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Abstract: Potential evapotranspiration (PET) is generally estimated using empirical models; thus, how
to improve PET estimation accuracy has received widespread attention in recent years. Among all the
models, although the temperature-driven Thornthwaite (TH) model is easy to operate, its estimation
accuracy is rather limited. Although previous researchers proved that the accuracy of TH-PET can be
greatly improved by using a limited number of variables to conduct calibration exercises, only prelimi-
nary experiments were conducted. In this study, to refine this innovation practice, we comprehensively
investigated the factors that affect the calibration performances, including the selection of variables,
seasonal effects, and spatial distribution of Global Navigation Satellite System (GNSS)/weather stations.
By analyzing the factors and their effects, the following conclusions have been drawn: (1) an optimal
variable selection scheme containing zenith total delay, temperature, pressure, and mean Julian Date was
proposed; (2) the most salient improvements are in the winter and summer seasons, with improvement
rates over 80%; (3) with the changes in horizontal (2.771–44.723 km) and height (1.239–344.665 m) differ-
ences among ten pairs of GNSS/weather stations, there are no obvious differences in the performances.
These findings can offer an in-depth understanding of this practice and provide technical references to
future applications.

Keywords: potential evapotranspiration; global navigation satellite system (GNSS); zenith total
delay; Thornthwaite equation; Penman–Monteith equation

1. Introduction

As a crucial meteorological parameter, potential evapotranspiration (PET) represents
the maximum amount of water that would be evapotranspirated if a sufficient water source
were available [1,2]. It is accepted that the evapotranspiration process is controlled by
energy exchange at the vegetation surface, which is thus greatly limited by the energy
amount [3]. From the aspect of synoptic meteorology, the factors of wind, air and sur-
face temperature, humidity, and insolation all intensively affect the values of PET [4].
From the perspective of actual application, PET is generally required to assess aridity,
irrigation water demand, and ground water recharge; calculate the water requirements of
crops and landscape plants; and conduct hydrological cycle analysis and drought mon-
itoring. Specific to the extending application of operational drought monitoring, PET
is employed in the calculation of various types of drought monitoring indices, e.g., the
Standardized Precipitation Evapotranspiration Index [5], the Palmer Drought Severity
Index [6], and the Relative Moisture Index [7]. These also further highlight the importance
of improving and guaranteeing the estimation accuracy of PET. Generally, the PET value
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is estimated using empirical models. On the basis of the adoption of different input vari-
ables and assumptions, the empirical models available in previous studies can be broadly
categorized as fully physically based, semi-physically based, and black-box models [2,8].
The first type mainly accounts for mass and energy conservation principles; the semi-
physically based models address either mass or energy conservation; the latter ones are de-
veloped based on the advanced neural network technique, genetic algorithm, or empirical
relationships [9–11]. Among various types of empirical models, the most frequently used
models are the Penman–Monteith (PM) [12] and Thornthwaite (TH) [13] models. A physi-
cally based model highly recommended by the Food and Agriculture Organization of the
United Nations [3], the PM model takes a hypothetical crop canopy as the reference, and
fully considers the influences brought by various types of variables, including temperature,
humidity, wind speed, dew point temperature, sunshine duration, and radiation [14,15].
Through the complete process, the accuracy of PM-derived PET (hereafter PM-PET) can be
effectively ensured. Moreover, since the actual evapotranspiration cannot be measured, the
PM-PET time series is often taken as the reference to evaluate the PET values estimated
using other models. However, the use of a large number and types of variables also makes
the calculation process much more complicated. Furthermore, these variables are not
always prepared or able be adequately obtained at any weather station; thus, the use
and popularization of the PM model is greatly limited. Regarding the TH model, it is a
temperature-based model, which only adopts the variables of temperature as well as the
site latitude of the weather station to determine PET values (hereafter TH-PET). Based on
its simple calculation mechanism, the TH model has wider applicability in comparison to
the PM model [5]. From the other facet of the TH model, it is also because this model only
takes into account the effects brought by numbered variables, the accuracy of TH-PETs is
not as high as its corresponding PM-PETs [16–19]. Therefore, how to effectively improve
the accuracy of TH-PET has received widespread attention over the past few decades.

Through years of research, several previous studies have already confirmed that the
accuracy of TH-PETs can be greatly improved by using a limited number of atmospheric
variables to conduct certain calibration exercises [20,21]. For example, Zhao et al. [22]
proposed a concept that the accuracy of TH-PET can be improved through calibration by
using the variables of temperature and precipitable water vapor (PWV). Ma et al. [23] also
used the Global Navigation Satellite System (GNSS) and meteorological data collected in
Yunnan Province to develop a modified composite index, which was then used to further
improve the accuracy of a meteorological drought monitoring index. It is noteworthy that
the use of a limited number of atmospheric variables in the calibration practice is to continue
carrying forward the advantages of easy operation, wide comprehension, and calculation
simplicity embodied in the TH model. Another phenomenon that can be found from the
previous studies is that apart from commonly used weather variables, the atmospheric
products, e.g., PWV and zenith total delay (ZTD) retrieved from the GNSS sounding
technique, also play a vital role in the calibration process. The use of these variables
is mainly based on its advantageous characteristics of high accuracy, high spatial and
temporal resolution, 24-hour operability, and all-weather capability [24–29]. From another
perspective, the atmospheric humidity conditions (especially the variations in water vapor),
which are closely linked with the estimation of PET, can also be better reflected by PWV
and ZTD estimates to some extent. Based on all these, the feasibility, effectiveness, and
advantages of applying GNSS-derived products to serving the meteorological community
has been thoroughly confirmed over the past few years [30–34]. However, it should be
admitted that only preliminary experiments were conducted in those previous studies,
which did not take those crucial factors affecting the calibration performances of TH-
PET into deep consideration, and there many issues need to be addressed to further
refine this type of application. For example, in [21,22], the variables of ZTD/temperature
and PWV/temperature were simply used to carry out calibration exercises. Although
great calibration performances were obtained, those studies lack further investigations
of whether the use of other variables may also provide positive contributions to the final
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output. Moreover, while it is well known that different seasons have different atmospheric
conditions, those studies only took data over a long period to conduct experiments, which
did not further evaluate the calibration differences in different natural seasons.

