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Abstract: In this paper, the two-dimensional (2-D) direction-of-arrival (DOA) estimation problem
is explored for the sum-difference co-array (SDCA) generated by the virtual aperture expansion of
co-prime planar arrays (CPPA). Since the SDCA has holes, this usually causes the maximum virtual
aperture of CPPA to be unavailable. To address this issue, we propose a complex-valued, sparse
matrix recovery-based 2-D DOA estimation algorithm for CPPA via enhanced matrix completion.
First, we extract the difference co-arrays (DCA) from SDCA and construct the co-array interpolation
model via nuclear norm minimization to initialize the virtual uniform rectangular array (URA)
that does not contain the entire rows and columns of holes. Then, we utilize the shift-invariance
structure of the virtual URA to construct the enhanced matrix with a two-fold Hankel structure to
fill the remaining empty elements. More importantly, we apply the alternating direction method
of the multipliers (ADMM) framework to solve the enhanced matrix completion model. To reduce
the computational complexity of the traditional vector-form, sparse recovery algorithm caused by
the Kronecker product operation between dictionary matrices, we derive a complex-valued sparse
matrix-recovery model based on the fast iterative shrinkage-thresholding (FISTA) method. Finally,
simulation results demonstrate the effectiveness of the proposed algorithm.

Keywords: co-prime planar array; enhanced matrix completion; sparse matrix recovery;
two-dimensional direction-of-arrival estimation

1. Introduction

Direction-of-arrival (DOA) estimation is a fundamental issue for array signal process-
ing and has been widely applied in radar, sonar, and navigation [1–3]. Various methods
have been proposed for DOA estimation, such as classical subspace-based MUSIC and
ESPRIT methods [4–9]. However, these methods rely on uniform linear arrays (ULA) or
uniform rectangular arrays (URA), leading to mutual coupling and redundancy problems
between sensors. Recently, a novel coprime array (CPA) [10,11] has been proposed and
received extensive attention. Compared with the ULA, the CPA has a virtual aperture
expansion capability by calculating its difference co-array (DCA), improving angle estima-
tion performance. In addition, the distance between the sensors of the CPA is no longer
limited to the half-wavelength, which can alleviate the mutual coupling effect between the
physical sensors.

In order to exploit the virtual aperture of the CPA, many DOA estimation algorithms
have been proposed in [12–18]. A spatial smoothing-based MUSIC algorithm [12] and
a sparse recovery-based method [13] have been proposed which utilize the consecutive
parts of the DCA and discard the non-consecutive parts for DOA estimation. However,
none of these methods utilize the non-consecutive part of the DCA, which usually causes
the virtual aperture loss of the DCA, reducing the DOA estimation performance. In
order to make full use of the virtual aperture of the CPA, co-array interpolation-based
algorithms [14,15] were proposed to fill the holes in the DCA. In [16], the holes in the
DCA are filled by minimizing the nuclear norm of the covariance matrix of the received
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signal, generating a consecutive virtual ULA to improve angle estimation performance.
In [17,18], the covariance matrix with the Toeplitz structure corresponding to the interpo-
lated virtual array was reconstructed through atomic norm minimization, improving the
DOA estimation accuracy. In [19,20], co-array interpolation algorithms based on truncated
nuclear norm regularization were proposed to interpolate the covariance matrix with the
Toeplitz structure corresponding to a virtual ULA, thereby improving the virtual aperture
of the CPA. A 2-D DOA estimation algorithm was proposed for coprime parallel arrays via
sparse representation in [21], extending the advantages of CPA. Although this algorithm
implies sparse representation to improve the performance of DOA estimation, it does not
utilize the maximum virtual aperture of the coprime parallel array, so there is an inherent
aperture loss. In [22], a 2-D DOA fast estimation of multiple signals with matrix completion
theory in a coprime planar array was proposed. This algorithm uses the matrix completion
technique to complete the part holes of the virtual URA, which limits the number of DOFs.
In addition, the missing elements in the entire rows and columns of the virtual URA are
not accurately filled, which reduces recovery performance. In [23], a partial spectral search
algorithm was proposed for the coprime planar array (CPPA), which improves DOA es-
timation accuracy by exploiting the coprime property to eliminate ambiguity. To benefit
from the virtual aperture expansion of CPPA, Shi et al. in [24] proposed a sparsity-based,
two-dimensional (2-D) DOA estimation algorithm for the sum-difference co-array (SDCA)
of CPPA. However, this algorithm only utilizes the consecutive parts of the SDCA and
discards the non-consecutive parts, resulting in an inherent loss of virtual aperture. Fur-
thermore, co-array interpolation-based methods [14–17] cannot be used to fill the holes
in SDCA. The reason is that the holes of SDCA have empty elements of the entire rows
and columns, so the nuclear norm minimization-based algorithm [25] fails to recover the
missing elements.

This paper proposes a sparse matrix-recovery-based 2-D DOA estimation algorithm
via enhanced matrix completion to fill the holes in the SDCA. Using the coprime prop-
erty, we first establish the SDCA of CPPA by rearranging the cross-correlation matrix of
two coprime planar sub-arrays. Since the SDCA has missing elements in the entire rows
and columns, the nuclear norm minimization-based matrix completion algorithm cannot
be utilized to fill the holes. To solve this problem, we interpolate the covariance matrices of
the DCA with the Toeplitz structure, thereby initializing the SDCA that does not contain
the entire rows or columns of empty elements. Then, we use the shift-invariance structure
of the SDCA to construct the enhanced matrix with a two-fold Hankel structure to fill all
the empty elements accurately. Subsequently, we construct the nuclear norm, minimization-
based, enhanced matrix completion model. Then, we utilize the multi-block, alternating
direction method of the multipliers (ADMM) [26] framework for solving this model to
reduce the computational burden caused by the increase in enhanced matrix dimensions.
More importantly, the proposed enhanced matrix completion model can obtain the maxi-
mum virtual aperture of the CPPA, improving the angle estimation accuracy. Finally, we
also derive a complex-valued, sparse matrix-recovery model based on the fast iterative
shrinkage-thresholding (FISTA) method [27] reducing the computational complexity of the
traditional vector-form, sparse recovery algorithm.

The main contributions of the proposed algorithm are as follows.

• We extract the DCA from the SDCA and use the co-array interpolation algorithm to fill
the holes in the DCA, thereby constructing a virtual URA model that does not contain
the missing elements of the entire rows and columns.

