks and satellite radars. Nat. Hazards Earth Syst. Sci. 2022, 22, 1655–1664. [Google Scholar] [CrossRef]
- Guinau, M.; Tapia, M.; Pérez-Guillén, C.; Suriñach, E.; Roig, P.; Khazaradze, G.; Torné, M.; Royán, M.J.; Echeverria, A. Remote sensing and seismic data integration for the characterization of a rock slide and an artificially triggered rock fall. Eng. Geol. 2019, 257, 105113. [Google Scholar] [CrossRef]
- Okuwaki, R.; Fan, W.; Yamada, M.; Osawa, H.; Wright, T.J. Identifying landslides from continuous seismic surface waves: A case study of multiple small-scale landslides triggered by Typhoon Talas, 2011. Geophys. J. Int. 2021, 226, 729–741. [Google Scholar] [CrossRef]
- Provost, F.; Hibert, C.; Malet, J.-P. Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier. Geophys. Res. Lett. 2017, 44, 113–120. [Google Scholar] [CrossRef]
- Suriñach, E.; Vilajosana, I.; Khazaradze, G.; Biescas, B.; Furdada, G.; Vilaplana, J.M. Seismic detection and characterization of landslides and other mass movements. Nat. Hazards Earth Syst. Sci. 2005, 5, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Burtin, A.; Bollinger, L.; Cattin, R.; Vergne, J.; Nábělek, J.L. Spatiotemporal sequence of Himalayan debris flow from analysis of high-frequency seismic noise. J. Geophys. Res. Earth Surf. 2009, 114, 1198. [Google Scholar] [CrossRef]
- Kuehnert, J.; Mangeney, A.; Capdeville, Y.; Vilotte, J.P.; Stutzmann, E.; Chaljub, E.; Aissaoui, E.; Boissier, P.; Brunet, C.; Kowalski, P.; et al. Locating Rockfalls Using Inter-Station Ratios of Seismic Energy at Dolomieu Crater, Piton de la Fournaise Volcano. J. Geophys. Res. Earth Surf. 2021, 126, 5715. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chao, W.-A.; Wu, Y.-M.; Zhao, L.; Chen, Y.-G.; Ho, W.-Y.; Lin, T.-L.; Kuo, K.-H.; Chang, J.-M. A seismological study of landquakes using a real-time broad-band seismic network. Geophys. J. Int. 2013, 194, 885–898. [Google Scholar] [CrossRef]
- Panzera, F.; Lombardo, G.; D’Amico, S.; Galea, P. Speedy Techniques to Evaluate Seismic Site Effects in Particular Geomorphologic Conditions: Faults, Cavities, Landslides and Topographic Irregularities. In Engineering Seismology, Geotechnical and Structural Earthquake Engineering; Intechopen: London, UK, 2013. [Google Scholar] [CrossRef]
- Ehteshami-Moinabadi, M. Properties of fault zones and their influences on rainfall-induced landslides, examples from Alborz and Zagros ranges. Environ. Earth Sci. 2022, 81, 168. [Google Scholar] [CrossRef]
- Iannucci, R.; Lenti, L.; Martino, S. Seismic monitoring system for landslide hazard assessment and risk management at the drainage plant of the Peschiera Springs (Central Italy). Eng. Geol. 2020, 277, 105787. [Google Scholar] [CrossRef]
- Kleinbrod, U.; Burjánek, J.; Fäh, D. Ambient vibration classification of unstable rock slopes: A systematic approach. Eng. Geol. 2018, 249, 198–217. [Google Scholar] [CrossRef]
- Panzera, F.; D’Amico, S.; Lotteri, A.; Galea, P.; Lombardo, G. Seismic site response of unstable steep slope using noise measurements: The case study of Xemxija Bay area, Malta. Nat. Hazards Earth Syst. Sci. 2012, 12, 3421–3431. [Google Scholar] [CrossRef]
- Greenwood, W.W.; Zekkos, D.; Lynch, J.P. UAV-Enabled Subsurface Characterization Using Multichannel Analysis of Surface Waves. J. Geotech. Geoenvironmental Eng. 2021, 147, 04021120. [Google Scholar] [CrossRef]
- Greenwood, W.; Zekkos, D.; Lynch, J.; Bateman, J.; Clark, M.K.; Chamlagain, D. UAV-Based 3-D Characterization of Rock Masses and Rock Slides in Nepal. In Proceedings of the 50th US Rock Mechanics/Geomechanics Symposium June 26–29; 2016; Volume 4. [Google Scholar]