The aim of this study is therefore to conduct comprehensive investigations of some
critical factors that greatly affect the calibration performances of TH-PET estimates. The
factors concerned in this study include the selection of variables, the seasonal calibration
differences, and the spatial distribution of weather/GNSS stations. Based on the research
status stated above, the choice of these factors is mainly because the first determines how
to select optimal and effective variables to participate in the calibration process, and the
other two are regarded as the crucial in the temporal and spatial domains, respectively.
Apart from the comprehensive investigations conducted, some of the main innovations
are also contained in the selection of variables adopted in the analyses. To be specific, the
GNSS and weather variables chosen in this study include GNSS-derived ZTD (named
GNSS-ZTD in this study), temperature, and pressure. The first innovative practice lies in
the use of ZTD rather than PWV (in comparison to [22]); the reasons for this choice mainly
include the following. (1) This practice can avoid a possible degradation in the accuracy
caused by errors introduced from the use of meteorological variables in the conversion
process from ZTD to PWV. (2) Various studies have also confirmed that the time series of
ZTD and PWV have quite similar variation trends [35,36], indicating that the two variables
may have analogical influences on the linear calibration exercises. The second novelty
lies in the fact that the statistical parameter of mean Julian Date (MJD), reflecting the
time-varying characteristics of other atmospheric variables, was first introduced to an
application of this type. The primary reasons for incorporating this parameters include that
(1) the MJD is a common variable adopted in the PM model, which has the ability to reflect
the effects brought by insolation. Thus, the additional use of this variable would help to
fill in the gaps of estimating PET using the TH model, in comparison to the physically
based PM model. (2) Many previous studies [37–39] have already confirmed that time-
varying variables (e.g., hour-of-day and day-of-year) can exert great positive influences
on final performances. (3) It is proved that pressure, temperature, ZTD, and PET possess
obvious annual, seasonal, and even diurnal variation features, which can all be effectively
manifested by MJD. Therefore, the adoption of MJD in this study has significant potential
to further improve the accuracy of calibrated TH-PET. Based on all the comprehensive
investigations with the above-mentioned innovation practices conducted in this study, the
research findings can offer an in-depth understanding of this practice and also provide
technical references for future applications.

2. Data Acquisition
2.1. Selection of Study Region and Period

In this study, on account of the main aspects of climate conditions, research demands,
and data integrity/availability, the Hong Kong region was selected as the experimental
area. (1) Climate conditions: The Hong Kong region, which possesses typical sub-tropical
climate features [40], has generally experienced various types of extreme climate phe-
nomena and severe weather events over the past few decades, especially in its summer
seasons [41–43]. (2) Research demands: According to the reports released by the Hong
Kong Observatory [44] and the Intergovernmental Panel on Climate Change [45], more
frequent and devastating climate and weather extremes, e.g., heavy precipitation, meteoro-
logical drought, and typhoon, will strike this area in the coming years. This highlights a
pressing research demand to effectively monitor all these extreme phenomena in this area.
Fortunately, as suggested before, research on improving the accuracy of PET estimates (as in
this study) may then assist in the calculation of indices for drought monitoring and promote
the analysis of hydrological processes and parameters. (3) Data integrity/availability: This
is another crucial issue that cannot be ignored, especially for studies addressing climate
problems. To ensure the reliability and credibility of the research outputs from this study,
the experimental data including GNSS-ZTD, temperature, pressure, solar radiation, dew
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point temperature, sunshine duration, relative humidity, and wind speed collected over
a 14-year period from 2008 to 2021 were all adopted in the estimation and calibration of
PET values. The use of this long-term period is to effectively capture the variation trends
of different atmospheric variables, and grasp the intrinsic nature of this application. In
the selected study region, these variables can be simply obtained/retrieved from GNSS
tracking stations (from the Hong Kong Continuously Operating Reference Stations net-
work) and operational weather stations. To be more specific, the GNSS stations adopted in
this study include the HKKT, HKLT, HKNP, HKOH, HKPC, HKSC, HKSL, HKSS, HKST,
and HKWS stations. The Hong Kong International Airport (HKA), King’s Park (KP), and
Sha Tin (ST) weather stations were selected for collecting meteorological data. According
to statistics, the integrity rates of ZTD and meteorological measurements over the whole
14-year study period were 99.1% and 98.8%, respectively. Therefore, the use of these data
with better integrity could effectively ensure the reliability and reasonability of the conclu-
sions resulting from the following experiments. Figure 1 and Table 1 illustrate the spatial
distribution and detailed coordinate information of the thirteen stations adopted in this
study, respectively. Note that the only radiosonde station employed in the study region
was also plotted in Figure 1. Its sounding profiles can be used as the reference to test the
accuracy of GNSS-derived atmospheric products.
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Table 1. Coordinate information of the selected GNSS and weather stations.

Station ID Latitude (◦) Longitude (◦) Height (m)

GNSS station

HKKT 22.45 114.07 34.54

HKLT 22.42 114.00 125.90

HKNP 22.25 113.89 350.67

HKOH 22.25 114.23 166.38

HKPC 22.29 114.04 18.09

HKSC 22.32 114.14 20.20

HKSL 22.37 113.93 95.27

HKSS 22.43 114.27 38.68

HKST 22.40 114.18 258.69

HKWS 22.43 114.34 63.76

Weather station

HKA 22.31 113.92 6.00

KP 22.31 114.17 65.00

ST 22.40 114.21 6.00

2.2. Retrieval of GNSS-ZTD

In this study, as mentioned in Section 1, to avoid introducing additional error sources
in the conversion from ZTD to PWV, as well as to enhance the spatial resolution in the
selection of GNSS stations, only the ZTD estimates retrieved from the GNSS observa-
tions were adopted in the following analyses. The retrieval of ZTD time series over the
14-year study period at the selected ten stations was conducted by using Bernese GNSS
Software Version 5.2 [46]. The detailed data processing strategies were generally the same
as those adopted in our previous studies [35], including the double-difference approach,
the elevation angle cutoff of 3◦, the Vienna Mapping Function 1, and the operational In-
ternational GNSS Service Finals clocks and orbits [47,48]. Regarding temporal issues, a
27-hour observation window was selected, and the temporal resolution of ZTD estimates as
well as estimation spacing were both set to 5 min [49,50]. In addition, the relativistic delays,
the effects of the solid Earth pole tide, ocean pole tide, and phase wind-up were all modeled
in line with the International Earth Rotation and Reference Systems Service Conventions
2010 [51]. With the adoption of these strategies, the accuracy of GNSS-derived atmospheric
products was fully validated in different study areas over the past few years [52–54]. Spe-
cific to the Hong Kong region, in our previous studies [33,35], the accuracy of ZTD and
PWV were tested and assured using sounding profiles as the reference, effectively meeting
the requirements for operational use in the meteorological community.

2.3. Meteorological and Time-Varying Variables

Prior to using the obtained GNSS-ZTD time series as a key factor to calibrate PET
values, the PETs should be predetermined based on the empirical TH and PM equations
(data obtained from the latter was taken as the reference for evaluation). As suggested by
Thornthwaite [13] and Monteith [12], the data types of meteorological variables needed in
the whole estimation process generally include temperature, pressure, solar radiation, dew
point temperature, sunshine duration, relative humidity, and wind speed [3,19,55]. In this
study, all the required monthly and diurnal meteorological data over the 14-year period
from 2008 to 2021 can be easily collected from the Hong Kong Observatory at the three
operational weather stations, i.e., HKA, KP, and ST.