• To accurately complete all the empty elements of the virtual URA, we construct the
enhanced matrix-completion model. Furthermore, we derive an enhanced matrix-
completion algorithm based on the ADMM framework, reducing the computational
complexity of the matrix completion.

• We derive a complex-valued, sparse matrix-recovery algorithm based on the FISTA method,
which avoids the Kronecker product operation between dictionary matrices, reducing the
computational complexity of the traditional vector-form, sparse recovery algorithm.
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The rest of this paper is organized as follows. In Section 2, we present the coprime
planar array signal model, establish an enhanced matrix-completion model, and derive
a matrix-completion algorithm based on the ADMM framework. In addition, we derive
a complex-valued, sparse matrix-recovery algorithm based on the FISTA method. In
Section 3, we demonstrate the simulation results. Discussion and conclusions are provided
in Section 4 and Section 5, respectively.

Notations: We use lowercase bold letters for vectors, uppercase bold letters for ma-
trices, and italics for scalars. (·)T , (·)∗ and (·)H represent transpose, complex conjugate
and conjugate transpose, respectively. (·)−1 is matrix inversion. ⊗ and ◦ represent the
Kronecker product and Hadamard product, respectively. diag(·) and vec(·) are the diag-
onalization and vectorization operations. IN denotes the N × N identity matrix, and JN
represents the N × N exchange matrix, with ones on its anti-diagonal and zeros elsewhere.
∇(·) denotes the conjugate gradient of a complex-valued vector or matrix. 〈A,B〉 denotes
the inner product of A and B. tr(·) refers to the trace of the matrix. The subscript (·)+ refers
to a scalar u+ > 0, then u+ = u and is equal to zero otherwise. ‖·‖1, ‖·‖2, and ‖·‖F are the
l1-norm, l2-norm, and Frobenius norm, respectively.

2. Method

In this section, we first describe the signal model for CPPA. Then, we define the concept
of SDCA by extracting the cross-correlation matrix of CPPA. Since there are entire rows
and columns of missing elements in the SDCA, two co-array interpolation optimization
problems are proposed to initialize the holes in the DCA to generate a virtual URA that does
not contain the entire rows and columns of empty elements. Subsequently, we construct
a nuclear norm, minimization-based, enhanced matrix-completion model to recover all
missing elements in the virtual URA. Finally, a complex-valued, sparse matrix-recovery
algorithm based on the FISTA method is derived to estimate the 2-D DOA of targets.

2.1. Signal Model

A CPPA consists of two planar sub-arrays with 2M× 2M and N× N physical sensors,
respectively, where M and N are coprime integers. As shown in Figure 1, the CPPA contains
a total of T = 4M2 + N2 − 1 physical sensors, and the sensor position sets of the first and
second planar sub-array are P1 and P2, respectively. Therefore, the sensor position set of
the CPPA is P and can be expressed as

P = P1 ∪ P2

=
{(

mxd1, myd1
)}
∪
{(

nxd2, nyd2
)} (1)

where 0 ≤ mx, my ≤ 2M − 1, 0 ≤ nx, ny ≤ N − 1, d1 = Nd and d2 = Md are the inter-
element spacing of the first sub-array and the second sub-array along the x and y directions,
respectively, and d = λ/2, λ is the signal wavelength.

Assume there are K uncorrelated narrowband far-field signals impinging the CPPA
from direction (θ,ϕ) = [(θ1, ϕ1), (θ2, ϕ2), · · · , (θK, ϕK)], where θk and ϕk denote the eleva-
tion and azimuth of the kth signal. We present the main assumptions of the signal model in
Table 1.

Table 1. The main assumptions of the signal model.

The structure of array M > 1 and N > 1 are co-prime integers
The statistical properties of the signal follow the independent Gaussian distribution
The statistical properties of the noise complex-valued additive white Gaussian noise
The inter-element spacing of the first sub-array d1 = Nd
The inter-element spacing of the second sub-array d2 = Md
The transform frequency domain variable u sin(θ) cos(ϕ)
The transform frequency domain variable v sin(θ) sin(ϕ)
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Figure 1. The configuration of the co-prime planar array with M = 2 and N = 3, where the red
elements represent the array elements of the first planar sub-array, and the blue elements represent
the array elements of the second planar sub-array.

After vectorization, the received signals of the first planar sub-array in the vector form
of the qth snapshot can be expressed as

x1(q) = As(q) + n1(q) (2)

where s(q) = [s1(q), s2(q), · · · , sK(q)]
T is the complex-valued signal vector, n1(q) is the

complex-valued white Gaussian noise with zero mean and variance σ2, A = Ax ⊗ Ay,
Ax = [ax(u1), ax(u2), · · · , ax(uK)], Ay =

[
ay(v1), ay(v2), · · · , ay(vK)

]
. ax(uk) and ay(vk)

are the steering vectors along the x and y directions, respectively, and can be expressed as

ax(uk) =
[
1, e−jπNuk , · · · , e−jπ(2M−1)Nuk

]T
(3)

ay(vk) =
[
1, e−jπNvk , · · · , e−jπ(2M−1)Nvk

]T
(4)

where uk = sin(θk) cos(ϕk) and vk = sin(θk) sin(ϕk) represent the transform frequency
domain variables. Similarly, the received signal model of the second planar sub-array can
be given as

x2(q) = Bs(q) + n2(q) (5)

where n2(q) is the complex-valued, white Gaussian noise vector, B = Bx ⊗ By,
Bx = [bx(u1), bx(u2), · · · , bx(uK)], By =

[
by(v1), by(v2), · · · , by(vK)

]
. bx(uk) and by(vk)

can be represented as

bx(uk) =
[
1, e−jπMuk , · · · , e−jπ(N−1)Muk

]T
(6)

by(vk) =
[
1, e−jπMvk , · · · , e−jπ(N−1)Mvk

]T
(7)

2.2. The Virtual Ura with Sdca

Similar to [24], the difference co-array (DCA) between two planar sub-arrays of a
CPPA can be defined as

D1 = {p | p = p1 − p2, p1 ∈ P1, p2 ∈ P2}
=
{

Nmx + Nmy −
(

Mnx + Mny
)} (8)
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D2 = {p | p = p2 − p1, p1 ∈ P1, p2 ∈ P2}
=
{

Mnx + Mny −
(

Nmx + Nmy
)} (9)

where 0 ≤ mx, my ≤ 2M− 1, 0 ≤ nx, ny ≤ N − 1. Then, we can define the sum-difference
co-array (SDCA) as follows.

