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Abstract: Satellite-retrieved and model-based reanalysis precipitation products with high resolution
have received increasing attention in recent decades. Their hydrological performance has been
widely evaluated. However, whether they can be applied in characterizing the novel category of
extreme events, such as compound moist heat-flood (CMHF) events, has not been fully investigated
to date. The CMHF refers to the rapid transition from moist heat stress to devastating floods and
has occurred increasingly frequently under the current warming climate. This study focuses on
the applicability of the Integrated Multi-satellite Retrievals for Global Precipitation Measurement
(IMERG) and the fifth generation of European Reanalysis (ERA5-Land) in simulating CMHF events
over 120 catchments in China. Firstly, the precipitation accuracy of IMERG and ERA5-Land products
is appraised for each catchment, using the gridded in situ meteorological dataset (CN05.1) as a
baseline. Then, the ability of IMERG and ERA5-Land datasets in simulating the fraction, magnitude,
and decade change of floods and CMHFs is comprehensively evaluated by forcing the XAJ and GR4J
hydrological models. The results show that: (a) the IMERG and ERA5-Land perform similarly in
terms of precipitation occurrences and intensity; (b) the IMERG yields discernably better performance
than the ERA5-Land in streamflow simulation, with 71.7% and 50.8% of catchments showing the
Kling–Gupta efficiency (KGE) higher than 0.5, respectively; (c) both datasets can roughly capture
the frequency, magnitude, and their changes of floods and CMHFs in recent decades, with the
IMERG exhibiting more satisfactory accuracy. Our results indicate that satellite remote sensing and
atmospheric reanalysis precipitation can not only simulate individual hydrological extremes in most
regions, but monitor compound events such as CMHF episodes, and especially, the IMERG satellite
can yield better performance than the ERA5-Land reanalysis.

Keywords: satellite precipitation; atmospheric reanalysis; compound events; hydrological modeling; China

1. Introduction

As a critical component of the earth’s hydrological processes, precipitation is of key
importance for the terrestrial ecosystem and human society [1]. Several measurements
including in situ gauges and ground radar systems can provide highly accurate precipi-
tation estimates. However, the sparse spatial distribution and expensive costs of gauges
and radars limit their application, especially in rural areas [2]. Satellite remote sensing, ad-
vanced numerical weather models, and data assimilation systems provide new approaches
in the trade-off between accurate precipitation estimation and large spatial coverage [3–5].

Since the launch of the Tropical Rainfall Measuring Mission (TRMM) in 1997, satellite
precipitation estimates have been rapidly employed in hydrological fields [6–8]. As the
first dataset of the four-dimensional distribution of rainfall over vast continents and oceans
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(50◦S–50◦N), the TRMM used to be the major user-friendly product that was widely ap-
plied in meteorological, hydrological, and agricultural sectors [9,10]. For example, Pombo
and Oliveria [11] employed precipitation estimates from the TRMM to evaluate extreme
precipitation in Angola and identified similar statistical characteristics to in situ ground
observations. Following the highly successful TRMM, the Global Precipitation Measure-
ment (GPM) mission was launched in 2014, which involves four critical components: the
core observatory, the virtual constellation of satellites carrying precipitation-relevant sen-
sors, the state-of-the-art precipitation processing system, and the ground validation [12].
Specifically, the Integrated Multi-satellite Retrievals for Global Precipitation Measurement
(IMERG) employs a series of algorithms and processing sequences to merge all microwave,
microwave-calibrated infrared satellite estimates, and gauge analyses, providing continu-
ous precipitation records with high spatial (0.1◦) and temporal (half hour) resolution at a
global scale [13].

By using numerical weather models and data assimilation techniques, the model-based
reanalysis product provides a new tool for global precipitation estimations [14,15]. The ERA5
released by the European Centre for Medium-Range Weather Forecasts (ECMWF) provides
an enhanced global precipitation dataset (hereafter referred to ERA5-Land precipitation).
Comparing to previous reanalysis datasets from ECMWF, e.g., the ERA-Interim, the ERA5-
Land reanalysis uses a new 4D-Var assimilation algorithm and Integrated Forecasting System
Cy41r2, which robustly improves its precision [16]. Further, this ERA5-Land precipitation
provides a 0.1◦ spatial resolution at an hourly temporal scale spanning from 1950 to present.
This high spatial and temporal resolution greatly facilitates its applications in water resources,
land, and environmental management [17].

Numerous studies have examined the performance of satellite and reanalysis datasets
under different temporal and spatial scales for a wide range of applications such as
precipitation-phase partitioning and hydrological modeling [18–20]. For example, Gao
et al. [4] evaluated the accuracy of recently released satellite and reanalysis precipitation
over southern China at daily and hourly scales and found that their performances were var-
ied when assessed at different temporal scales. Xu et al. [16] analyzed the performances of
several satellite and reanalysis precipitation products over mainland China and concluded
that satellite precipitation outperforms reanalysis in tropical monsoon climates, while the
latter shows better performance over temperate monsoon climate and high-latitude regions.
Tang et al. [2] focused on the quality of snowfall estimates in satellite and reanalysis datasets
from 2000 to 2018 and found the IMERG product performs well, and its performance has
improved over time due to the increasing passive microwave samples. For hydrologi-
cal application, Jiang et al. [18] claimed that the IMERG precipitation can be applied in
streamflow monitoring, especially in humid catchments. Almagro et al. [5] found the GPM
products perform well in simulating river discharge over tropical catchments. However,
most studies only employed statistical indices to appraise the performance of satellite and
reanalysis products in capturing precipitation events, or to evaluate the applicability of
these products in simulating streamflow conditions. Their ability in characterizing floods,
especially in quantifying the novel category of extreme events, such as the compound moist
heat-flood (CMHF) events, has been poorly understood.