As mentioned in Section 1, apart from all the aforementioned variables, the time-
varying variable of MJD was also adopted in the experiments, which has the potential to
reflect the temporal variations in the above variables as well as PET. It is well known that
the conventional Julian Date is counted per day, i.e., each date has a certain value (in the
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range 1–366). However, to be in line with the mechanism of the TH equation, which is
designed to calculate monthly PET values, the MJD was calculated and utilized in this
study. As its name suggests, the MJD is actually the average value of all the Julian Dates in
a certain month. For example, the MJD value of January is 16, which is the mean value of
1–31. With the use of this simple computational strategy, the MJD value for each month in
each year can be easily obtained.

3. Methodology

On the basis of the whole procedure, the methodologies adopted in this study can be
divided into the following two parts. The first one is to estimate PET values using the TH
and PM equations, and the second is to calibrate the obtained PET values using GNSS and
meteorological products.

3.1. Estimation of PET
3.1.1. Thornthwaite Equations

As a type of temperature-driven method, only temperature is required in the estima-
tion of PETs using the empirical TH equations, which manifests its main advantages of easy
operation, high efficiency, and wide applicability. It is also noted that in some calculation
methods, the factor of latitude (reflecting duration of day) is also incorporated. In this
study, as suggest by the China Meteorological Administration [56], the general equation for
estimating TH-PET can be expressed as:

PETT = 16.0 × [(10 × Ti)/H]A, (1)

where PETT represents the obtained TH-PET estimate, in mm. Since this model was origi-
nally designed for calculating monthly PET values according to [13], Ti and its subscript i
denote the monthly mean temperature (◦C) and the index of the twelve months (ranging
from 1 to 12), respectively. It is worth mentioning that the above equation is only available
for the situations when Ti is above 0 ◦C; while in the other cases (i.e., when Ti is less than
or equal to 0 ◦C), the values of PETT are regarded as zero. H denotes the annual heat index,
the calculation of which should be conducted by summing up all the monthly heat indices
in a certain year using the equation below:

H = ∑12
i=1Hi = ∑12

i=1(Ti/5)1.514, (2)

where Hi is the monthly heat index; the subscript i represents the index of each month.
Regarding the notation of A shown in Equation (1), it denotes a “constant” coefficient.
Since the coefficient value is highly dependent on that of the annual heat index, with the
obtained annual heat index, the coefficient can be easily calculated using Equation (3). In
other words, given that the annual heat index of a certain year is obtained, the coefficient A
can be recognized as a constant value during the year.

A = 6.75 × 10−7H3 − 7.71 × 10−5H2 + 1.792 × 10−2H + 0.49, (3)

Overall, with the use of temperature measurements, all the other variables (Hi, H and
A) contained in the estimation of TH-PET can be calculated from the use of Ti based on
the above equations. This phenomenon further corroborates the fact that the TH model is
driven by temperature values. Therefore, with the obtained monthly mean temperature
collected at the three weather stations, the TH-PET series over the 14-year study period at
each site can be calculated.

3.1.2. Penman–Monteith Equations

The Penman–Monteith model is the other operational way to estimate PET values. It
is known that the PET estimates derived from this method are generally regarded as the
“true” values, which are often adopted as the reference to evaluate those calculated from
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other equations (e.g., the TH model). However, it can be seen from its principal formula
that the PM model requires more types of meteorological data than the TH model, and its
computational procedure is also more complicated [3,56]:

PETP =
0.408∆(Rn − G) + γ

900
Ti + 273.16

u2(es − ea)

∆ + γ(1 + 0.34u2)
, (4)

where PETP represents the PM-PET estimate, in mm; ∆ and γ denote the slope of the water
vapor curve (kPa·◦C−1) and a psychrometric constant (kPa·◦C−1), respectively; Rn and G
are the surface net radiation (MJ·m−2·d−1) and soil heat flux (MJ·m−2·d−1), respectively;
Ti represents the mean temperature measurement (◦C); u2 is the 2 m wind speed, in m·s−1;
es and ea denote the saturation and actual vapor pressure, in kPa, respectively. In addition,
the constant values of 900 and 0.34 represent the coefficient and the wind coefficient for the
reference crop. To be more specific, the following equations are adopted to calculate the
saturation and actual vapor pressure:

ea = 0.6108 × exp
[

17.27 × Tdew
Tdew + 237.3

]
, (5)

es = 0.3054×
{

exp
[

17.27 × Tmax

Tmax + 237.3

]
+exp

[
17.27 × Tmin
Tmin + 237.3

]}
, (6)

where Tdew represents the dew point temperature, in ◦C; Tmax and Tmin denote the highest
and lowest temperature estimates (◦C), respectively. Regarding the psychrometric constant,
its determination needs the incorporation of pressure measurement (denoted by P, in kPa)
using the formula below:

γ = 0.665·10−3 × P, (7)

In addition, since PM-PETs were used to evaluate TH-PETs to be in line with the
estimation of monthly PET values, the simplified equation outlined below can be obtained
to calculate the soil heat flux G:

G = 0.14 × (Tmonth, i − Tmonth, i−1), (8)

where Tmonth, i and Tmonth, i−1 denote the monthly mean temperatures (◦C) of the i-th and
its previous (denoted by (I − 1)) month, respectively; the subscript i has the same meaning
as that shown in Equation (1). Due to limited space in this article, more details regarding
the computational mechanism of the PM model can be found in [3,56,57]. Therefore, with
the use of the PM model, the PM-PET time series over the study period at the selected
operational weather stations can also be accurately determined.

3.2. Calibration of PET

According to previous statements, after the estimation of PET values using the above
two models, the second process is to calibrate the TH-PET estimates using various types of
GNSS and meteorological products. This procedure can be separated into the following
three steps:

1. Calculation of PET differences between PM-PET and TH-PET estimates:

PETdi f f = PETP − PETT , (9)

where PETP and PETT represent the PET estimates obtained from the empirical PM and
TH models, respectively. PETdi f f denotes the PET difference between the two sets of
PETs (mm). The calculation of PET differences is to test the estimation errors contained in
the TH-PET series compared to those obtained from the PM model, which are recognized
as the “true” values, as stated earlier.
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2. Calibration of TH-PET estimates using GNSS and meteorological variables:

PETcal = a1X1 + a2X2 + a3X3 + . . . + anXn + b, (10)

where PETcal represents the calibrated residual of the PET estimates (mm); X1, X2, X3,..., Xn
denote various types of atmospheric products; a1, a2, a3,..., an are the coefficient values of
all the selected variables; b is the intercept of the linear calibration equation; the subscript
n is the number of variables adopted in the calibration process. It can be seen from the
equation that the values of all the coefficients and intercept should be predetermined
over a certain study area so as to put into operation in future applications. Actually, the
determination of these values is more like the training process in existing machine learning-
based models, especially the supervised learning technique [31,38,39,58]. In the context
of this application, the PET differences as well as all the required atmospheric variables
over a long-term period should be used to map the corresponding relation between the
input–output data pairs. Among them, the PET differences obtained from the previous step
using Equation (9) are regarded as the “desired output”, with which the TH-PET values
can be accurately calibrated; different types of atmospheric variables are the “input” of
Equation (10) (denoted by a1, a2, a3,..., an). In this study, the whole datasets over the 14-year
period at each station were divided into two parts: data over the 12-year period from 2008
to 2019 were used to determine the coefficients and intercept, and thus to construct the
specific calibration equation at each weather station; data over the other 2-year period
from 2020 to 2021, which can be regarded as an independent set of data, were used to test
the performances resulting from the established equations. In addition, as mentioned in
Section 1, to continue demonstrating the advantages contained in the TH model, we only
utilized a limited number of variables, which are also readily accessible and commonly
used, in the following section.