D = D1 ∪D2 (10)

From Equations (8) and (9), the maximum virtual aperture position of D1 and D2 in
x-direction or y-direction are (2MN − N) and −(2MN − N). Similar to [24], the contin-
uous lag ranges of D1 and D2 are [−N + 1, MN + M− 1] and [−(MN + M− 1), N − 1].
Therefore, we have

2MN − N − (MN + M− 1)
= MN − N −M + 1
= (M− 1)(N − 1) > 0

(11)

where M and N are coprime integers greater than 1. From Equation (11), there are always
entire rows and columns of missing elements for SDCA of CPPA with M > 1 and N > 1.

The cross-correlation matrix of the first and second planar sub-arrays can be expressed as

R̂12 = 1/Q
Q

∑
q=1

x1(q)xH
2 (q)

= ARsBH + N12

(12)

where Q is the total number of snapshots, Rs = diag
(
σ2

1 , σ2
2 , · · · , σ2

K
)
, σ2

k is the power of the
kth signal and N12 is the remaining residual term and can be expressed as

N12 =
A
Q

Q

∑
q=1

s(q)nH
2 (q)+

Q

∑
q=1

n1(q)sH(q)
BH

Q
+

1
Q

Q

∑
q=1

n1(q)nH
2 (q)

(13)

Then, we calculate the cross-correlation matrix of the second and the first planar
sub-array, which can be given as

R̂21 = 1/Q
Q

∑
q=1

x2(q)xH
1 (q)

= BRsAH + N21.

(14)

where N21 is the remaining residual term and can be written as

N21 =
B
Q

Q

∑
q=1

s(q)nH
1 (q)+

Q

∑
q=1

n2(q)sH(q)
AH

Q
+

1
Q

Q

∑
q=1

n2(q)nH
1 (q).

(15)

By extracting and rearranging R̂12 and R̂21, we can obtain a matrix Z ∈ Cn×n cor-
responding to a virtual URA, where n = 2(2MN − N) + 1 and its elements are located
at the lag positions in the D, as shown in Figure 2. Furthermore, we initialize the holes
in Z to zeros. From Figure 2, there are many missing elements in Z. If we discard these
discontinuous parts, it usually causes the loss of the virtual aperture of Z. We introduce a
matrix completion model to fill all holes to avoid virtual aperture loss.
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Figure 2. The structure of D.

2.3. Co-Array Interpolation Initializes the Virtual Ura

Since there are missing elements in the entire rows and columns in Z, the popular
matrix completion methods cannot recover these holes [25].

The main reason is that the empty elements of the entire rows and columns will make
the singular vector of Z more sparse, thereby reducing the recovery performance. To
solve this problem, we first extract a DCA from the y direction in Z, thereby obtaining
a virtual ULA y1 from (0,−(2MN − N))d to (0, 2MN − N)d, where the holes at posi-
tions (0,−(2MN − N − 1))d and (0, 2MN − N − 1)d are initialized to zeros. Similarly,
we can also extract a DCA from the x direction in Z, getting a virtual ULA y2 from
(−(2MN − N), 0)d to (2MN − N, 0)d, where the holes at positions (−(2MN − N − 1), 0)d
and (2MN − N − 1, 0)d are initialized to zeros.

Thus, y1 and y2 can be represented as

y1 = Ās + e1 (16)

y2 = B̄s + e2 (17)

where e1 and e2 are error terms, Ā = [ā(u1), ā(u2), . . . , ā(uK)], B̄ =
[
b̄(v1), b̄(v2), . . . , b̄(vK)

]
.

ā(uk) and b̄(vk) can be represented as

ā(uk) =
[
e−jπ(L−1)uk , 0, e−jπ(L−3)uk , . . . , e−jπuk

1, ejπuk , . . . , ejπ(L−3)uk , 0, ejπ(L−1)uk
]T (18)

b̄(vk) =
[
e−jπ(L−1)vk , 0, e−jπ(L−3)vk , . . . , e−jπvk ,

1, ejπvk , . . . , ejπ(L−3)vk , 0, ejπ(L−1)vk
]T (19)

where L = (n + 1)/2.
To fill the holes of the virtual ULA, we usually divide y1 and y2 into L sub-arrays to

compute a smooth covariance matrix with Hermitian positive semidefinite (PSD) Toeplitz
structure. According to [17], we can build two covariance matrices of virtual signals y1 and
y2 and they can be expressed as

R̃1 =


〈y1〉L 〈y1〉∗L+1 · · · 〈y1〉∗2L−1
〈y1〉L+1 〈y1〉L · · · 〈y1〉∗2L−2

...
...

. . .
...

〈y1〉2L−1 〈y1〉2L−2 · · · 〈y1〉L

 (20)
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R̃2 =


〈y2〉L 〈y2〉∗L+1 · · · 〈y2〉∗2L−1
〈y2〉L+1 〈y2〉L · · · 〈y2〉∗2L−2

...
...

. . .
...

〈y2〉2L−1 〈y2〉2L−2 · · · 〈y2〉L

 (21)

R̃1 and R̃2 have holes corresponding to the zeros of the virtual array signals y1 and y2.
Therefore, we build the binary matrix D ∈ RL×L to distinguish virtual array signal positions
and holes, where the elements of D corresponding to non-zero signal positions are ones,
and the rest are zeros.

To fill the empty elements of R̃1 and R̃2, we formulate the nuclear norm minimization
optimization problem as

min‖R1‖∗, s.t.
∥∥(R̃1 − R1

)
◦D

∥∥
F ≤ δ1 (22)

min‖R2‖∗, s.t.
∥∥(R̃2 − R2

)
◦D

∥∥
F ≤ δ2 (23)

where δ1 and δ2 are the thresholds of the fitting error, and ‖·‖∗ represents the nuclear norm
of a matrix, which is the relaxation of the rank norm of the matrix.