Flooding is one of the most prevalent natural hazards, causing multifaceted challenges to
the ecosystem, agriculture, economy, and society [21–24]. For example, the flood that occurred
in the Henan province of China in 2021 caused USD 348 million of economic losses and killed
6.4 million chickens. As earth’s climate is warming, in addition to flood, the flood-related
compound disaster, has also become increasingly apparent (e.g., the rapid transition from moist
heat stress to floods) [25,26]. Compared to an individual flood extreme, such compound events
are far more destructive to human health and societies [27–29]. For example, the consecutive
occurrence of heat stress and floods in 2019, Queensland, caused half a million livestock deaths
and huge amounts of economic losses [26]. Therefore, this study aims to comprehensively
investigate the applicability of satellite remote sensing (IMERG) and reanalysis (ERA5-Land)
datasets in monitoring flood seasons and magnitudes, particularly in quantifying characteristics
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of CMHF episodes for 120 catchments varying in climate zones and streamflow generation
regimes in China from 2001 to 2020. We first evaluate the performances of the IMERG and ERA5-
Land precipitation, using a gridded observation product as a baseline. Then, their performances
in hydrological simulations are also assessed by using two lumped hydrological models. Finally,
we investigate the reliability of the IMERG and ERA5-Land in capturing flood extremes, with
special attention paid to simulating CMHF fraction, magnitude, and changes.

2. Materials and Methods
2.1. Dataset
2.1.1. Meteorological Dataset

The IMERG precipitation was obtained by combining information from the TRMM
(2000–2015) and GPM (2014–present) satellite constellation with an advanced algorithm [12].
It provides the early, late, and final runs with half-hourly temporal and 0.25◦ spatial
resolution. Since the final run utilizes multiple sources of information, including multi-
satellite data and a GPCC gauge, and is recommended by NASA for research, we employed
the final run precipitation in IMERG in this study.

The ERA5-Land developed by the ECMWF is a reanalysis dataset using a state-of-
the-art scheme (incorporating land surface hydrology, H-TESSEL) for surface exchanges
over land [17]. It provides various land variables with super high spatial (0.1◦) and
temporal (hourly) resolution from 1950 to present. This global reanalysis dataset combines
observations with model data using physical laws and is forced by atmospheric constraints.
We used its precipitation spanning 2001–2020 to serve as a comparison to IMERG in this
study. The hourly IMERG and ERA5-Land precipitation were integrated into the daily
scale for analysis.

The gridded observational meteorological data were CN05.1 constructed by the China
Meteorological Administration [30], which incorporates information from 2416 gauges in
China and has been widely used as an observational reference in recent studies [31–33]. It
provides daily temporal and 0.25◦ spatial resolution spanning 1961–2020. Seven variables
are included in this dataset, i.e., precipitation, relative humidity, windspeed, sunshine hours,
and daily maximum, minimum, and average temperature. Relative humidity (RH) and daily
temperature (T) were used in this study to estimate moist heat stress. Precipitation and daily
maximum, minimum, and average temperature were used to calibrate hydrological models.

2.1.2. Observed Streamflow Data

To evaluate satellite and reanalysis precipitation in hydrological simulation,
120 catchments with different hydro-meteorological conditions were selected (Figure 1).
These catchments have no overlapping area, and each catchment matches with only one sta-
tion. The boundaries of these catchments as well as their daily streamflow records between
2001 and 2010 were collected from the Ministry of Water Resources of China. All catchments
contain at least 5-year continuous daily streamflow records and 88.33% of catchments have
consistent daily records longer than 7 years (for more details, see Figure S1). There were
only three catchments (which have 8-, 7-year records) involving missing data, with missing
ratios being 2.6%, 9.2%, 0.3%, respectively. Eight sub-regions in China that synthetically
consider the monsoon climate characteristics, agricultural geographical distributions, and
topography were used to facilitate assessment [34,35] following previous studies [36–39]. It
should be mentioned that the number of streamflow stations allocated in Northeast China,
North China, Jiang-Huai Region, South China, and Southwest China (S1–S5) dominate the
population of gauges. Geographically wise, our study cannot well represent conditions
in the Tibetan Plateau and Northwest China (S6–S8) due to data limitation. The spatial
distribution of the catchments located in the eight sub-regions is plotted in Figure 1.
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Figure 1. Spatial distribution of selected 120 catchments and 8 sub-regions in China. S1—Northeast
China (12 catchments), S2—North China (13 catchments), S3—Jiang-Huai Region (30 catchments),
S4—South China (30 catchments), S5—Southwest China (28 catchments), S6—east of Tibetan Plateau
(1 catchment), S7—west of Northwest China (2 catchments), S8—east of Northwest China (4 catchments).