3. Calculation of a new set of TH-PET values over the whole period:

PETimp = PETT + PETcal , (11)

where PETimp represents the TH-PET estimate that has already been calibrated (mm),
which is the sum of the original TH-PET value PETT and the calibrated residual PETcal .
It it noteworthy that this process can also be divided into two parts in accordance with
the previous step. For the first part regarding the construction of the calibration equation
using data over the period 2008–2019, the results obtained by comparing the new set of
PET estimates with the PM-PETs are generally called “fitting results”. This is because
PET differences (obtained from Equation (9)) over the 12-year period were adopted as the
“desired outputs” to conduct the regression analysis. For the other part, i.e., the verification
of the constructed calibration equation using data over the 2-year period 2020–2021, the
comparison results are called “verification results”. Moreover, in the testing procedure, the
metrics of correlation coefficient (r), bias, root mean square (RMS) error, and Nash-Sutcliffe
Efficiency (NSE) [59,60] were all adopted to quantitatively evaluate the performances
resulting from each experimental schemes designed in this study. The computational
mechanisms of these metrics are outlined as follows:

Bias = ∑n
i=1(Xi − Yi)/n, (12)

RMS =
√

∑n
i=1(Xi − Yi)

2/n, (13)

r =
∑n

i=1
[(

Xi − X
)
×
(
Yi − Y

)]√
[∑n

i=1
(
Xi − X

)2 × ∑n
i=1
(
Yi − Y

)2
]
, (14)

NSE = 1 − ∑n
i=1(Xi − Yi)

2

∑n
i=1
(
Xi − X

)2 , (15)
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where the subscripts n and i denote the total number and the index of the samples in the
obtained PET time series. The PET time series obtained from the PM model is regarded as
the reference to evaluate the accuracy of calibrated/non-calibrated TH-PETs in this study;
thus, Xi and Yi are the i-th PM-PET and TH-PET values obtained at different stations. X
and Y denote their respective average values over the whole series.

Therefore, with all the methodologies, the PET estimates can be easily obtained based
on the empirical TH and PM models. Then, through a comprehensive calibration pro-
cess using different types of meteorological variables, the accuracy of TH-PETs can be
further improved. The following section examines the key factors that greatly affect the
calibration performances.

4. Investigation of Factors Affecting the Calibration Performance of PET Estimates

In this study, several crucial factors that affect the calibration performance of TH-PETs
were comprehensively investigated, including the selection of variables for calibration,
seasonal calibration effects, and the spatial distribution of GNSS and weather stations. We
selected these three factors mainly because the first is one of the most important preparatory
steps prior to conducting the calibration process, and the latter two are the core factors
contained in the temporal and spatial domains. Their respective investigation findings are
presented in the following subsections.

4.1. Selection of Variables for Calibration

Although the calibration practice of TH-PETs using temperature, ZTD, PWV, and other
types of atmospheric variables were proved to be effective in previous studies [20–22], there
is a lack of a specific principle for the selection of variables involved in the calibration of
TH-PET estimates in the existing literature. In this study, to thoroughly test the performances
resulting from different combinations of variables, eight experimental schemes with the use
of ZTD, MJD, temperature, and pressure were designed, as shown in Table 2. The reasons
for the utilization of ZTD and MJD were stated earlier, and the selection of temperature
and pressure is mainly because they are the most commonly used and easily accessible
meteorological variables. From another aspect, apart from the required monthly mean
temperature measurements, only two types of variables (ZTD and pressure) were additionally
used (note that MJD is a statistical concept that can be simply calculated), which conforms to
the advantages of the TH model.

Table 2. Eight experimental schemes for investigating the calibration performances resulting from
different combinations of atmospheric variables. (Temperature and pressure are denoted by T and
P, respectively.)

Scheme No. Variables No. of Variables

1 T, P 2

2 T, ZTD 2

3 P, ZTD 2

4 T, P, ZTD 3

5 T, P, MJD 3

6 T, ZTD, MJD 3

7 P, ZTD, MJD 3

8 T, P, ZTD, MJD 4

It is known that it is unconvincing and unreasonable to conduct the calibration practice
using only one type of variable. Therefore, with the use of two to four types of variables,
all the possible experimental schemes are listed in this table. As mentioned in Section 3, the
datasets over the periods 2008–2019 and 2020–2021 at the three selected weather stations
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(HKA, KP, and ST) were used to construct and test the calibration functions. Since the GNSS
sites are dispersedly distributed in the study region, to conduct a more reasonable analysis
and to effectively guarantee the adaptability of the ZTD time series, as well as to avoid
introducing errors on account of spatial distances, the above experiments only adopted the
ZTD values obtained from the nearest GNSS stations to each of the three weather stations.
This practice is similar to those adopted in our previous studies [33,35]. By calculating
and analyzing the distances between each pair of GNSS and weather stations, three GNSS
stations were selected for their corresponding “co-located” weather stations, i.e., three
pairs of GNSS/weather stations were adopted (HKA-HKSL, KP-HKSC, and ST-HKST). In
addition, to evaluate the calibration performances resulting from the eight schemes, the
original TH-PETs over the same period were taken as the benchmarks. Because there is
no calibration conducted in this case, the results could assess whether improvements have
been made by using the eight schemes. Table 3 lists the average fitting and verification
results, including the four metrics of bias, RMS, NSE, and correlation coefficient, obtained
from each scheme at the three pairs of stations.

Table 3. Comparison of the average fitting and verification results obtained from each scheme at the
three pairs of co-located GNSS/weather stations.

Calibration
Variable

Fitting Results (2008–2019) Verification Results (2020–2021)
Scheme No.