- Greenwood, W.W.; Zekkos, D.; Lynch, J.; Clark, M.K. Data Fusion of Digita l Imagery and Seismic Surface Waves for a Rock Road Cut in Hawaii. In Proceedings of the 3rd International Conference on Performance Based Design in Earthquake Geotechnica l Engineering-PBD-III, Vancouver, BC, Canada, 16–19 July 2017; pp. 1–7. [Google Scholar]
- Fiorucci, M.; Iannucci, R.; Lenti, L.; Martino, S.; Paciello, A.; Prestininzi, A.; Rivellino, S. Nanoseismic monitoring of gravity-induced slope instabilities for the risk management of an aqueduct infrastructure in Central Apennines (Italy). Nat. Hazards 2017, 86, 345–362. [Google Scholar] [CrossRef]
- Bertello, L.; Berti, M.; Castellaro, S.; Squarzoni, G. Dynamics of an Active Earthflow Inferred From Surface Wave Monitoring. J. Geophys. Res. Earth Surf. 2018, 123, 1811–1834. [Google Scholar] [CrossRef]
- Harba, P.; Pilecki, Z. Assessment of time–spatial changes of shear wave velocities of flysch formation prone to mass movements by seismic interferometry with the use of ambient noise. Landslides 2016, 14, 1225–1233. [Google Scholar] [CrossRef]
- Mainsant, G.; Larose, E.; Brönnimann, C.; Jongmans, D.; Michoud, C.; Jaboyedoff, M. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. J. Geophys. Res. Earth Surf. 2012, 117, 1030. [Google Scholar] [CrossRef]
- Köhler, A.; Maupin, V.; Nuth, C.; van Pelt, W. Characterization of seasonal glacial seismicity from a single-station on-ice record at Holtedahlfonna, Svalbard. Ann. Glaciol. 2019, 60, 23–36. [Google Scholar] [CrossRef]
- Lipovsky, B.P.; Dunham, E.M. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation. J. Geophys. Res. Solid Earth 2015, 120, 1080–1107. [Google Scholar] [CrossRef]
- Colombero, C.; Jongmans, D.; Fiolleau, S.; Valentin, J.; Baillet, L.; Bièvre, G. Seismic Noise Parameters as Indicators of Reversible Modifications in Slope Stability: A Review. Surv. Geophys. 2021, 42, 339–375. [Google Scholar] [CrossRef]
- Saar, M.O.; Manga, M. Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth Planet. Sci. Lett. 2003, 214, 605–618. [Google Scholar] [CrossRef]
- Brönnimann, C.; Stähli, M.; Schneider, P.; Seward, L.; Springman, S.M. Bedrock exfiltration as a triggering mechanism for shallow landslides. Water Resour. Res. 2013, 49, 5155–5167. [Google Scholar] [CrossRef]
- Yfantis, G.; Pytharouli, S.; Lunn, R.; Carvajal, H. Microseismic monitoring illuminates phases of slope failure in soft soils. Eng. Geol. 2020, 280, 105940. [Google Scholar] [CrossRef]
- Lévy, C.; Baillet, L.; Jongmans, D.; Mourot, P.; Hantz, D. Dynamic response of the Chamousset rock column (Western Alps, France). J. Geophys. Res. Earth Surf. 2010, 115, 1606. [Google Scholar] [CrossRef]
- Fiolleau, S.; Jongmans, D.; Bièvre, G.; Chambon, G.; Baillet, L.; Vial, B. Seismic characterization of a clay-block rupture in Harmalière landslide, French Western Alps. Geophys. J. Int. 2020, 221, 1777–1788. [Google Scholar] [CrossRef]
- Maresca, R.; Guerriero, L.; Ruzza, G.; Mascellaro, N.; Guadagno, F.M.; Revellino, P. Monitoring ambient vibrations in an active landslide: Insights into seasonal material consolidation and resonance directivity. J. Appl. Geophys. 2022, 203, 104705. [Google Scholar] [CrossRef]
- Walter, M.; Niethammer, U.; Rothmund, S.; Joswig, M. Joint analysis of the Super-Sauze (French Alps) mudslide by nanoseismic monitoring and UAV-based remote sensing. First Break 2009, 27, 32182. [Google Scholar] [CrossRef]
- Häusler, M.; Gischig, V.; Thöny, R.; Glueer, F.; Donat, F. Monitoring the changing seismic site response of a fast-moving rockslide (Brienz/Brinzauls, Switzerland). Geophys. J. Int. 2021, 229, 299–310. [Google Scholar] [CrossRef]