2.2. Methods
2.2.1. Precipitation Indices for Evaluating Precipitation Estimation Accuracy

Six indices (expressed in Table 1) were used to estimate the accuracy of IMERG and
ERA5-Land precipitation. Two indices, MAE and CC, focus on the precision of precipitation
intensity while the other four indices, POD, FAR, CSI, and HSS, target the detection of the
occurrence of precipitation. Specifically, the last four indices, POD, FAR, CSI, and HSS, are
estimated by four parameters: a, the number of wet days (i.e., precipitation occurs) correctly
detected; b, the number of dry days (i.e., no precipitation) erroneously identified as wet
days; c, the number of missing wet days; d, the number of dry days correctly detected. The
POD, CSI, and FAR are highly affected by wet days. In detail, the POD and CSI present
the ability of simulations in capturing precipitation occurrence while the FAR measures
the false ratio of erroneously simulated precipitation on dry days. The HSS, on the other
hand, accounts for information from both wet and dry days when detecting the accuracy of
precipitation occurrence.

Table 1. Definitions of the statistical indices in evaluating the accuracy of precipitation datasets. The
final column indicates the perfect score for each index.

ID Index Expression Description Perfect Score

1 MAE ∑N
i=1|Si−Oi |

N
mean absolute error 0

2 CC
∑N

i=1 (Si−S)(Oi−O)√
∑N

i=1 (Si−S)
2×

√
∑N

i=1 (Oi−O)
2 correlation coefficient 1

3 POD a
a+c probability of detection 1

4 FAR b
a+b

false alarm ratio 0

5 CSI
a

a+b+c critical success index 1

6 HSS
2(a×d−b×c)

[(a+c)×(c+d)+(a+b)×(b+d)] Heidke skill score 1

Note: Si and Oi denote simulated and observed daily precipitation in i (i = 1,2, . . . N) day; S and O denote the
mean value of simulated and observed precipitation among N days.
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2.2.2. Hydrological Simulations

In terms of hydrological simulation, firstly, we calculated the catchment average me-
teorological data including precipitation (i.e., the IMERG, ERA5-Land, and CN05.1), and
maximum and minimum temperature (i.e., CN05.1) using the Thiessen polygon method for
the 120 catchments in mainland China. This utilization of the Thiessen polygon method can
better allocate weights for grids intersected by catchment boundaries than the arithmetic
average method, following previous studies (e.g., Yin et al., 2021 [40]), and can guarantee
correct weights for grids inside boundaries. Then, we used two precipitation products (i.e.,
the IMERG and ERA5-Land) and observations (i.e., CN05.1) to calibrate hydrological mod-
els, respectively. We chose two lumped hydrological models, the Xinanjiang (XAJ) [41] and
GR4J [42], to perform streamflow simulations over these catchments. The XAJ and GR4J
models vary in model structures and parameters and can consider different climate conditions
and runoff generation regimes, having been proved to perform well in China by previous
studies [40,43,44]. Specifically, the XAJ rainfall-runoff model comprises 15 free parameters and
separates the watershed area into pervious and impervious area. For the pervious area, the
effective rainfall is separated into three sources: surface runoff, interflow, and groundwater,
while for the impervious area, the effective rainfall totally transfers to surface runoff. The GR4J
model is a simple rainfall-runoff model consisting of 4 free parameters. It only involves two
non-linear reservoirs and two linear unit hydrographs when simulating runoff generation and
routing. The potential evaporation module, the Oudin equation [45], is employed for both the
XAJ and GR4J models. Further, to simulate snowmelt-runoff, the two-parameter CemaNeige
snow accumulation and snowmelt module [46] is incorporated into the XAJ and GR4J models.
This CemaNeige module involves 2 free parameters. Firstly, it separates precipitation into
rainfall and snowfall, and then it calculates the snowmelt using a degree-day method.

We employed the Shuffled Complex Evolution (SCE-UA) optimization algorithm [47]
to determine the free parameters of hydrological models. The SCEUA is a powerful
global optimization procedure. It considers both deterministic and random search and is
capable of efficiently and effectively identifying the optimal values for model parameters.
Specifically, a cross-validation method was selected for model evaluation, in which half of
the daily streamflow records were used as the calibration and the other half of records were
for validation [41,48]. Further, the objective function in model calibration is to maximize
the Kling–Gupta efficiency (KGE) [49] of daily streamflow for each catchment, respectively:

KGE = 1−
√
(α− 1)2 + (β− 1)2 + (γ− 1)2 (1)

where α denotes the correlation coefficient, β refers to the ratio of standard deviations,
and γ means the ratio of mean values between daily streamflow records and simulations,
respectively. For each catchment, the model (XAJ or GR4J) with the highest KGE value
in both calibration and validation periods was determined as the best performing model.
Then, the best performing models were forced by the observation (CN05.1), IMERG, and
ERA5-Land products, respectively, to obtain daily streamflow during the 2001–2020 period.
Since we only collected a limited length of in situ streamflow observations over these
catchments (ranging between 2001 and 2010, see Figure S1), which cannot cover the whole
2001–2020 time period, the streamflow simulated by observed climate data (CN05.1) was
used as the new observation baseline to perform further hydrological analysis following
previous studies [48,50,51].