Bias (mm) RMS (mm) r NSE Bias (mm) RMS (mm) r NSE

1 T P 0 8.03 0.919 0.852 1.98 10.40 0.919 0.723

2 T ZTD 0 7.51 0.938 0.881 2.35 8.63 0.937 0.802

3 P ZTD 0 7.82 0.938 0.875 0.07 8.85 0.936 0.798

4 T P ZTD 0 7.33 0.947 0.897 1.92 8.30 0.938 0.814

5 T P MJD 0 7.86 0.923 0.855 1.61 10.05 0.923 0.731

6 T ZTD MJD 0 7.34 0.944 0.891 2.13 8.39 0.939 0.806

7 P ZTD MJD 0 7.44 0.946 0.890 0.03 8.56 0.938 0.808

8 T P ZTD MJD 0 6.95 0.952 0.904 1.35 8.13 0.940 0.824

9 None 2.59 34.42 0.919 −0.512 4.07 39.23 0.902 −1.432

It can be clearly seen from Table 3 that compared with the results obtained from
Scheme 9, the fitting and verification performances resulting from the other eight schemes
(with the additional calibration process) were all greatly improved, no matter what types of
variables were adopted. Among the eight experimental schemes, Scheme 8 outperformed
the others considering the metrics of RMS, correlation coefficient, and NSE, in which the
variables of temperature, pressure, ZTD, and MJD were all simultaneously utilized. From a
statistical perspective, the improvements in the average fitting and verification RMS results
made by using Scheme 8, in comparison to those from the use of Scheme 9, were 27.47 mm
(79.8%) and 31.1 mm (79.3%), respectively. Specific to the three pairs of co-located stations,
the improvements in the fitting and verification results even reached 81.5% (KP-HKSC) and
80.5% (ST-HKST), respectively. Furthermore, the calculation of drought monitoring indices
is closely linked with the (normal) distribution of the differences between precipitation and
PET [56]; thus, the higher the correlation coefficient values, the more accurate the indices.
The rises in the correlation coefficient values may also promote the determination of more
accurate drought monitoring indices using the calibrated TH-PET. Another phenomenon
that can be observed is that after the whole calibration process, the bias values were all
calibrated to zero (see the shaded column in Table 3). It is widely known that the data
range for the metric of NSE is (−∞, 1]. In this study, the values of NSE nearer to 1 suggest
that the estimation error variances are close to zero, i.e., the TH-PET time series is well-
calibrated. In the situation of the calibrated TH-PET time series with an error covariance,
this is considerably larger than the variance of the PM-PETs, and the resulting NSE values
become negative. Based on the interpretation principles of NSE, it can be simply seen from
Table 3 that great improvements have been made by conducting calibration exercises using
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the eight schemes, and the optimal results were derived from the use of Scheme 8 (with the
NSE values of 0.904 and 0.824 in the fitting and verification stages, respectively).

To conduct a more detailed analysis, by comparing the statistical results obtained from
these pairs of schemes (1 vs. 5; 2 vs. 6; 3 vs. 7; 4 vs. 8), it can be found that the additional
use of MJD exerted a clearly positive influence on the final outputs, especially with respect
to the correlation coefficient results. The comparing cases including (1 vs. 4) and (5 vs. 8)
also obviously suggest that the ZTD time series may greatly improve the calibration perfor-
mances. The RMS results in the two cases were reduced from 8.03 mm to 7.33 mm and from
7.86 mm to 6.95 mm, respectively. The positive influences brought by using temperature and
pressure can also be reflected by comparing the results outlined above. Therefore, based
on all the results shown in Table 3, together with the analyses carried out above, Scheme 8
was determined as the optimal one for the following experiments to investigate other factors
affecting the calibration performances of TH-PETs.

4.2. Comparison of Seasonal Calibration Effects

After the selection of the most appropriate variables for conducting the calibration
process, we further investigated a crucial factor contained in the temporal domain, i.e., the
seasonal calibration effect. The datasets over the whole calibration period were separated
into four groups in accordance with the four seasons: spring (March, April, and May),
summer (June, July, and August), autumn (September, October, and November), and winter
(December, January, and February). Then, the calibration performances in each season
were statistically analyzed. To evaluate the calibrated results, as the practice conducted in
Section 4.1, the performances obtained under the situation without the whole calibration
process were also taken as the reference. In addition, to make an overall comparison, Table 4
lists the average differences between the two sets of PET time series calculated at the three
pairs of GNSS/weather stations under the conditions of with and without calibration in the
four seasons over the whole calibration period from 2008 to 2019. The use of data over the
12-year study period (rather than the whole 14-year period from 2008 to 2021) is because
these data were carefully calibrated in the verification stage. With the adoption of these
data, the performances resulting from with and without calibration can be better revealed.
These results are presented in Figure 2 for a clear visual comparison.

Concerning the RMS and correlation coefficient values, which were obtained under
the conditions of with and without calibration in the four different seasons, two phenomena
can be clearly summarized. (1) Firstly, with respect to the original TH-PETs (under the
circumstances of without the calibration process) at the three pairs of stations, the optimal
results appeared in the seasons of autumn and spring, with their respective r/RMS results
of 0.839/25.50 mm and 0.778/27.10 mm. The performances obtained in the other two
seasons of summer (0.759/37.85 mm) and winter (0.230/43.10 mm) were rather worse.
(2) Secondly, after a thorough calibration process, the RMS and correlativity results of the
four seasons were all significantly improved. Regarding the improvement rate of those
obtained RMS results (see the right column of the table), the highest improvement rate
lies in the season of winter, to which the results obtained in the summer season was also
similar (85.52% vs. 85.61%). Compared with these results, although the corresponding
results in the spring and autumn seasons were relatively lower, the values of 65.54% and
75.52% in the respective two seasons were also considerable. Apart from these two types
of metrics, even though the bias values only reflect the differences between the two sets
of PET time series in different seasons, they were also reduced after the calibration. It is
worth mentioning that the results obtained in the same season at the three stations were all
with the same positive/negative signs. Although the bias values were all calibrated to zero
over the 12-year calibration period from 2008 to 2019 (see the bold italic figures in Table 3),
their seasonal bias values varied greatly. To be specific, after the calibration process, only
the bias value for the spring is a positive value, indicating that the PM-PETs are generally
larger than the calibrated TH-PETs, while the bias values for the other seasons are negative
ones. Regarding the metric of NSE, although the values obtained for each season were
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generally lower than those shown in Table 3, they were all significantly improved after the
whole calibration processes. Even in the winter season, the NSE values were improved
from −14.874 to 0.387.

Table 4. Comparison of the average seasonal differences between potential evapotranspiration (PET)
time series estimated from the Penman–Monteith (PM) and Thornthwaite (TH) models at the three
pairs of stations under the conditions of with and without calibration over the period 2008–2019.

Season
With Calibration (Scheme 8 in Table 3) Without Calibration Improvement Rate

of RMS Result (%)Bias (mm) RMS (mm) r NSE Bias (mm) RMS (mm) r NSE

Spring 9.49 9.34 0.935 0.596 12.84 27.10 0.778 −1.198 65.54

Summer −2.06 5.48 0.856 0.668 −36.72 37.85 0.759 −6.704 85.52

Autumn −2.68 6.24 0.933 0.824 −7.00 25.50 0.839 −0.582 75.52

Winter −5.30 6.20 0.769 0.387 40.98 43.10 0.230 −14.874 85.61
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Overall, the calibration process can effectively improve the accuracy of TH-PETs
obtained in each of the four seasons. Specifically, from the perspective of RMS results, the
calibration process was proved to be the most effective for the PET estimates obtained in
the seasons of winter and summer; from the perspective of correlativity, the optimal results
were in the seasons of autumn and spring.