Since the optimization problems (22) and (23) are convex, we can solve them directly
by employing the interior point method [28]. Then, we can obtain the estimated optimal
covariance matrices R̂1 and R̂2 corresponding to R̃1 and R̃2. Subsequently, we extract
the elements R̂1(1, L− 2) and R̂1(L− 2, 1), filling the holes at positions (0,−(L− 2))d
and (0, L− 2)d in matrix Z. Similarly, we use R̂2(L− 2, 1) and R̂2(1, L− 2) to fill the
holes of matrix Z at positions (−(L− 2), 0)d and (L− 2, 0)d. After the above interpolation
operation, we can initialize the matrix Z to obtain a matrix Z̄ that does not contain the
missing elements of the entire rows and columns. In addition, we demonstrate the structure
of the virtual signal position set D̄ corresponding to Z̄, as shown in Figure 3.

From Figure 3, Z̄ can be represented as a single-snapshot signal model received by a
virtual URA and can be written as

Z̄ =
(

ĀRsB̄T + E
)
◦ S (24)

where E ∈ Cn×n is the error term, and S ∈ Rn×n is a binary matrix whose elements
correspond to holes in Z̄ as zeros, and the rest are ones.

2.4. Admm-Based Enhanced Matrix Completion

After the above co-array interpolation processing, there are no missing elements in
the entire rows and columns in Z̄, which prompts us to use matrix completion to fill
the remaining empty elements. Furthermore, we assume that Z̄ has a low-rank property
because the number of targets is usually smaller than the dimension of Z̄. Based on these
conditions, the matrix completion model can be expressed as

min
Y
‖Y‖∗, s.t. ‖UΩ(Y− Z̄)‖F ≤ α (25)

where α is the threshold of the fitting error, Ω is a set of positions of the known entries of Z̄,
and the matrix operator UΩ can be defined as

(UΩ(Y))ij =

{
Yij, if (i, j) ∈ Ω

0, otherwise
(26)

The optimization problem (25) does not use the TNNR-based matrix completion
method proposed in [24]. The reason is that the TNNR method needs to know the number
of targets, but, in practical problems, the number of targets is usually unknown. In addition,
the optimization problem (25) is convex and can be solved by the interior point method [28].
However, the optimization model (25) does not take the inherent shift-invariant structure
of Z̄, reducing the accuracy of matrix completion. What is worse, when the number of
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targets is larger than the dimension of Z̄, this model always fails to recover the completion
matrix Y.
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Figure 3. The structure of D̄.

In order to solve these problems, we propose an ADMM-based, enhanced matrix-
completion algorithm. The proposed method makes full use of the shift-invariant structure
of Z̄ to form the enhanced matrix Me with a two-fold Hankel structure, thereby improving
the performance of matrix completion. In addition, we also developed a fast ADMM
algorithm to reduce the computational complexity of the NNM-based algorithm and named
the algorithm EMaC-ADMM. According to [29], the enhanced matrix Me corresponding to
the matrix Z̄ can be defined as

Me =


M0 M1 · · · Mn1−k1
M1 M2 · · · Mn1−k1+1

...
...

...
...

Mk1−1 Mk1 · · · Mn1−1

 (27)

where k1 = n+1
2 is a pencil parameter. The ith block Hankel matrix Mi ∈ Ck2×(n−k2+1)

contained in Me can be expressed as

Mi =


Z̄(i,0) Z̄(i,1) · · · Z̄(i,n−k2)

Z̄(i,1) Z̄(i,2) · · · Z̄(i,n−k2+1)
...

...
...

...
Z̄(i,k2−1) Z̄(i,k2) · · · Z̄(i,n−1)

 (28)

where k2 = n+1
2 is another pencil parameter.

Then, we can recover the missing elements of the noise-free enhanced matrix Me by
forming the matrix completion model as follows.

min ‖Ye‖∗
s.t. ‖UΩe(Ye)‖F = ‖UΩe(Me)‖F

(29)

where Ωe refers to the set of known element positions of the enhanced matrix Me, Ye ∈
Cm×m is the enhanced form of Y ∈ Cn×n, and m = k1k2. However, in practical applications,
the existence of noise is inevitable. Therefore, the enhanced matrix completion model (29)
for bounded white Gaussian noise can be expressed as

min
Ye
‖Ye‖∗, s.t. ‖UΩe(Ye −Me)‖F ≤ δ (30)

where δ > 0 is a parameter to constrain the noise. The optimization problem (30) can be
efficiently solved by the interior point method [28]. However, the interior point method
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takes up large memory when completing large-scale matrices, reducing the running speed
of the algorithm.

Given the superior convergence performance and fast convergence speed of the
ADMM framework, we propose an EMaC-ADMM method to solve the optimization
problem (30). Therefore, we rewrite the optimization problem (30) as

min
Ye ,Ne ,W

‖Ye‖∗
s.t. Ye + Ne = W
UΩe(W) = UΩe(Me)
‖UΩe(Ne)‖F ≤ σ

(31)

where Ne ∈ Cm×m refers to the enhanced form of the noise matrix N ∈ Cn×n, and W ∈
Cm×m is an additional variable.

The augmented Lagrangian function of (31) is defined as

Lβ(Ye, Ne, Λ) = ‖Ye‖∗+ < Λ, Ye + Ne −W > + β
2 ‖Ye + Ne −W‖2

F (32)

where Λ ∈ Cm×m are the Lagrange multipliers (dual variable), and β > 0 denotes the
penalty parameter. We utilize the ADMM framework to iteratively update the primal
optimal variables Ye, Ne, W, and the dual variable Λ by finding the saddle point of the
augmented Lagrange. In the kth iteration, the specific execution process of ADMM can be
expressed as

Yk+1
e = arg min

Ye

Lβ

(
Ye, Nk

e , Wk, Λk
)

(33)

Nk+1
e = arg min

Ne

Lβ

(
Yk+1

e , Ne, Wk, Λk
)

(34)

Wk+1 = arg min
UΩe (W)=UΩe (Me)

Lβ

(
Yk+1

e , Nk+1
e , W, Λk

)
(35)

Λk+1 = Λk + βUΩe

(
Yk+1

e + Nk+1
e −Wk+1

)
(36)

For problems (33) to (36), ADMM updates Yk+1
e , Nk+1

e , Wk+1 and Λk+1 in an alternate
iterative manner, where the dual variable Λk+1 is updated by the gradient ascent method.