2.2.3. Identifying Compound Moist Heat-Flood Events

We employed a peak-over-threshold (POT) approach to extract flood episodes. A flood
occurs when daily streamflow is higher than a threshold (95th percentile of the whole time
series in this study, Q95th) during the 2001–2020 period and terminates when streamflow
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becomes lower than the threshold. The cumulative streamflow above the threshold denotes
a flood magnitude (M):

M =
t

∑
i=1

Qi −Q95th (2)

where Qi denotes the streamflow in i (i = 1,2, . . . t) day during a flood episode, t is the
length of an episode. We investigated the flooding fraction (monthly average flood counts
versus total counts) and magnitude (monthly and annual average flood magnitude) to
quantify floods simulated by observations, the IMERG, and ERA5-Land. We also calculated
the changes in flooding fraction (∆fractionFlood) and magnitude (∆magnitudeFlood) in each
catchment between 2001–2010 and 2011–2020 (the latest period minus the previous period)
to fully evaluate the ability of satellite and reanalysis products in simulating floods.

The wet-bulb temperature was used to estimate moist heat stress (Twb) [52]:

Twb = T × arctan(0.151977× (RH + 8.313659)1/2) + arctan(T + RH)

−arctan(RH − 1.676331) + 0.00391838× (RH)3/2 × arctan(0.023101× RH)− 4.686035
(3)

where T denotes near-surface temperature and RH denotes relative humidity; both of them were
derived from the CN05.1 dataset. Then, a moist heat extreme was defined based on the Twb time
series and the POT approach, similar to the procedure in defining floods, and the 95th percentile of
the whole time series, T95th

wb , was determined as the threshold. Finally, a compound moist heat-flood
episode was defined as when a flood is preceded by a moist heat extreme within seven days:

CMHF = (
n
∑

i=a
Qi −Q95th,

m
∑

j=b
Twb,j − T95th

wb )

a−m > 0, a−m <= 7 or a− b > 0, a−m <= 7
(4)

where Twb,j (Qi) denotes a moist heat stress (flood) starting from date j (i) and ending at date m
(n), and other abbreviations are as described above. We calculated the monthly and total CMHF
fraction, the monthly and total average counts of CMHF events versus the monthly and total average
counts of floods, and the monthly and total CMHF magnitude (since the magnitude in moist heat
stress is totally estimated by CN05.1, here we only focused on the magnitude of the flooding side
in a CMHF event) to characterize CMHF events. Further, we also used the changes of the CMHF
fraction (∆fractionCMHF) and magnitude (∆magnitudeCMHF) to evaluate the accuracy of IMERG and
ERA5-Land in application to CMHF modeling.

3. Results
3.1. Performance Assessments of IMERG and ERA5-Land Precipitation

To assess the performance of IMERG and ERA5-Land products, we used six indices to detect
their precipitation intensity (MAE and CC) and occurrence (POD, FAR, CSI, and HSS). We estimated
these indices for each catchment in the eight regions of mainland China (Figures S2 and S3) and
present the regionally averaged values in Figure 2. In terms of the MAE metric, the IMERG performs
similarly to the ERA5-Land, with values ranging from 0.7 to 5.0 mm and from 0.8 to 4.9 mm,
respectively. The MAE values are larger in south China (S3–S5), mainly attributed to local heavy
precipitation conditions [35]. In contrast, the ERA5-Land shows better performance with regard to
the CC metric. Specifically, the CC metric ranges from 0.54 to 0.81 in daily ERA5-Land precipitation,
while it only ranges from 0.34 to 0.73 in the IMERG. The IMERG product cannot effectively catch
precipitation characteristics, especially in north China (S1, S2, and S7). From the precipitation
occurrence perspective, different metrics demonstrate varying results. For instance, the IMERG
exhibits lower FAR and higher HSS values than the ERA5-Land, indicating slightly better performance.
However, the POD and CSI metrics show the opposite results.
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To further probe into satellite and reanalysis precipitation performance, we employed MAE
and CC metrics to evaluate seasonal precipitation intensity (Figure 3). Generally, both products
exhibit acceptable accuracy in all seasons over catchments in China. The MAE metric varies from
0.04 to 1.86 mm (from 0.06 to 3.2 mm) for IMERG (ERA5-Land) daily seasonal precipitation. The
Jiang-Huai Region, and South and Southwest China (S3–S5), generally yield larger MAE than the
other sub-regions. This is mainly because the index MAE is highly sensitive to local precipitation
amount and is spatially heterogeneous. The IMERG and ERA5-Land thus produce relatively large
MAE in the S3–S5 in which they show a wet climate. With regard to the CC metric, values in IMERG
approximately vary between 0.27 and 0.95, and vary between 0.47 and 0.93 in ERA5-Land. Spatially,
both the IMERG and ERA5-Land exhibit almost homogeneous performance among eight regions. We
further estimated additional metrics including daily, monthly, and annual indices to fully measure the
accuracy of IMERG and ERA5-Land precipitation products (Figure S4). We found different indices
and different timescales typically yield varied results: the IMERG presents higher accuracy than the
ERA5-Land in terms of monthly and annual indices, while the ERA5-Land shows more accurate
precision in simulating precipitation occurrence. Overall, the results above demonstrate the reliability
of IMERG and ERA5-Land precipitation products in China despite a few catchments showing inferior
performance, motivating us to further investigate their applicability in the hydrological field.
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summer; (e) MAE in autumn; (f) CC in autumn; (g) MAE in winter; (h) CC in winter. The whiskers
denote standard deviation across catchments inside each sub-region. Since sub-region 6 (S6) only
contains one catchment, there is no whisker.