- Falconi, L.; Leoni, G.; Arestegui, P.M.; Puglisi, C.; Savini, S. Geomorphological Processes and Cultural Heritage of Maca and Lari Villages: An Opportunity for Sustainable Tourism Development in the Colca Valley (Province of Caylloma, Arequipa, South Perù). In Landslide Science and Practice: Risk Assessment, Management and Mitigation; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2013; Volume 6, pp. 459–465. [Google Scholar]
- Planès, T.; Mooney, M.A.; Rittgers, J.B.R.; Parekh, M.L.; Behm, M.; Snieder, R. Time-lapse monitoring of internal erosion in earthen dams and levees using ambient seismic noise. Geotechnique 2016, 66, 301–312. [Google Scholar] [CrossRef]
- Wong, I.G.; Humphrey, J.R.; Adams, J.A.; Silva, W.J. Observations of mine seismicity in the eastern Wasatch Plateau, Utah, U.S.A.: A possible case of implosional failure. Pure Appl. Geophys. PAGEOPH 1989, 129, 369–405. [Google Scholar] [CrossRef]
- McGarr, A. Moment tensors of ten witwatersrand mine tremors. Pure Appl. Geophys. 1992, 139, 781–800. [Google Scholar] [CrossRef]
- Cai, M.; Kaiser, P.; Martin, C. Quantification of rock mass damage in underground excavations from microseismic event monitoring. Int. J. Rock Mech. Min. Sci. 2001, 38, 1135–1145. [Google Scholar] [CrossRef]
- Driad-Lebeau, L.; Lahaie, F.; Al Heib, M.; Josien, J.; Bigarré, P.; Noirel, J. Seismic and geotechnical investigations following a rockburst in a complex French mining district. Int. J. Coal Geol. 2005, 64, 66–78. [Google Scholar] [CrossRef]
- Hudyma, M.; Potvin, Y.H. An Engineering Approach to Seismic Risk Management in Hardrock Mines. Rock Mech. Rock Eng. 2010, 43, 891–906. [Google Scholar] [CrossRef]
- Cheng, G.; Ma, T.; Tang, C.; Liu, H.; Wang, S. A zoning model for coal mining—Induced strata movement based on microseismic monitoring. Int. J. Rock Mech. Min. Sci. 2017, 94, 123–138. [Google Scholar] [CrossRef]
- Deparis, J.; Jongmans, D.; Cotton, F.; Baillet, L.; Thouvenot, F.; Hantz, D. Analysis of Rock-Fall and Rock-Fall Avalanche Seismograms in the French Alps. Bull. Seism. Soc. Am. 2008, 98, 1781–1796. [Google Scholar] [CrossRef]
- Dammeier, F.; Moore, J.R.; Haslinger, F.; Loew, S. Characterization of alpine rockslides using statistical analysis of seismic signals. J. Geophys. Res. Earth Surf. 2011, 116, 2037. [Google Scholar] [CrossRef]
- Amitrano, D.; Grasso, J.R.; Senfaute, G. Seismic precursory patterns before a cliff collapse and critical point phenomena. Geophys. Res. Lett. 2005, 32, L08314. [Google Scholar] [CrossRef]
- Spillmann, T.; Maurer, H.; Green, A.G.; Heincke, B.; Willenberg, H.; Husen, S. Microseismic investigation of an unstable mountain slope in the Swiss Alps. J. Geophys. Res. Solid Earth 2007, 112, 4723. [Google Scholar] [CrossRef]
- Senfaute, G.; Duperret, A.; Lawrence, J.A. Micro-seismic precursory cracks prior to rock-fall on coastal chalk cliffs: A case study at Mesnil-Val, Normandie, NW France. Nat. Hazards Earth Syst. Sci. 2009, 9, 1625–1641. [Google Scholar] [CrossRef]
- Levy, C.; Jongmans, D.; Baillet, L. Analysis of seismic signals recorded on a prone-to-fall rock column (Vercors massif, French Alps). Geophys. J. Int. 2011, 186, 296–310. [Google Scholar] [CrossRef]
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S. Rock Mass Characterization Coupled with Seismic Noise Measurements to Analyze the Unstable Cliff Slope of the Selmun Promontory (Malta). Procedia Eng. 2017, 191, 263–269. [Google Scholar] [CrossRef]
- Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Vinciguerra, S. Characterization of the 3-D fracture setting of an unstable rock mass: From surface and seismic investigations to numerical modeling. J. Geophys. Res. Solid Earth 2017, 122, 6346–6366. [Google Scholar] [CrossRef]
- Burjánek, J.; Gischig, V.; Moore, J.; Fäh, D. Ambient vibration characterization and monitoring of a rock slope close to collapse. Geophys. J. Int. 2017, 212, 297–310. [Google Scholar] [CrossRef]