For sub-problem (33), by ignoring the constant term, Yk+1
e can be updated as

Yk+1
e = arg min

Ye
‖Ye‖∗ +

β

2

∥∥∥∥∥Ye + Nk
e −Wk +

Λk

β

∥∥∥∥∥
2

F

(37)

The convex optimization problem (37) can be efficiently solved by the singular value
shrinkage operator [30], and we have

Yk+1
e = Udiag

(
max

{
σi −

1
β

, 0
})

VH (38)

where σi, U and V are the ith singular value, left and right singular vectors of Me−Nk
e − Λk

β ,
respectively.

Given Yk+1
e and ignoring the irrelevant terms of Ne, sub-problem (34) can be rewritten as

Nk+1
e = arg min

Ne
‖Ne − C‖2

F

s.t. ‖UΩe(Ne)‖F ≤ δ
(39)
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where C =
(

Wk − Yk+1
e −Λk/β

)
. The solution to the optimization problem (39) can be

divided into two cases. In the first case, when ‖UΩe(C)‖F ≤ δ, the solution of (39) can be
given directly

Nk+1
e = UΩe(C) (40)

For the second case, if ‖UΩe(C)‖F > δ, the constraints of the optimization
problem (39) can be rewritten as equality constraints [31] and can be expressed as

Nk+1
e = arg min

Ne
‖Ne − C‖2

F

s.t. ‖UΩe(Ne)‖F = δ
(41)

therefore, the solution of optimization problem (41) can be given

Nk+1
e =

δUΩe(C)

‖UΩe(C)‖F
(42)

Fixing Yk+1
e and Nk+1

e and ignoring the irrelevant terms of W, (35) can be rewritten as

Wk+1 = arg min
UΩe (W)=UΩe (Me)

β

2

∥∥∥∥∥W− (Yk+1
e + Nk+1

e +
Λk

β
)

∥∥∥∥∥
2

F

(43)

for (43), Wk+1 has a closed-form solution and can be expressed as

Wk+1 = Yk+1
e + Nk+1

e +
Λk

β
(44)

Then, we add constraints on W and fix the known elements of Me, and finally update
Wk+1 as

Wk+1 = UΩc
e

(
Wk+1

)
+ UΩe(Me) (45)

where Ωc
e refers to the set of positions of the unobserved elements of the enhanced matrix Me.

The specific execution process of EMaC-ADMM is summarized in Algorithm 1. EMaC-
ADMM utilizes the potential shift-invariance structure of Z̄ to improve the matrix completion
performance. In addition, it also employs the ADMM framework to reduce the computational
complexity of large-scale matrix completion problems caused by matrix enhancement.

Algorithm 1 EMaC-ADMM

1: Input: Me, Ωe, ε1, δ, β > 0;

2: Initialization: k = 1, Y1
e = Me, N1

e = 0, W1
e = Me, Λk+1 = Me.

3: repeat

4: Update Yk+1
e via (37).

5: Update Nk+1
e via (39).

6: Update Wk+1 via (43).

7: Update the Lagrange multiplier Λk+1 via (36).

8: k = k + 1.

9: until
∥∥∥Yk+1

e − Yk
e

∥∥∥
F
< ε1.

10: Output Ŷe = Yk
e .
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2.5. Sparse Matrix-Recovery-Based 2-D Doa Estimation

After the enhanced matrix completion in the previous sub-section, we can recover the
completion matrix Ŷ from the enhanced form Ŷe, and it can be represented as

Ŷ = ĀRsB̄T + E (46)

where E is the error term.
To estimate the 2-D DOA of targets, we establish the following l1-norm-based sparse

matrix recovery model.

min
X

{
1
2

∥∥∥Ŷ− ÃXB̃T
∥∥∥2

F
+ ρ‖X‖1

}
(47)

where ρ is the regularization parameter, X ∈ CI×J is an unknown sparse matrix,
Ã = [ā(u1), ā(u2), . . . , ā(uI)] and B̃ =

[
b̄(v1), b̄(v2), . . . , b̄

(
vJ
)]

are overcomplete dictio-
nary matrices in the transform domain u ∈ [0, 1] and v ∈ [−1, 1], respectively, and I and J
represent the number of sampling grids.

The optimization problem (47) can be transformed into a sparse recovery problem
in vector form and solved by the interior point method [28]. However, the Kronecker
product operation between dictionary matrices will significantly increase the dimension of
the dictionary matrix, which increases the computational burden of the vector-form, sparse
recovery algorithm.

To reduce the computational burden of the traditional vector-form, sparse recovery
algorithm, we utilize the FISTA method [32] to perform sparse matrix recovery. However,
the FISTA method only works on real-valued data and cannot be directly applied to
complex-valued data. Therefore, we derive a complex-valued FISTA algorithm named
(CV-FISTA). The specific derivation process is as follows.

Similar to [32], we rewrite the optimization problem (47) as

min
X

H(X) + ρF(X) (48)

where H(X) = 1
2

∥∥Ŷ− ÃXB̃T
∥∥2

F is a smooth convex function, F(X) = ‖X‖1 is a non-
smooth convex function. To solve the optimization problem (48), we apply a quadratic
approximation of H(X) at a given point P.

QL(X, P) = H(P) + tr
(
∇H(P)T(X− P)

)
+

L f
2 ‖X− P‖2

F + ρF(X) (49)

where L f =
∥∥B̃⊗ Ã

∥∥2
F is the Lipschitz constant. After some simplification, we can rewrite

(49) as

QL(X, P) =
L f

2
‖X−U(P)‖2

F + ρ‖X‖1 + C(P) (50)

where C(P) is a constant term concerning P, and U(P) can be expressed as

U(P) = P− 1
L f

ÃH
(

ÃXB̃T − Ŷ
)

B̃∗ (51)

Proof: please see Appendix A.
Ignoring the constant term, we rewrite the optimization problem (50) as

arg min
X

QL(X, P) = arg min
X

{ L f

2
‖X−U(P)‖2

F + ρ‖X‖1

}
(52)

The optimization problem (52) can be solved by the soft threshold method [33] and
can be expressed as

arg min
X

QL(X, P) = soft

(
U(P),

ρ

L f

)
(53)
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where soft(·) can be defined as

soft(X, c) = Xij

(
1− c∣∣Xij

∣∣
)

+

(54)

where c > 0 is a constant and Xij is the (i, j)th element of matrix X.
We give the specific execution process of the CV-FISTA algorithm in Algorithm 2.