4.3. Spatial Distribution of GNSS and Weather Stations

Finally, regarding the spatial domain, it is important to determine the influences
brought by the factor of the spatial distribution of GNSS and weather stations (i.e., the
spatial distances between each pair of GNSS and weather stations) on the calibration
performances of TH-PET. The motivation of investigating this factor mainly comes from
the fact that ZTD and other types of meteorological variables are obtained from different
sensing techniques at different locations. As shown in Figure 1, a total of ten GNSS stations
were employed, and the ZTD time series over the whole study period at each station were
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all retrieved. According to Section 4.1, ZTD estimates have already been proven effective to
calibrate TH-PET values; however, all of the previous experiments only used the GNSS and
meteorological products obtained at the three pairs of co-located GNSS/weather stations
to ensure their rationality. Therefore, determining whether the spatial distribution of GNSS
and weather stations may have a remarkable effect on the calibration results of TH-PETs
affects the feasibility and extension of this application in future practices. In this section,
with the use of temperature and pressure measurements collected at the three weather
stations (HKA, KP, and ST), as well as the time-varying variable of MJD, the retrieved
ZTD values at each of the ten GNSS stations were used to calibrate the TH-PETs at the
weather stations. Because the horizontal distances and height differences between each
pair of GNSS and weather stations are different, the factor of spatial distribution is divided
into two parts to separately investigate the influences brought by the differences in the
horizontal and vertical directions. Therefore, by using the PM-PET values calculated at
each weather station as the reference, Tables 5 and 6 list the calibration performances of
TH-PET time series at the three weather stations resulting from the variables of temperature,
pressure, MJD, and ZTD (retrieved at each of the ten GNSS tracking stations) over the
12-year period from 2008 to 2019. The reasons for using data over this period are the same
as those stated in Section 4.2. It is also noted that only the metrics of RMS and correlation
coefficient were adopted in this comparison, which can better illustrate the accuracy and
correlativity, respectively. The horizontal distances and height differences between each
pair of GNSS and weather stations illustrated in Tables 5 and 6 were all calculated based on
their coordinate information listed in Table 1. These results at each of the three stations all
possess qualitatively similar variation trends, as shown in these tables. To make a clearer
visual comparison, the KP station is selected as a typical case, and the results obtained are
plotted in Figures 3 and 4 to test the performances affected by different horizontal and
height differences, respectively.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

Table 5. Calibration performances of TH-PETs resulting from the temperature, pressure, mean 
Julian Date (MJD), and ten sets of zenith total delay (ZTD) time series at the three weather stations 
(HKA, KP, and ST) over the period 2008–2019. The horizontal distances between each pair of 
GNSS/weather stations are illustrated. 

HKA Station KP Station ST Station 

GNSS 
Horizontal 
Distance 

(km) 

RMS 
(mm)  r GNSS 

Horizontal 
Distance 

(km) 

RMS 
(mm)  r GNSS 

Horizontal 
Distance 

(km) 

RMS 
(mm)  r 

HKSL 6.984 8.52 0.941 HKSC 3.443 5.66 0.961 HKST 2.771 6.66 0.955 
HKNP 7.304 8.69 0.938 HKOH 9.166 5.71 0.961 HKSS 6.875 6.55 0.957 
HKPC 12.228 8.49 0.941 HKST 9.343 5.71 0.961 HKSC 11.392 6.63 0.956 
HKLT 14.315 8.48 0.941 HKPC 14.208 5.67 0.961 HKWS 13.366 6.57 0.956 
HKKT 21.168 8.40 0.942 HKSS 16.555 5.63 0.962 HKKT 15.475 6.55 0.957 
HKSC 22.599 8.48 0.941 HKKT 18.378 5.64 0.962 HKOH 17.319 6.65 0.955 
HKST 28.610 8.54 0.940 HKWS 21.557 5.65 0.962 HKLT 22.005 6.62 0.956 
HKOH 32.291 8.56 0.940 HKLT 21.623 5.69 0.961 HKPC 22.015 6.61 0.956 
HKSS 38.193 8.42 0.942 HKSL 26.046 5.73 0.961 HKSL 29.191 6.63 0.956 
HKWS 44.723 8.44 0.942 HKNP 29.533 5.82 0.960 HKNP 36.717 6.76 0.954 

Table 6. Calibration performances of TH-PETs resulting from the temperature, pressure, MJD, and 
ten sets of ZTD time series at the three weather stations (HKA, KP, and ST) over the period 2008–
2019. The height differences between each pair of GNSS/weather stations are illustrated. 

HKA Station KP Station ST Station 

GNSS 
Height 

Difference 
(m) 

RMS 
(mm)  

r GNSS 
Height 

Difference 
(m) 

RMS 
(mm)  

r GNSS 
Height 

Difference 
(m) 

RMS 
(mm)  

r 

HKPC 12.094 8.49 0.941 HKWS 1.239 5.65 0.962 HKPC 12.094 6.61 0.956 
HKSC 14.204 8.48 0.941 HKSS 26.316 5.63 0.962 HKSC 14.204 6.63 0.956 
HKKT 28.542 8.40 0.942 HKSL 30.267 5.73 0.961 HKKT 28.542 6.55 0.957 
HKSS 32.684 8.42 0.942 HKKT 30.459 5.64 0.962 HKSS 32.684 6.55 0.957 
HKWS 57.761 8.44 0.942 HKSC 44.796 5.66 0.961 HKWS 57.761 6.57 0.956 
HKSL 89.267 8.52 0.941 HKPC 46.906 5.67 0.961 HKSL 89.267 6.63 0.956 
HKLT 119.897 8.48 0.941 HKLT 60.897 5.69 0.961 HKLT 119.897 6.62 0.956 
HKOH 160.376 8.56 0.940 HKOH 101.376 5.71 0.961 HKOH 160.376 6.65 0.955 
HKST 252.690 8.54 0.940 HKST 193.690 5.71 0.961 HKST 252.690 6.66 0.955 
HKNP 344.665 8.69 0.938 HKNP 285.665 5.82 0.960 HKNP 344.665 6.76 0.954 

 
Figure 3. RMS (a) and correlation coefficient (b) results of calibrated TH-PETs at the KP station using
the temperature, pressure, MJD, and ZTD time series (retrieved at ten GNSS stations with different
horizontal distances) over the period 2008–2019.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

Figure 3. RMS (a) and correlation coefficient (b) results of calibrated TH-PETs at the KP station using 
the temperature, pressure, MJD, and ZTD time series (retrieved at ten GNSS stations with different 
horizontal distances) over the period 2008–2019. 