- Gong, J.; Wang, D.; Li, Y.; Zhang, L.; Yue, Y.; Zhou, J.; Song, Y. Earthquake-induced geological hazards detection under hierarchical stripping classification framework in the Beichuan area. Landslides 2010, 7, 181–189. [Google Scholar] [CrossRef]
- Hu, J.P.; Wu, W.B.; Tan, Q.L. Application of Unmanned Aerial Vehicle Remote Sensing for Geological Disaster Reconnaissance along Transportation Lines: A Case Study. Appl. Mech. Mater. 2012, 226–228, 2376–2379. [Google Scholar] [CrossRef]
- Rathje, E.M.; Franke, K. Remote sensing for geotechnical earthquake reconnaissance. Soil Dyn. Earthq. Eng. 2016, 91, 304–316. [Google Scholar] [CrossRef]
- Magee, C.; E Stevenson, C.T.; Ebmeier, S.K.; Keir, D.; Hammond, J.O.S.; Gottsmann, J.H.; A Whaler, K.; Schofield, N.; Jackson, C.A.-L.; Petronis, M.S.; et al. Magma Plumbing Systems: A Geophysical Perspective. J. Pet. 2018, 59, 1217–1251. [Google Scholar] [CrossRef]
- Bonali, F.; Tibaldi, A.; Marchese, F.; Fallati, L.; Russo, E.; Corselli, C.; Savini, A. UAV-based surveying in volcano-tectonics: An example from the Iceland rift. J. Struct. Geol. 2019, 121, 46–64. [Google Scholar] [CrossRef]
- Baiocchi, V.; Dominici, D.; Milone, M.V.; Mormile, M. Development of a Software to Plan UAVs Stereoscopic Flight: An Application on Post Earthquake Scenario in L’Aquila City. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2013; Volume 7974, pp. 150–165. [Google Scholar]
- Yao, Y.; Chen, J.; Li, T.; Fu, B.; Wang, H.; Li, Y.; Jia, H. Soil liquefaction in seasonally frozen ground during the 2016 Mw6.6 Akto earthquake. Soil Dyn. Earthq. Eng. 2018, 117, 138–148. [Google Scholar] [CrossRef]
- De Beni, E.; Cantarero, M.; Messina, A. UAVs for volcano monitoring: A new approach applied on an active lava flow on Mt. Etna (Italy), during the 27 February–02 March 2017 eruption. J. Volcanol. Geotherm. Res. 2018, 369, 250–262. [Google Scholar] [CrossRef]
- Walter, T.R.; Jousset, P.; Allahbakhshi, M.; Witt, T.I.; Gudmundsson, M.T.; Hersir, G.P. Underwater and drone based photogrammetry reveals structural control at Geysir geothermal field in Iceland. J. Volcanol. Geotherm. Res. 2020, 391, 106282. [Google Scholar] [CrossRef]
- Rothmund, S.; Vouillamoz, N.; Joswig, M. Mapping slow-moving alpine landslides by UAV—Opportunities and limitations. Lead. Edge 2017, 36, 571–579. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Soura, K.; Koukouvelas, I.K.; Argyropoulos, N.G. UAV vs. classical aerial photogrammetry for archaeological studies. J. Archaeol. Sci. Rep. 2016, 14, 758–773. [Google Scholar] [CrossRef]
- Schlögel, R.; Thiebes, B.; Toschi, I.; Zieher, T.; Darvishi, M.; Kofler, C. Sensor data integration for landslide monitoring—The LEMONADE concept. In Advancing Culture of Living with Landslides; Springer: Cham, Switzerland, 2017; pp. 71–78. [Google Scholar]
- Giordan, D.; Manconi, A.; Facello, A.; Baldo, M.; dell’Anese, F.; Allasia, P.; Dutto, F. Brief Communication “The Use of UAV in Rock Fall Emergency Scenario”. Nat. Hazards Earth Syst. Sci. Discuss. 2014, 2, 4011–4029. [Google Scholar]
- Jiao, Q.; Jiang, W.; Qian, H.; Li, Q. Research on characteristics and failure mechanism of Guizhou Shuicheng landslide based on InSAR and UAV data. Nat. Hazards Res. 2021, 2, 17–24. [Google Scholar] [CrossRef]
- Melis, M.T.; Da Pelo, S.; Erbì, I.; Loche, M.; Deiana, G.; Demurtas, V.; Meloni, M.A.; Dessì, F.; Funedda, A.; Scaioni, M.; et al. Thermal Remote Sensing from UAVs: A Review on Methods in Coastal Cliffs Prone to Landslides. Remote. Sens. 2020, 12, 1971. [Google Scholar] [CrossRef]
- Hook, S.J.; Gabell, A.; Green, A.; Kealy, P. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens. Environ. 1992, 42, 123–135. [Google Scholar] [CrossRef]