After several iterations, we can get the sparse recovery matrix X̂, and the azimuth and
elevation angles can be obtained by calculating

ϕ̂k = tan−1(v̂k/ûk), θ̂k = sin−1
√

û2
k + v̂2

k (55)

where ûk and v̂k are the estimated parameters to obtain the kth target from X̂.

Algorithm 2 CV-FISTA

1: Input: the completion matrix Ŷ; overcomplete dictionary matrices Ã and B̃; tolerance

ε2; the regularization parameter ρ > 0.

2: Initialization: k = 1, X1 = 0, X0 = 0, t1 = 1, t0 = 1.

3: repeat

4: Pk = Xk +
tk−1−1

tk
(Xk − Xk−1).

5: U(Pk) = Pk − 1
L f

ÃH(ÃPkB̃T − Ŷ
)
B̃∗.

6: Xk+1 = soft
(

U(Pk),
ρ

L f

)
.

7: tk+1 = (1 +
√

4t2
k + 1)/2.

8: k = k + 1.

9: until ‖Xk+1 − Xk‖F < ε2.

10: Output X̂ = Xk.

2.6. Complexity Analysis

We analyze the computational complexity of the proposed algorithm and compare it
with state-of-the-art algorithms. The computational complexity of the proposed algorithm
mainly includes two parts: the first part is matrix completion, and the second part is sparse
matrix recovery. For the first part, the computational complexity of co-array interpola-
tion initialization and enhanced matrix completion is about O

(
L3K1 + m3K2

)
, where m

is the dimension of the enhanced matrix Ye, K1 is the number of iterations of co-array
interpolation, and K2 is the number of iterations of the EMaC-ADMM algorithm. Then, we
analyze the computational complexity of sparse matrix recovery, mainly caused by matrix
multiplication, which is approximate O

(
I3K3

)
, where I is the number of the searching grid

and K3 is the number of iterations of the CV-FISTA algorithm.
Therefore, the total computational complexity of the proposed algorithm is about

O
(

L3K1 + m3K2 + I3K3
)
. Subsequently, we analyze the computational complexity of the

TNNR algorithm [20], which is mainly caused by singular value decomposition, about
O
(
rn2K4

)
, where K4 is the number of iterations, and r is the rank of the matrix,. Then,

the CV-FISTA method is used to estimate the angle of targets. Therefore, the final computa-
tional complexity of the TNNR algorithm is about O

(
rn2K4 + I3K3

)
.

Next, we analyze the computational complexity of the partial spectral search (PSS)
algorithm [23] and the iterative sparse recovery (ISR) algorithm [24]. The computational
complexity of the PSS algorithm is mainly caused by spectral search and eigenvalue
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decomposition, which is about O
(

I
(

(2M)4

N2 + N4

(2M)2

)
+ (2M)3 + N3

)
. Since I is much

larger than M and N, the total computational complexity of the PSS algorithm is about

O
(

I
(

(2M)4

N2 + N4

(2M)2

))
. The computational complexity of the ISR algorithm is approx-

imately O
(
r3 I3K5 + I3), where K5 is the number of iterations. We clearly describe the

computational complexity of the above algorithms in Table 2.

Table 2. Computation complexity comparison of different algorithms.

Proposed algorithm O
(

L3K1 + m3K2 + I3K3
)

TNNR in [20] O
(
rn2K4 + I3K3

)
PSS in [23] O

(
I
(

(2M)4

N2 + N4

(2M)2

))
ISR in [24] O

(
r3 I3K5 + I3)

Finally, we compare the computational complexity of the above algorithms versus
the number of sensors in Figure 4, where M is fixed at 2, N = [3, 5, 7, 9]. As shown in
Figure 4, the computational complexity of the proposed algorithm is higher than the TNNR
algorithm. The cause is that, in the process of matrix completion, the proposed algorithm
needs the co-array interpolation initialization process, so it has higher computational
complexity than the TNNR algorithm. The PSS algorithm has the lowest computational
complexity because it does not require iterative operations. When I � M, N, L, and m,
the computational complexity of the proposed algorithm is less than the ISR algorithm.
However, as the total number of sensors increases, the proposed algorithm’s computational
complexity increases faster than the other tested algorithms. Therefore, when the number
of sensors is large, the computational complexity of the proposed algorithm is higher than
that of the ISR algorithm. The reason is that the proposed algorithm’s enhanced matrix
further expands the dimension of the virtual URA, causing the complexity to increase.
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Figure 4. Complexity comparison versus the total number of sensors.

3. Results

In our simulations, we consider a CPPA with M = 2 and N = 3. The parameters
δ = 1, δ1 = 1, δ2 = 1, β = 0.5, and ρ = 1e2. After matrix completion processing, we can
finally obtain a virtual URA with virtual sensor positions from (−9,−9)d to (9, 9)d. We
compare the 2-D DOA estimation performance of the proposed algorithm with several
recently proposed algorithms, including the TNNR algorithm [20], the ISR algorithm [24]
and the PSS algorithm [23]. In addition, the Cramer–Rao bound (CRB) [24] is used as a
reference. Finally, the root mean square error (RMSE) is utilized to compare the angle
estimation performance of the above test algorithm and can be defined as
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RMSE =

√√√√ 1
TK

T

∑
t=1

K

∑
k=1

[
(ϕk − ϕ̂k,t)

2 +
(
θk − θ̂k,t

)2
]

(56)

where
(

ϕ̂k,t, θ̂k,t
)

denotes the estimate of kth target (ϕk, θk) in the tth Monte Carlo trial,
T = 100 is the number of Monte Carlo trials.