 
Figure 4. RMS (a) and correlation coefficient (b) results of calibrated TH-PETs at the KP station using 
the temperature, pressure, MJD, and ZTD time series (retrieved at ten GNSS stations with different 
height differences) over the period 2008–2019. 

It can be seen from the two tables that the statistical results corresponding to each 
pair of GNSS/weather stations are the same, and the only difference is that the statistics 
are listed in different orders. To be clearer, the statistics shown in Tables 5 and 6 are sorted 
from the smallest horizontal distances and height differences to their largest values, 
respectively (see the shaded columns). Based on all the comparable results obtained at 
each weather station shown in the two tables, a general conclusion can be reached that 
with the increase in spatial distances (no matter in the horizontal or vertical directions) 
between each pair of GNSS/weather stations, there are no obvious differences in their 
calibration performances. Similarly, no clear linear relations between the results and 
horizontal/vertical differences can be found in Figures 3 and 4. To analyze the results in 
more detail, the results listed in the first row in Table 5 are actually the raw data for 
calculating the average fitting results of Scheme 8 shown in Table 3. The horizontal 
distances and height differences among the ten GNSS tracking stations and each of the 
three weather stations are in the ranges 2.771–44.723 km and 1.239–344.665 m, 
respectively. That is to say, by using ZTD obtained from any GNSS station within these 
scopes, the TH-PET values calculated at a weather station can be calibrated at a similar 
level (also with the use of other necessary variables). 

5. Discussion 
It is well known that with the use of temperature measurements, PET values can be 

simply estimated using empirical TH equations; however, the accuracy of TH-PET time 
series is rather limited compared with PETs estimated using the more complex PM model. 
To address this problem, several existing studies have proposed to use a narrow range of 
GNSS and weather variables to conduct linear calibration of TH-PETs, and thus greatly 
improve its accuracy to an adequate scale. 

Regarding the first step for estimating TH-PETs, it is generally conducted based on 
the conventional procedure of the TH model; for the second step, previous studies have 
only conducted preliminary analyses to confirm the positive influences brought by 
calibration exercises on improving the accuracy of TH-PET estimates. This is exactly the 
main motivation of this study to carry out comprehensive investigations on the typical 
factors affecting the calibration performances of TH-PET series using a limited number of 
variables. The three crucial factors concerned in this study are in accordance with the 
whole calibration procedure. First, by investigating the factor of data selection, which is 
the foremost preparatory task prior to the calibration process, an optimal scheme has been 

Figure 4. RMS (a) and correlation coefficient (b) results of calibrated TH-PETs at the KP station using
the temperature, pressure, MJD, and ZTD time series (retrieved at ten GNSS stations with different
height differences) over the period 2008–2019.



Remote Sens. 2022, 14, 4644 14 of 19

Table 5. Calibration performances of TH-PETs resulting from the temperature, pressure, mean Julian
Date (MJD), and ten sets of zenith total delay (ZTD) time series at the three weather stations (HKA,
KP, and ST) over the period 2008–2019. The horizontal distances between each pair of GNSS/weather
stations are illustrated.

HKA Station KP Station ST Station

GNSS Horizontal
Distance (km)

RMS
(mm) r GNSS Horizontal

Distance (km)
RMS
(mm) r GNSS Horizontal

Distance (km)
RMS
(mm) r

HKSL 6.984 8.52 0.941 HKSC 3.443 5.66 0.961 HKST 2.771 6.66 0.955

HKNP 7.304 8.69 0.938 HKOH 9.166 5.71 0.961 HKSS 6.875 6.55 0.957

HKPC 12.228 8.49 0.941 HKST 9.343 5.71 0.961 HKSC 11.392 6.63 0.956

HKLT 14.315 8.48 0.941 HKPC 14.208 5.67 0.961 HKWS 13.366 6.57 0.956

HKKT 21.168 8.40 0.942 HKSS 16.555 5.63 0.962 HKKT 15.475 6.55 0.957

HKSC 22.599 8.48 0.941 HKKT 18.378 5.64 0.962 HKOH 17.319 6.65 0.955

HKST 28.610 8.54 0.940 HKWS 21.557 5.65 0.962 HKLT 22.005 6.62 0.956

HKOH 32.291 8.56 0.940 HKLT 21.623 5.69 0.961 HKPC 22.015 6.61 0.956

HKSS 38.193 8.42 0.942 HKSL 26.046 5.73 0.961 HKSL 29.191 6.63 0.956

HKWS 44.723 8.44 0.942 HKNP 29.533 5.82 0.960 HKNP 36.717 6.76 0.954

Table 6. Calibration performances of TH-PETs resulting from the temperature, pressure, MJD, and
ten sets of ZTD time series at the three weather stations (HKA, KP, and ST) over the period 2008–2019.
The height differences between each pair of GNSS/weather stations are illustrated.

HKA Station KP Station ST Station

GNSS Height
Difference (m)

RMS
(mm) r GNSS Height

Difference (m)
RMS
(mm) r GNSS Height

Difference (m)
RMS
(mm) r

HKPC 12.094 8.49 0.941 HKWS 1.239 5.65 0.962 HKPC 12.094 6.61 0.956

HKSC 14.204 8.48 0.941 HKSS 26.316 5.63 0.962 HKSC 14.204 6.63 0.956

HKKT 28.542 8.40 0.942 HKSL 30.267 5.73 0.961 HKKT 28.542 6.55 0.957

HKSS 32.684 8.42 0.942 HKKT 30.459 5.64 0.962 HKSS 32.684 6.55 0.957

HKWS 57.761 8.44 0.942 HKSC 44.796 5.66 0.961 HKWS 57.761 6.57 0.956

HKSL 89.267 8.52 0.941 HKPC 46.906 5.67 0.961 HKSL 89.267 6.63 0.956

HKLT 119.897 8.48 0.941 HKLT 60.897 5.69 0.961 HKLT 119.897 6.62 0.956

HKOH 160.376 8.56 0.940 HKOH 101.376 5.71 0.961 HKOH 160.376 6.65 0.955

HKST 252.690 8.54 0.940 HKST 193.690 5.71 0.961 HKST 252.690 6.66 0.955

HKNP 344.665 8.69 0.938 HKNP 285.665 5.82 0.960 HKNP 344.665 6.76 0.954

It can be seen from the two tables that the statistical results corresponding to each pair
of GNSS/weather stations are the same, and the only difference is that the statistics are
listed in different orders. To be clearer, the statistics shown in Tables 5 and 6 are sorted from
the smallest horizontal distances and height differences to their largest values, respectively
(see the shaded columns). Based on all the comparable results obtained at each weather
station shown in the two tables, a general conclusion can be reached that with the increase
in spatial distances (no matter in the horizontal or vertical directions) between each pair of
GNSS/weather stations, there are no obvious differences in their calibration performances.
Similarly, no clear linear relations between the results and horizontal/vertical differences
can be found in Figures 3 and 4. To analyze the results in more detail, the results listed in
the first row in Table 5 are actually the raw data for calculating the average fitting results
of Scheme 8 shown in Table 3. The horizontal distances and height differences among
the ten GNSS tracking stations and each of the three weather stations are in the ranges
2.771–44.723 km and 1.239–344.665 m, respectively. That is to say, by using ZTD obtained
from any GNSS station within these scopes, the TH-PET values calculated at a weather
station can be calibrated at a similar level (also with the use of other necessary variables).