- Beretta, F.; Rodrigues, A.L.; Peroni, R.L.; Costa, J.F.C.L. Automated lithological classification using UAV and machine learning on an open cast mine. Appl. Earth Sci. 2019, 128, 79–88. [Google Scholar] [CrossRef]
- Török, Á.; Bögöly, G.; Somogyi, Á.; Lovas, T. Application of UAV in Topographic Modelling and Structural Geological Mapping of Quarries and Their Surroundings—Delineation of Fault-Bordered Raw Material Reserves. Sensors 2020, 20, 489. [Google Scholar] [CrossRef]
- Gu, Y.; Jin, X.; Xiang, R.; Wang, Q.; Wang, C.; Yang, S. UAV-based integrated multispectral-LiDAR imaging system and data processing. Sci. China Technol. Sci. 2020, 63, 1293–1301. [Google Scholar] [CrossRef]
- Eker, R.; Aydın, A.; Hübl, J. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study. Environ. Monit. Assess. 2017, 190, 28. [Google Scholar] [CrossRef]
- Bernardi, M.S.; Africa, P.C.; de Falco, C.; Formaggia, L.; Menafoglio, A.; Vantini, S. On the Use of Interferometric Synthetic Aperture Radar Data for Monitoring and Forecasting Natural Hazards. Math. Geol. 2021, 53, 1781–1812. [Google Scholar] [CrossRef]
- Malehmir, A.; Socco, L.V.; Bastani, M.; Krawczyk, C.M.; Pfaffhuber, A.A.; Miller, R.D.; Maurer, H.; Frauenfelder, R.; Suto, K.; Bazin, S.; et al. Chapter Two—Near-Surface Geophysical Characterization of Areas Prone to Natural Hazards: A Review of the Current and Perspective on the Future. Adv. Geophys. 2016, 57, 51–146. [Google Scholar] [CrossRef]
- Lissak, C.; Maquaire, O.; Malet, J.-P.; Lavigne, F.; Virmoux, C.; Gomez, C.; Davidson, R. Ground-penetrating radar observations for estimating the vertical displacement of rotational landslides. Nat. Hazards Earth Syst. Sci. 2015, 15, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Saraf, A.K.; Choudhury, P.R. Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int. J. Remote Sens. 1998, 19, 1825–1841. [Google Scholar] [CrossRef]
- Bughi, S.; Aleotti, P.; Bruschi, R.; Andrei, G.; Milani, G.; Scarpelli, G.; Sakellariadi, E. Slow Movements of Slopes Interfering with Pipelines: Modelling and Monitoring. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering—OMAE, Florence, Italy, 16–20 June 1996; Volume 5. [Google Scholar]
- Saha, A.K.; Gupta, R.P.; Sarkar, I.; Arora, M.K.; Csaplovics, E. An approach for GIS-based statistical landslide susceptibility zonation? with a case study in the Himalayas. Landslides 2005, 2, 61–69. [Google Scholar] [CrossRef]
Platform | Typical Spatial Resolution | Typical Field-of-View | Max. Flight Altitudes |
---|---|---|---|
Spacecraft | 0.5–15 m | 10–50 km | 200–1000 km |
Aircraft | 0.2–2 m | 2–5 km | 3000–4000 m |
UAV | 1–50 cm | 50 m to 1 km | 150–300 m |
Ground-based | <1 cm | <150 m | Not Applicable |
Reference | Type of UAV and What Used For | On-Board Sensor/Camera & Analysis Techniques | Limitation and Accuracy |
---|---|---|---|
[83] | Falcon 8 Asctec and FV-8 Atyges used for multi-temporal analysis of an earthflow affecting an olive grove. | Falcon 8 = Sony Nex 5N (APS-C format, 16 Mpx, pixel size 4.9_m). FV-8 Atyges = Canon Powershot G12 camera (CCD sensor 1/1.7, 10 Mpx, pixel size 2_m). AscTec Navigator for the Falcon 8 and the MikroKopter-Tool free software for the ATyges FV-8 drone. The dense point clouds were generated with PhotoScan. | Difficulties in automatic identification and matching of points between multi-temporal images due to changes in vegetation, sun illumination and the landslide movement itself. Accuracy: about 10 cm in XY and 15 cm in Z. |