3.2. Calibration and Validation of Hydrological Models
Considering different climatic and underlying surface conditions for different catchments, we

employed two hydrological models, the XAJ and GR4J models, to investigate the applicability of the
IMERG and ERA5-Land in streamflow simulations. Specifically, the observations (CN05.1), IMERG,
and ERA5-Land were all used to calibrate these two hydrological models and the best performing
model (with the highest KGE value) was selected for each dataset and catchment to perform further
flood simulations. The best performing hydrological models were different among three precipitation
datasets. The GR4J model performs better over the majority of catchments when forced by CN05.1
(64.2% of catchments) and ERA5-Land (71.7% of catchments) datasets, while the XAJ model yields
slightly better performance when forced by IMERG precipitation, as indicated by higher KGE values
in 56.7% of catchments (Figure S5).
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As expected, the hydrological models achieve the best performance when forced by the ob-
servation dataset (CN05.1), with around 85% of catchments exhibiting a KGE higher than 0.5 and
around 71.7% of catchments showing a KGE higher than 0.7 during both calibration and validation
periods (Figure 4a,b). This indicates the robustness of the observation dataset and best performing
models. In contrast, though the KGE is lower when driven by IMERG, they are still satisfactory to
some extent. There are around 71.7% of catchments yielding a KGE higher than 0.5 and 50.8% of
catchments demonstrating a KGE higher than 0.7 during calibration and validation periods, imply-
ing the potential of IMERG serving as an alternative in hydrological modeling over catchments in
China (Figure 4c,d). On the other hand, although the ERA5-Land exhibits similar precision to the
IMERG according to the above six precipitation indicators, it performs worse than the IMERG in
simulating streamflow. We observe only 50.8% of catchments yielding a KGE higher than 0.5 and
33.3% of catchments having a KGE higher than 0.7 (Figure 4e,f). This demonstrates the non-linear
transferability from climates to hydrological variables and indicates that good climate performance
may not sufficiently facilitate hydrological modeling. To probe into water balance issues in modeling
performance, we further estimated relative bias of hydrological simulations by the OBS, IMERG, and
ERA5-Land against streamflow records across the whole calibration and validation periods for these
catchments (Figure S4). Generally, despite some underestimation (overestimation) by the OBS and
IMERG (the ERA5-Land), the relative biases range between −5.4% and 6.9%, indicating the reliability
of streamflow simulations.
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(c,d), and ERA5-Land (e,f) precipitation datasets during calibration and validation periods over
120 catchments.

3.3. Performance of Modeling Extreme Streamflow
Before touching on the applicability of IMERG and ERA5-Land in CMHF episodes, we firstly

investigated the ability of simulated streamflow in capturing flooding characteristics during the
2001–2020 period. We extracted flood episodes for each catchment from CN05.1, IMERG, and
ERA5-Land, respectively, and used results from CN05.1 as a baseline. The total flood frequency
approximately ranges from 10 to 70 times in these catchments during the 2001–2020 period. The
IMERG and ERA5-Land can basically reproduce the flood frequency, with the correlation coefficients
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of 0.67 and of 0.58, respectively (Figure S7). We further investigated the flood fraction for each month
(i.e., the floods that occurred in each month against total counts) and identified the month with the
maximum fraction (Figure 5 and Table S1). As expected, floods mainly occur in the warm season
(e.g., May to September) and the month with the maximum flooding fraction is typically earlier
in southeast China (e.g., early-monsoon, May–June) than the northern catchments (e.g., monsoon,
July–September) (Figure 5a). Generally, the IMERG can better reproduce this spatial pattern than the
ERA5-Land (Figure 5c,e). From a spatially averaged perspective, floods occurred most frequently
in July and August, as indicated by 23.5% and 26.5% of flooding fractions (Figure 5b). The fraction
results for the IMERG are highly similar to those from observations, though they to some degree
overestimate flooding fractions in July and August for catchments in S7 and S8 and underestimate
them for catchments in S2 (Figure 5d). Again, the differences of flooding fraction for the ERA5-Land
against the observations are larger than for the IMERG. For instance, the spatially averaged fractions
in July and August are 20.8% and 28.7% for the ERA5-Land, while they are 25.2% and 26.3% for the
IMERG during the 2001–2020 period.
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observations, and results from the IMERG resemble more closely those observations than 
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Figure 5. The month with maximum flood fraction and monthly flood fractions from gridded observa-
tion (OBS), IMERG, and ERA5-Land products in 120 catchments of China. (a) The month with maximum
flood fraction from observation; (b) The monthly flood fractions from observation; (c,d) The same with
(a,b), but from IMERG product; (e,f) The same with (a,b), but from ERA5-Land product.