In the first experiment, we compare the number of degrees of freedom (DOF) of
the proposed algorithm with the other tested algorithms. After the enhanced matrix
completion, the proposed algorithm has 361 DOFs corresponding to the matrix Ŷ. Since
the ISR algorithm utilizes the consecutive part of the SDCA, it has 175 DOFs. A standard
URA consisting of 24 physical sensors has 24 DOFs. In addition, the PSS algorithm has
only 9 DOFs. Therefore, the proposed algorithm has the maximum DOFs compared to
other algorithms. Figure 5a depicts the contour map of the normalized spectrum of the
proposed algorithm, where the signal-to-noise ratio (SNR) is 0 dB, the number of snapshots
is 500, and the searching grid is 0.002 for u ∈ [0, 1] and v ∈ [−1, 1]. As shown in Figure 5a,
the proposed algorithm can resolve all 27 targets using only 24 physical sensors. Figure 5b
shows the contour map of the normalized spectrum of the TNNR algorithm. From Figure 5b,
the TNNR algorithm can resolve up to 16 targets. This is because the rank is limited by the
dimension of the matrix Z, thereby reducing the maximum number of resolved targets of
the TNNR algorithm. Figure 5c depicts the standard URA 2-D DOA estimation, where the
2-D unitary ESPRIT algorithm [7] is utilized. From Figure 5d, the standard URA can resolve
up to eight targets under low SNR conditions. Figure 5d shows the 2-D DOA estimation
of the ISR algorithm. Since the ISR algorithm only utilizes 15 DOFs for the initialization
process of u or v, the maximum number of targets detected is limited. Therefore, the virtual
aperture expansion ability of the proposed algorithm is better than that of the TNNR
algorithm, ISR algorithm, PSS algorithm, and standard URA.
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Figure 5. (a) Contour map of the proposed algorithm. (b) Contour map of the TNNR algorithm.
(c) Estimated 2-D DOA with standard URA. (d) Estimated 2-D DOA of the ISR algorithm.
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In the second experiment, we evaluate the estimation performance of all tested algo-
rithms for uncorrelated targets. Figure 6 shows the RMSE of the angle estimate versus SNR,
where two uncorrelated targets are located at (θ1, ϕ1) = (10◦, 10◦) and (θ2, ϕ2) = (30◦, 30◦),
the number of snapshots is 10, and the SNR varies from 0 dB to 10 dB. As shown in Figure 6,
when the SNR is greater than or equal to 4 dB, the proposed algorithm has the best estima-
tion performance compared to the other test algorithms. The reason is that the proposed
algorithm utilizes virtual aperture extension and sparse matrix recovery. However, when
the SNR is lower than 4 dB, the performance of the ISR algorithm is better than that of the
proposed algorithm because the matrix completion accuracy of the proposed algorithm
decreases, leading to decrease in the estimation accuracy of the proposed algorithm. The
performance of the TNNR algorithm degrades when the SNR is high. The cause is that the
TNNR algorithm cannot complete the missing elements of the entire rows and columns in
Z, which significantly affects the sparse matrix recovery accuracy and reduces the DOA
estimation performance. The PSS algorithm has the worst estimation performance due
to not utilizing virtual aperture expansion. Furthermore, as the SNR increases, the esti-
mated performance of all tested algorithms becomes relatively flat, which is limited by the
pre-defined sampling grid.

In the third experiment, we compare the estimated performance of all tested algo-
rithms versus the number of snapshots, where we assume two uncorrelated targets located
at (θ1, ϕ1) = (10◦, 10◦) and (θ2, ϕ2) = (30◦, 30◦), the SNR is 0 dB, and the number of snap-
shots varies from 10 to 50. As demonstrated in Figure 7, when the number of snapshots
exceeds 20, the proposed algorithm can obtain the optimal estimation performance due to
the virtual aperture expansion and sparse matrix recovery. When the number of snapshots
is less than or equal to 20, the ISR algorithm is better than the other test algorithms because
it uses an iterative sparse recovery algorithm to improve the angle estimation performance.
Under the condition of a low SNR and low snapshots, the TNNR algorithm outperforms
the proposed algorithm. The explanation is that the TNNR algorithm has better completion
accuracy than the proposed algorithm for empty elements that are not entire rows and
columns. Therefore, the proposed algorithm has better estimation performance than the
other test algorithms under mild conditions.
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Figure 6. RMSE versus the SNR for two uncorrelated targets.
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Figure 7. RMSE versus the number of snapshots for two uncorrelated targets.

In the fourth experiment, we evaluate the estimation performance of all tested algo-
rithms for closely spaced targets. We assume two closely spaced targets are located at
(θ1, ϕ1) = (10◦, 10◦) and (θ2, ϕ2) = (10◦ + ∆, 10◦ + ∆), where ∆ varies from 2◦ to 10◦.
Figure 8 shows the RMSE versus the angular separation, where the number of snapshots is
30, and the SNR is fixed at 0 dB. As shown in Figure 8, all the test algorithms fail when the
angular separation is less than or equal to 4◦. The rationale is that the two closely spaced
targets will cause the rank loss of the cross-correlation matrix between the sub-arrays,
thereby reducing the angle estimation performance. When the angular separation is more
significant than 4◦, the proposed algorithm shows optimal estimation performance com-
pared to the ISR, TNNR, and PSS algorithms. The reason is that the proposed algorithm
obtains the largest virtual aperture by the enhanced matrix completion technique, thereby
improving the estimation performance. However, the ISR algorithm only utilizes part of
the consecutive lags, so the performance of this algorithm is lower than that of the proposed
algorithm. Since the TNNR algorithm cannot complete the empty elements of the entire
rows and columns, its performance is lower than that of the proposed algorithm. However,
it has more virtual apertures than the ISR and PSS algorithms, so the estimation perfor-
mance is better than these two algorithms. Since the PSS algorithm exploits the co-prime
property to remove ambiguity and does not exploit virtual aperture expansion, it has the
worst estimation performance compared to the proposed algorithm and the ISR algorithm.
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Figure 8. RMSE versus the angular separation for two uncorrelated targets.
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In the fifth experiment, we evaluate the RMSE of the proposed algorithm and the
TNNR algorithm versus the percentage of observations. We set that the received data
of a 19× 19 URA is Xout, where the inter-element spacing is half a wavelength, and the
SNR is set to 10 dB and Q = 1. Suppose two targets are located at (θ1, ϕ1) = (10◦, 10◦)
and (θ2, ϕ2) = (30◦, 30◦), and the searching grid is set to 0.002 for u ∈ [0, 1] and v ∈ [0, 1].
We randomly select [50%, 60%, 70%, 80%, 90%] elements of Xout as available observation
elements. Figure 9 shows RMSE versus the percentage of observations. It can be seen
from Figure 9 that, when there are no missing elements in the entire row or column,
the TNNR algorithm is slightly better than the proposed algorithm because the TNNR
algorithm knows accurately the number of targets. However, the number of targets in
practical problems is usually unknown, so the proposed algorithm has more practical
application value.
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Figure 9. RMSE versus percentage of observation.