[85] | DJI Phantom 4 Pro V2.0 was used on two landslide-prone/rockfall areas (in Greece) to examine an object-based mapping approach (OBIA) to detect and characterize landslide and non-landslide objects. | Stabilized built-in camera (1″ CMOS-20 megapixel). Structure from motion-multi-view stereo (SfM-MVS) algorithm was applied using Pix4D S.A. software to generate 3D point clouds, DSMs, and orthophotos supplying data for the OBIA phase (eCognition® Developer 9.0 software). | The final spatial level of detection (LoD) based on the proposed method was 0.5 m. The proper choice of segmentation scale is tricky for an accurate and optimal classification stage and most of the time, this is site-dependent. |
[90] | MikroKopter OktoXL was used to acquire three-band high-resolution images for monitoring a large landslide. |
Canon EOS 650D DSLR Camera with a resolution of 18 megapixels and a fixed focal distance of 20 mm. Agisoft PhotoScan, the images were georeferenced utilizing the GCPs provided by WLV. | A comparison of both models (GCP-referenced vs. multicopter- referenced) showed a deviation of 11.3 m ± 1.6 m. The battery life restricted the size of the coverage conducted in a single flight. |
[91] | DJI Phantom 2 unmanned aerial vehicles (UAV). Automated approaches to detect and extract the geomorphological features of landslides scarps. | LFOV digital camera (GoPro Hero 3 camera). Simultaneous Multi-frame Analytical Calibration (SMAC) used to generate a dense 3D image-based point cloud; both Structure from Motion (SfM) and SGM techniques are utilized | The RMSE values (accuracy assessment) of the Eigenvalue ratio, topographic surface slope and topographic surface roughness index methods were 11.98 cm, 9.05 cm, and 10.45 cm, respectively. Due to the inherent excessive lens distortions, a camera calibration and stability analysis procedure was essential. |
[92] | Oktokopter (eight rotors) multi-rotor micro-UAV To apply the image correlation techniques for surface motion detection to a multi-temporal dataset of UAV imagery. | Canon 550D Digital Single Lens Reflex (DSLR) camera (18 Megapixel, 5184 × 3456 pixels, with Canon EF-S 18–55 mm F/3.5–5.6 IS lens. Shutter speed (typically 1/1250–1/1600 s). Analysis used Mikrokopter autopilot, a Photoshop One camera gimbal; and Photoscan. | Typical RMSE values are around 4–5 cm in the horizontal direction (XY) and 3–4 cm in the vertical direction (Z). Co-registration errors between subsequent DSMs based on comparing non-active areas of the landslide, minimizing the alignment error to ±0.07 m on average. |
[93] | OktoKopter To illustrate a workflow (landslide) showing how UAV-acquired images can be processed into high-resolution DEMs and orthomosaics used for quantifying landslide dynamics based on multi-temporal image correlation. | Canon 550D DSLR camera on a motion-compensated gimbal mount. A Canon 18–55 mm f3.5–5.6. Focal length of 18 mm with a fast shutter speed of 1/1200. Analysis used Package Agisoft PhotoScan. And GeoSetter freeware to write the UAV GPS coordinates to the corresponding JPEG EXIF headers, i.e., geotagging. | The accuracy of the SfM technique was tested with 39 DGPS ground control points resulting in a horizontal RMSE of 7.4 cm and a vertical RMSE of 6.2 cm. The algorithm successfully quantified the movements of chunks of ground material, patches of vegetation, and the toes of the landslide but was less successful in mapping the retreat of the main scarp. |
[94] | Quad-rotor system used for making high-resolution measurements of landslides. | Camera: Praktica Luxmedia 8213. Analysis used OrthoVista software. DTM generation was carried out using VMS close-range photogrammetry software and an image-matching algorithm, GOTCHA (Gruen Otto–Chau), from the University College London. | The manual data acquisition and processing procedures required a significant amount of time. Despite the high-resolution of the imagery, errors resulting from the plane-rectification degrade the georeferencing accuracy to ~0.5 m over most of the landslide. |