5. Discussion

It is well known that with the use of temperature measurements, PET values can be
simply estimated using empirical TH equations; however, the accuracy of TH-PET time
series is rather limited compared with PETs estimated using the more complex PM model.



Remote Sens. 2022, 14, 4644 15 of 19

To address this problem, several existing studies have proposed to use a narrow range of
GNSS and weather variables to conduct linear calibration of TH-PETs, and thus greatly
improve its accuracy to an adequate scale.

Regarding the first step for estimating TH-PETs, it is generally conducted based on
the conventional procedure of the TH model; for the second step, previous studies have
only conducted preliminary analyses to confirm the positive influences brought by cal-
ibration exercises on improving the accuracy of TH-PET estimates. This is exactly the
main motivation of this study to carry out comprehensive investigations on the typical
factors affecting the calibration performances of TH-PET series using a limited number
of variables. The three crucial factors concerned in this study are in accordance with the
whole calibration procedure. First, by investigating the factor of data selection, which is
the foremost preparatory task prior to the calibration process, an optimal scheme has been
proposed by using the combination of temperature, pressure, GNSS-ZTD, and MJD. The
final choice of this optimal scheme resulted from a thorough comparison of eight experi-
mental schemes, which is more reasonable than previous studies [21,22], in which some
GNSS and meteorological variables were simply adopted without further investigation. It
is also noteworthy that this study is the first to adopt the additional time-varying variable
of MJD in the calibration process. The idea for this innovation practice stems from the fact
that this parameter has the ability to reflect the instant temporal variation characteristics
contained in those meteorological variables as well as PET estimates; moreover, since the
MJD is also adopted in the PM model, its usage can also refine the mechanism of the
temperature-driven TH model.

Then, according to the investigations of seasonal calibration differences, it was discov-
ered that although the calibration process can improve the accuracy of TH-PET in all the
seasons, the most prominent improvements (in terms of improvement rate) were in the
summer and winter seasons. What needs to be understood is that this is mainly because in
the case without the calibration process, the accuracy of TH-PET in these two seasons was
worse than in the autumn and spring. This is possibly because the extreme temperature
issues in the summer and winter seasons over the study region were a lot more severe than
those in the other two seasons. From another aspect, this is also because the TH model only
uses temperature measurements to determine PET and is undoubtedly more sensitive to
the variations in atmospheric conditions than other physically/radiation-based models.

Apart from the factor of seasonal differences contained in the temporal domain, we
also investigated the factor of spatial distribution of GNSS/weather stations, which is a
crucial factor in the spatial domain for applications of this kind. It is worth mentioning that
the detailed investigations of the factors contained in the temporal and spatial domains
were sparse in previous studies. By using the variable-controlling approach, we tested
the performances resulting from the ZTD estimates retrieved from ten different GNSS
stations in the Hong Kong region. Since each pair of GNSS/weather stations has distinct
horizontal and height differences, this analysis has the potential to determine the reliability,
effectiveness, and applicability of GNSS-derived products in the spatial domain. All
the results indicated that there are no clear linear relationships between the calibration
performances and the variations in spatial distances. To be clear, at least within the
differences of about 45 km and 350 m between a weather station and a GNSS station
in the horizontal and vertical directions, respectively, the calibration of TH-PET using
GNSS-derived atmospheric products can be effectively operated. This research finding
has the potential to provide technical references for this type of application in the future.
Furthermore, with the rapid development of GNSS techniques, more and more GNSS
tracking stations are equipped with well-maintained meteorological sensors to measure
temperature and pressure at their locations; thus, the GNSS stations can also be adopted as
a data source for determining high-accuracy PET values. Based on this idea, the spatial
resolution of high-accuracy TH-PET estimates can be further increased.
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6. Conclusions

In this study, we comprehensively investigated the factors that greatly affect the
calibration performances of TH-PET. The factors concerned in this study include the
selection of variables, the seasonal calibration differences, and the spatial distribution
of GNSS/weather stations. Regarding the first factor, this study has firstly confirmed that
with the use of GNSS and meteorological variables to calibrate the TH-PETs, its accuracy
can be vastly improved. By analyzing the performances resulting from the use of different
combinations of GNSS and weather variables, an optimal scheme containing the variables
of ZTD, temperature, pressure, and MJD was proposed. The results showed that the
improvements in the RMS results at the fitting and verification stages achieved by using the
optimal scheme were 27.47 mm and 31.1 mm, respectively. In terms of the improvement
rate of RMS, the values of 79.8% and 79.3% for model fitting and verification further suggest
the positive effects brought by the calibration practice. This improvement rate and the final
performances are superior to similar practices conducted in previous studies. Apart from
the metric of RMS, the results for the other metrics, including correlation coefficient, bias,
and NSE, were all improved. Then, we investigated the calibration performances obtained
in the four seasons of spring, summer, autumn, and winter. It was found that before the
calibration processes were performed, the best performances of estimating TH-PET were in
the autumn and spring, with RMS results of 25.50 mm and 27.10 mm, respectively. After
the implementation of thorough calibration, although the accuracy of TH-PETs in the four
seasons was considerably improved, the highest improvement rates lie in the winter and
summer. The comparable improvement rates of RMS for the two seasons were 85.61%
and 85.52%, respectively. Finally, with the adoption of a variable-controlling approach,
i.e., apart from utilizing the same variables of temperature, pressure, and MJD, we also
tested the calibration performances resulting from the use of ZTD series obtained at ten
different GNSS stations. The statistical results indicated that with the changes in horizontal
distances (from 2.771 to 44.723 km) and height differences (from 1.239 to 344.665 m) among
each pair of stations, there are no obvious differences in their calibration performances.
These results also suggest that if the spatial distribution of a pair of GNSS/weather stations
is within these ranges, the determined types of variables obtained at these stations can be
effectively used to calibrate TH-PETs. It is also important to point out that in this study,
all the experiments were carried out in the Hong Kong region; hence, some conclusions
drawn in this study may have some limitations and one-sidedness. Our future research will
further validate the accuracy, reliability, and applicability of the results in other regions with
different atmospheric and climate conditions. In addition, ongoing studies are focusing
on extending this innovation application to the determination of high-accuracy indices for
effective drought monitoring.
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