In the sixth experiment, we compare the RMSE and CPU time of all tested algorithms
versus the number of N = [3, 5, 7, 9], where M is fixed to 2. We assume two targets are
located at (θ1, ϕ1) = (10◦, 10◦) and (θ2, ϕ2) = (30◦, 30◦), where the SNR is 0 dB, the number
of snapshots is 50, and the searching grid is 0.0025 for u ∈ [0, 1] and v ∈ [0, 1]. Figure 10
shows RMSE versus the total number of sensors. From Figure 10, as the number of sensors
increases, the performance of all the tested algorithms increases. However, when the
number of sensors is greater than 64, the performance of all the tested algorithms tends to
be stable because the sampling grid limits further improvement in performance. Compared
with the other tested algorithms, the proposed algorithm has the best performance because
the proposed algorithm utilizes co-array interpolation initialization and enhanced matrix
completion techniques. Figure 11 shows CPU time versus the total number of sensors,
where the CPU time of all tested algorithms is based on the AMD R7-5800H processor.

From Figure 11, the CPU time of all the tested algorithms increases as the number of
sensors increases. When the total number of sensors is less than 64, the CPU time of the
proposed algorithm is higher than that of the PSS and TNNR algorithms and lower than that
of the ISR algorithm. When the total number of sensors exceeds 64, the proposed algorithm
has the highest CPU time due to the proposed algorithm’s co-array interpolation and
enhanced matrix completion. Furthermore, the proposed algorithm has better estimation
accuracy than other tested algorithms under certain conditions. Therefore, the proposed
algorithm has a better trade-off between computational complexity and estimation accuracy.
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Figure 10. RMSE versus the total number of sensors.
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Figure 11. CPU time versus the total number of sensors.

4. Discussion

To exploit the virtual aperture of CPPA, we propose a sparsity-based, 2-D DOA
estimation algorithm via enhanced matrix completion and co-array interpolation techniques.
The first experiment in Section 3 shows that the proposed algorithm has the most significant
DOF compared to the ISR, TNNR, and PSS algorithms. Therefore, the proposed algorithm
can distinguish more targets than the ISR, TNNR, and PSS algorithms, consistent with the
conclusions of [24].

In this study, we consider the estimation performance of the proposed method versus
SNR and the number of snapshots. According to Figures 6 and 7, we find that the proposed
algorithm has a better estimation performance than the ISR, TNNR, and PSS algorithms
when the SNR is greater than 4 dB and the number of snapshots is greater than 20. The
reason is that the proposed algorithm utilizes the virtual aperture expansion of CPPA and
the sparse matrix recovery. In addition, when performing matrix completion, we utilize
the shift-invariant structure of the virtual URA, thereby increasing the matrix completion
accuracy, consistent with the ideas of [29]. The ISR algorithm performs better when the SNR
is less than 4 dB and the number of snapshots is less than 20. The cause is reduced accuracy
of the proposed enhanced matrix completion under low SNR and low snapshot conditions,
resulting in a basis mismatch phenomenon when performing sparse matrix recovery, which
reduces the estimation performance. Therefore, the DOA estimation performance of the
proposed method is not only controlled by the virtual aperture, but also related to the SNR
and the number of snapshots. From Figures 10 and 11, the proposed algorithm’s estimated
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performance and CPU time increase as the number of sensors increases. However, when
the number of sensors exceeds 64, the proposed algorithm has a higher CPU time than
the other tested algorithms. Therefore, the proposed algorithm is suitable for scenarios
with a small number of sensors. Furthermore, the performances of the proposed algorithm,
the ISR algorithm, the TNNR algorithm, and the PSS algorithm become relatively flat as the
SNR and the number of snapshots and sensors increase. Due to the pre-defined sampling
interval limiting further improvement in estimation performance, this is consistent with
the conclusions of [17].

However, the proposed method also has certain limitations. When performing virtual
aperture expansion, we do not consider the position and phase errors of the sensors, which
are unavoidable in practical applications. If there are sensor position and phase errors, this
will significantly reduce the matrix completion accuracy of the proposed algorithm, thereby
reducing the estimation performance. Therefore, in future research, we need to consider
the position and phase errors of the sensors and construct a matrix completion model with
errors to further improve the robustness of matrix completion.

5. Conclusions

This paper proposes a complex-valued, sparse matrix-recovery-based 2-D DOA esti-
mation algorithm for CPPA through enhanced matrix completion. First, we use the co-array
interpolation technique to reconstruct two covariance matrices with the Toeplitz structure
to initialize the holes of the SDCA, thereby constructing a virtual URA that does not con-
tain missing elements of the entire rows and columns. Subsequently, an enhanced matrix
completion model based on nuclear norm minimization is developed to complete all empty
elements in the virtual URA, avoiding aperture loss. To reduce the computational burden of
matrix completion, we develop a fast iterative algorithm based on the ADMM framework.
Finally, we derive a complex-valued, sparse matrix-recovery algorithm based on the FISTA
method to estimate the 2-D DOA of targets to reduce the computational complexity of the
traditional vector-form, sparse recovery algorithm. The simulation results demonstrate the
superior performance of the proposed algorithm.
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Appendix A

In Appendix A, we prove the derivation of (51). According to (48) and (49), ∇H(X)
can be expressed as

∇H(X) =
1
2
∇X tr

{(
Ŷ− ÃXB̃T

)H(
Ŷ− ÃXB̃T

)}
=

1
2
∇X

{
tr
(

ŶHŶ
)
− tr

(
B̃TŶHÃX

)
−

tr
(

ÃHŶB̃∗XH
)
+ tr

(
B̃TB̃∗XHÃHÃX

)}
=ÃH

(
ÃXB̃T − Ŷ

)
B̃∗

(A1)
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Then, we substitute (A1) into (49), and, after some algebraic processing, we obtain

QL(X, P)
= tr

(
∇H(P)H(X− P)

)
+

L f
2 tr
(
(X− P)H

)
+ρF(X) + H(X1)

=
L f
2 tr
((

X−
(

P− 1
L f
∇H(P)

))H
(X− P)

)
+ρF(X) + H(P)
=

L f
2 ‖(X−U(P))‖2

F + ρF(X) + C(P)

(A2)

where C(P) is a constant matrix of P and U(P) can be given as

U(P) = P− 1
L f

ÃH
(

ÃXB̃T − Ŷ
)

B̃∗ (A3)

this completes the proof.
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