[95] | DJI Phantom 4 Pro was used to describe the recent behavior of the Maierato landslide (Italy) and to assess residual risk. | Several: 1″ CMOS (20 MPixel) Lens FOV 84° 8.8 mm/24 mm; and Micasense RedEdge™ Sensor (5 bands). Agisoft Metashape and SfM algorithm to post-process the images and reconstruct the 3D model. Using an open-source GIS environment, several DEM of differences (DoD) were computed. | Ground resolution = 0.05 m and point cloud density = up to 419 point/m2. Using the multispectral sensor, quantifying the morphological variation induced by the landslide in the last 10 years. |
[96] | DJ Pro4 used to study geometric and kinematic features of the Mabian landslide (China)—combined with video taken by local residents. | Unknown digital camera. The orthographic data and high-resolution DEM of the landslide were obtained by the SfM method. | DEM with resolution 0.15 m was obtained and used to recover and correct the pre-landslide contours. |
[97] | Multicopter drone named Saturn, developed by University of Florence and used to survey a village (in Italy) which was strongly affected by active landslides. | Sony digital RGB camera with 8-MP resolution. Multiple photogrammetric surveys provided multitemporal 3D models of the slope. Digital orthomosaics were processed in Agisoft Photoscan. | Two mass movements were detected and characterized with a ground resolution of 0.05 m/pix. |
[98] | DJI S1000 octocopter This research used point cloud and spectral data to digitize structural features such as joints, faults, and bedding planes for kinematic analysis of the sea cliffs at Telscombe, UK. | Nikon D810 FX DSLR 36 mega-pixel camera was used for the surveys with an AF Nikkor 24 mm f/2.8D lens, aperture f/8, ISO 1250, and shutter speed 0.002 (1/5000) sec. Image analysis used ADAM 3DM Technology Mine Mapping Suite. | UAV systems using this method are heavier and, therefore, less portable than those suited to SfM. The point density and accuracy that is similar to those produced using TLS. |
[99] | Mini fixed-wing UAV (Quest UAV 300); Vertical measurement sensitivity (accuracy) is quantified for a real-world landslide over 2 years. | Panasonic Lumix DMC-LX5 with a 5.1 mm nominal focal length Leica lens for visible image acquisition. The camera has a 1/1.63” (8.07 mm × 5.56 mm) CCD sensor with 2 μm × 2 μm pixel size. Analysis used PhotoScan, TerraSolid TerraScan, and Cloud Compare. | Seasonal vegetation influences (grass, trees and hedgerows) created elevation differences. This research derived a value of ±9 cm vertical sensitivity for the SfM-derived change measurement. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, Y.; Schlögel, R.; Innocenti, A.; Hamza, O.; Iannucci, R.; Martino, S.; Havenith, H.-B. Review on the Geophysical and UAV-Based Methods Applied to Landslides. Remote Sens. 2022, 14, 4564. https://doi.org/10.3390/rs14184564
Hussain Y, Schlögel R, Innocenti A, Hamza O, Iannucci R, Martino S, Havenith H-B. Review on the Geophysical and UAV-Based Methods Applied to Landslides. Remote Sensing. 2022; 14(18):4564. https://doi.org/10.3390/rs14184564
Chicago/Turabian StyleHussain, Yawar, Romy Schlögel, Agnese Innocenti, Omar Hamza, Roberto Iannucci, Salvatore Martino, and Hans-Balder Havenith. 2022. "Review on the Geophysical and UAV-Based Methods Applied to Landslides" Remote Sensing 14, no. 18: 4564. https://doi.org/10.3390/rs14184564
APA StyleHussain, Y., Schlögel, R., Innocenti, A., Hamza, O., Iannucci, R., Martino, S., & Havenith, H. -B. (2022). Review on the Geophysical and UAV-Based Methods Applied to Landslides. Remote Sensing, 14(18), 4564. https://doi.org/10.3390/rs14184564