We further investigated fraction change (∆fractionFlood) in the warm season and changes in recent
decades. The results for July and the decade in these catchments are shown in Figure 6. The flood
fraction in southeast China (S3–S4) shows a decrease in July, while it shows an apparent increase in
west and northwest China (S6–S8) (Figure 6a). The IMERG can roughly reproduce the spatial pattern
of fraction changes in July (Figure 6c). For ERA5-Land, however, apparent discrepancies against
results from observations are observed in northeast (S1–S3) and west (S6) China, demonstrating the
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limitation of the ERA5-Land product in flood modeling (Figure 6e,g). We also estimated fraction
change in May, June, August, and September (Figures S8 and S9). Generally, both the IMERG
and ERA5-Land demonstrate similar spatial patterns of monthly fraction change to those from
observations, and results from the IMERG resemble more closely those observations than those from
the ERA5-Land. In terms of decade change, there is a drastic nationwide increase in the flood fraction,
and the spatially averaged value is around 130% (Figure 6b). However, both IMERG and ERA5-Land
show only slight increases or even decreases in decadal fraction change, with the national average
value for all catchments being around 16.9% and 0.9%, respectively (Figure 6d,f,h)
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Figure 6. The changes of average flood fraction in July and in the decade of 2011–2020 against the
2001–2010 period for each catchment and eight spatial regions by gridded observations, IMERG, and
ERA5-Land datasets. (a,c,e) The changes for 120 catchments in July by observations, IMERG, and
ERA5-Land products; (b,d,f) The annual changes for 120 catchments by observations, IMERG, and
ERA5-Land products; (g) The changes for eight spatial regions in July; (h) The annual changes for
eight spatial regions.

Large floods typically occur during the monsoon season (e.g., July, August, and September),
and around 63.3% of catchments exhibit maximum flood magnitude during these months (Figure 7a).
Spatially, more severe floods are observed in east China, especially in S3–S4 (Figure 7b). For IMERG
and ERA5-Land, almost similar spatial patterns to observations in the month with maximum mag-
nitude are observed (Figure 7c,e). Furthermore, monthly flood magnitudes driven by IMERG and
ERA5-Land are also analogical to observations (Table S2). The spatially averaged flood magnitude is
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17.2 mm in observations (averaged by each month, Figure 7b), and is approximately 18.6 and 14.8 mm
in IMERG and ERA5-Land (Figure 7d,f), again demonstrating the more satisfactory performance of
IMERG than of ERA5-Land in modeling flood magnitudes.
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Figure 7. The month with maximum flood magnitudes and monthly flood magnitudes from gridded
observation (OBS), IMERG, and ERA5-Land products in 120 catchments of China. (a) The month with
maximum flood magnitudes from observation; (b) The monthly flood magnitudes from observation;
(c,d) The same with (a,b), but from IMERG product; (e,f) The same with (a,b), but from ERA5-
Land product.

There is a nationwide increase in flood magnitudes (4magnitude) in July and the spatial
average value is approximately 102.2% (Figure 8a). The increase in flood magnitude in July is much
greater in northeastern (S1–S2) and southwestern (S5–S6) catchments than in other regions. The
IMERG underestimates the sharp increase in flood magnitudes in July, with the spatial average
value of around 60.1% (Figure 8c). For ERA5-Land, the nationwide increasing phenomenon in flood
magnitudes is also not evident. Specifically, the ERA5-land exhibits decreasing changes in S4 where
most catchments should present increasing changes (Figure 8e). In other warm season months
(e.g., May, June, August, and September), the IMERG and ERA5-land can reluctantly reproduce the
spatial patterns of4magnitude, though with discernable differences in the changing magnitudes
(Figures S10 and S11). On the other hand, changes in flood magnitudes from the annual perspective
are observed to be less severe than those in July, where the spatial average value is only 52.3%
(Figure 8b). The IMERG basically exhibits a similar spatial pattern to the observations, despite some
overestimation in the increasing magnitudes. By contrast, a remarkable underestimation in annual
magnitude changes and even opposite changing directions are observed in ERA5-Land (Figure 8f).
Overall, the IMERG roughly shows analogical flood characteristics to the observations, while the
ERA5-Land cannot reliably simulate floods.
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3.4. CMHF Mapping and Performance Assessment
We first investigated the frequency of CMHF during the 2001–2020 period over catchments in

China from observations, IMERG, and ERA5-Land, respectively (Figure 9). The frequency of CMHF
from IMERG (or ERA5-Land) shows significant positive correlations with that from the observations,
indicating the good performance of IMERG (or ERA5-Land) in simulating CMHF frequency.
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There is a similar story in terms of the CMHF fraction (Figure 10 and Table S3). For the CMHF
fraction, 91.7% of catchments show the maximum CMHF fraction in the hot months (e.g., July–August)
(Figure 10a,b). This is mainly due to the fact that moist heat stress can only occur in warm seasons
in China, resulting in a super high concentration of CMHF in July and August. Both the IMERG and
ERA5-Land effectively capture the pattern of the CMHF fraction, as indicated by 95.0% and 89.2%
of catchments exhibiting maximum CMHF fraction in the hot months, respectively (Figure 10c–f).
Furthermore, we observe more catchments exhibiting increases in both monthly and annual CMHF
fraction (Figure 11a,b). In other words, more CMHF events occurred in the recent 2001–2010 decade
than in the previous 2011–2020 period, indicating potentially deteriorating CMHF hazards. Again, these
changes in the CMHF fraction are robustly captured by the IMERG and ERA5-Land (Figure 11c–h).
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Figure 10. The spatial distribution of month with maximum CMHF fraction during the 2001–2020
period over 120 catchments in China by the gridded observation, IMERG, and ERA5-Land datasets.
(a) The month with maximum CMHF fraction from observation; (b) The monthly CMHF fractions
from observation; (c,d) The same with (a,b), but from IMERG product; (e,f) The same with (a,b), but
from ERA5-Land product.
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To better understand the applicability of IMERG and ERA5-Land in capturing CMHF 
characteristics, the flood magnitude in each CMHF episode was extracted. The monthly 
magnitudes of floods preceded by moist heat stress and their changes are presented in 
Figures 12 and 13 and Table S4. As expected, the majority of catchments show maximum 
CMHF magnitude in the warm seasons, July–September, accounting for 89.2%, 92.5%, and 
93.3% of catchments in observations, IMERG, and ERA5-Land products, respectively (Fig-
ure 12a,c,e). Nevertheless, it should be noted that a larger CMHF magnitude typically 
emerges in the post-monsoon season (September–October). Specifically, the spatially av-
eraged CMHF magnitudes are around 43.2 and 61.4 mm in September and October, re-
spectively (Figure 12b), much larger than those in July (17.8 mm) and August (15.9 mm). 
The IMERG basically captures this pattern of larger magnitudes in post-monsoon seasons 
than in monsoon seasons (Figure 12d), while the ERA5-Land fails to reproduce severe 

Figure 11. The changes in average CMHF fraction in July and in the decade of 2011–2020 against the
2001–2010 period for each catchment and eight spatial regions by gridded observations, IMERG, and
ERA5-land datasets. (a,c,e) The changes for 120 catchments in July by observations, IMERG, and
ERA5-Land products; (b,d,f) The annual changes for 120 catchments by observations, IMERG, and
ERA5-Land products; (g) The changes for eight spatial regions in July; (h) The annual changes for
eight spatial regions.

To better understand the applicability of IMERG and ERA5-Land in capturing CMHF char-
acteristics, the flood magnitude in each CMHF episode was extracted. The monthly magnitudes
of floods preceded by moist heat stress and their changes are presented in Figures 12 and 13 and
Table S4. As expected, the majority of catchments show maximum CMHF magnitude in the warm
seasons, July–September, accounting for 89.2%, 92.5%, and 93.3% of catchments in observations,
IMERG, and ERA5-Land products, respectively (Figure 12a,c,e). Nevertheless, it should be noted
that a larger CMHF magnitude typically emerges in the post-monsoon season (September–October).
Specifically, the spatially averaged CMHF magnitudes are around 43.2 and 61.4 mm in September and
October, respectively (Figure 12b), much larger than those in July (17.8 mm) and August (15.9 mm).
The IMERG basically captures this pattern of larger magnitudes in post-monsoon seasons than in
monsoon seasons (Figure 12d), while the ERA5-Land fails to reproduce severe CMHF magnitudes
that emerged in October (Figure 12f). For changes in CMHF magnitudes, increases can be observed
in July and annual scales over most catchments, with a spatially averaged value of 83.1% and 169.1%,
respectively (Figure 13). Both the IMERG and ERA5-Land can reproduce these spatial patterns,
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despite some disparities in the changing magnitudes. Specifically, the ERA5-Land drastically under-
estimates the increases in annual CMHF magnitudes, with a spatially averaged value of only 21.2%.
The IMERG again simulates a more analogical change in annual CMHF magnitudes, and the spatial
average increase is approximately 98.4%. Overall, the IMERG and ERA5-Land can generally simulate
the spatial patterns of CMHF seasons, magnitudes, and their changes, with the IMERG exhibiting
slightly better performance than the ERA5-Land. However, some differences still exist in the timing
and magnitudes of CMHF episodes simulated by IMERG and ERA5-Land to that by observations,
and caution should be paid when directly using these products to investigate compound hazards.
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Figure 12. The spatial distribution of the month with maximum CMHF magnitude (flood) during the
2001–2020 period over 120 catchments in China by the gridded observation, IMERG, and ERA5-Land
datasets. (a) The month with maximum CMHF magnitude from observation; (b) The monthly CMHF
magnitudes from observation; (c,d) The same with (a,b), but from IMERG product; (e,f) The same
with (a,b), but from ERA5-Land product.
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the 2001–2010 period for each catchment and eight spatial regions by gridded observations, IMERG,
and ERA5-land datasets. (a,c,e) The changes for 120 catchments in July by observations, IMERG, and
ERA5-Land products; (b,d,f) The annual changes for 120 catchments by observations, IMERG, and
ERA5-Land products; (g) The changes for eight spatial regions in July; (h) The annual changes for
eight spatial regions.

4. Discussion
Recent studies have examined characteristics of similar compound extremes [29,53,54]. For

example, Ning et al. [31] investigated the characteristics of compound extreme heat-precipitation
events across China during 1961–2016 and found around one-quarter of summer precipitation
extremes over China are preceded by an extreme heat event. Based on previous studies, we took a
step further to fully investigate the intra-annual distribution of the proportions and magnitudes of
floods that are preceded by moist heat stress. Interestingly, though we observed large CMHF fractions
that typically emerged in July and August, CMHF episodes with severe magnitudes prominently
occurred in post-monsoon seasons, i.e., September to October, in which the average magnitudes were
more than double the magnitudes in July and August (Figure 12b).

It is noteworthy to mention that we used the wet-bulb temperature rather than the dry-bulb
temperature to consider the deadly heat stress in this study, which is different from most previous
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compound heat-flood studies [31,53]. This wet-bulb temperature is influenced by both dry-bulb
temperature and relative humidity, which is widely used to quantify the environmental humid
heat [55–57]. Specifically, the synergistically high temperature and humidity are closely tied to strong
convective available potential energy (CAPE), which are associated with extreme climates and further
floods [26]. Therefore, this moist heat stress measured by both temperature and humidity can be
possibly compounded with extreme floods from physics. Future studies can explore further the
mechanisms of the occurrence of CMHF episodes, which may help provide scientific guidance to
improve the accuracy of IMERG and ERA5-Land.

There are some uncertainties worthy of clear communication. Based merely on limited length
of discharge records (5–10 years) and two lumped hydrological models, the simulated daily stream-
flow as well as floods and CMHFs should be deemed as a conservative estimate, due to the lack
of consideration of sampling uncertainty, model structure uncertainty, and model parameter un-
certainty [48,58,59]. Future studies could collect longer discharge records and incorporate lumped,
physically based models and machine learning approaches into streamflow modeling, and further
cross-validate with disaster databases. Changes in floods and CMHFs can be attributed to anthro-
pogenic warming and climate variability [60]. For instance, anthropogenic warming grows the
sequential occurrence of deadly heat stress and extreme floods through changing the water and
energy budget in the earth’s system and phased internal climate variability can substantially amplify
this growth [29]. Nonetheless, our main objective was to investigate the reliability of IMERG and
ERA5-Land in monitoring CMHF and thus we analyzed the changes in CMHF, regardless of the
background mechanisms. Moreover, we used the simulations forced by the observed climate dataset
as the benchmark instead of directly employing observed streamflow data to reduce impacts from
underlying surface conditions. Land use and land cover changes, reservoirs and dams, and disaster-
management strategies can also alter streamflow processes and subsequent floods and CMHFs [61].
In-depth quantification of attributions impacting on CMHFs is an important direction for future
research, which is beyond the objective of this study.

5. Conclusions
This study focused on investigating the satellite remote sensing and reanalysis model-based

products in capturing floods, especially CMHF characteristics, from 2001 to 2020 over main catch-
ments in China. We found that the IMERG satellite-retrieved estimates perform similarly to the
ERA5-Land products in terms of precipitation occurrences and intensity, with minor differences when
using different statistical indices. However, the IMERG precipitation achieved discernably better
performance than the ERA5-Land precipitation in streamflow simulation, with the former yielding
higher KGE values when forcing hydrological models. Both the IMERG and the ERA5-Land can
effectively capture flood season and magnitude, as well as recent changes in flood characteristics
against the previous decade over major catchments. However, the IMERG exhibits higher accuracy
than the ERA5-Land. For example, the former estimates that around 49.5% of floods occur in July
and August from the spatially averaged perspective (in comparison to 50% in observations), while
the latter yields 51.5% of the proportion. Similarly, the spatially averaged flood magnitude was
17.2, 18.6, and 14.8 mm in observations, IMERG, and ERA5-Land, again indicating the more robust
performance of IMERG than the ERA5-Land. Furthermore, both datasets can basically reproduce
the characteristics of CMHF episodes. Specifically, maximum CMHF fractions usually emerge in
the monsoon seasons, July–August, and large CMHF episodes with maximum magnitudes typically
occur in the post-monsoon seasons, September–October. These patterns are robustly captured by
both datasets. Nevertheless, there are still some differences in the CMHF fractions and magnitudes
simulated by the IMERG and ERA5-Land compared with that in the observations. For example, the
spatially averaged increase in annual CMHF magnitude accounts for around 169.1% in observations,
while it is around 98.4% in the IMERG, and only approximately 21.1% in the ERA5-Land. Our results
indicate acceptable performances of satellite and reanalysis products in simulating compound floods
across catchments in different climate zones, and the IMERG satellite yields more satisfactory results
than the ERA5-Land reanalysis. However, there is still a need to improve the accuracy of satellite
and reanalysis products and specific caution should be used when directly using them to capture
compound extreme events.
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