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Abstract: Spotlight synthetic aperture radar (SAR) achieves a high azimuth resolution with long
integration times. Meanwhile, the long integration times also cause defocused and smeared images
of moving objects such as cruising ships This is a typical imaging mechanism for moving objects in
Spotlight SAR images. Conversely, ships can be classified as stationary or moving from the amount
of smearing, and this classification method is, in general, based on manual observation. This paper
proposes an automatic method for detecting cruising ships using deep learning known as the “You
Only Look Once (YOLO) v5 model”, which is one of the frameworks of the YOLO family. In this
study, ALOS-2/PALSAR-2 L-band Spotlight SAR images over the waters around the Miura Peninsula,
Japan, were analyzed using the YOLO v5 model with a total of 53 ships’ images and compared with
Automatic Identification System (AIS) data. The results showed a precision of approximately 0.85 and
a recall rate of approximately 0.89 with an F-measure of 0.87. Thus, sufficiently high values were
achieved in the automatic detection of moving ships using the deep learning method with the YOLO
v5 model. As for false detections, images of breakwaters were classified as ships cruising in the
azimuth direction. Further, range moving ships were found to be difficult to detect. From the present
preliminary study, it was found that the YOLO v5 model is limited to ships cruising predominantly
in the azimuth direction.

Keywords: Spotlight SAR image; ship detection; deep learning; YOLOv5

1. Introduction

In recent years, deep learning has been applied in various fields including image
analyses. It is composed of a multi-layer neural network and is often based on a convo-
lutional neural network (CNN) [1,2]. In the case of optical and synthetic aperture radar
(SAR) remote sensing, deep learning is used mainly for target detection, recognition and
classification on land and ocean.

It is well known that SAR has all-weather and day-and-night imaging capability,
and, in ocean applications, many studies have been focused on ship detection [3–11]. In
addition, studies using deep learning have also been reported for ship detection [12–19]
and classification [20–22].

Since these studies focused on all types of ships, regardless of whether they were
moving or stationary, the current study differs from them in that it focuses on detecting only
cruising ships. Information on cruising ships can be useful for maritime domain awareness,
such as for the detection of suspicious ships and illegal fishing ships. In previous studies,
cruising ships were detected using ship wakes [23,24]. However, ship wakes may not
always be observed in SAR images in high sea states.

This study focuses on Spotlight SAR images, which have the finest imaging mode
with long azimuth integration times in comparison with other modes. If targets move
during the long integration time, the images are defocused and smeared in the azimuth

Remote Sens. 2022, 14, 4691. https://doi.org/10.3390/rs14194691 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14194691
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3992-8063
https://doi.org/10.3390/rs14194691
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14194691?type=check_update&version=2


Remote Sens. 2022, 14, 4691 2 of 10

direction. These extended image features are less significant in other imaging modes such
as the Stripmap and ScanSAR modes of shorter integration times. In the present study, the
deep learning algorithm is used for detection of cruising ships by taking into account the
motion-induced large image smearing in Spotlight SAR images.

In a previous study [25], a method using sub-look processing for Spotlight data was
proposed to estimate the azimuth velocity components of cruising ships and the velocity
vector from the inter-look position difference. This approach requires first to detect the
candidate images of ships. As discussed in the following sections, both the detection and
velocity estimation of cruising ships can also be carried out by applying deep learning, as
proposed in this study. Among the different algorithms of deep learning, the You Only
Look Once (YOLO) model was considered in the present study. YOLO is a well-known
model with a high accuracy and fast learning speed [26]. Specifically, YOLOv5 [27], which
is a relatively newer version of the YOLO family, was used to demonstrate the automatic
detection of cruising ships. The present study aims to demonstrate the automatic detection
of cruising ships in Spotlight SAR images with the YOLOv5 model and velocity estimation
by the sub-look algorithm [25].

In the following sections, the Spotlight SAR data used for training, validation and test
are described first, followed by the deep learning and evaluation methods. The results are
then presented and discussed with concluding remarks.

2. Materials and Methods
2.1. Spotlight SAR Data

Three sets of ALOS-2/PALSAR-2 Spotlight SAR images were used for training and
validation of the YOLOv5 model, as shown in the upper row in Figure 1. The area of
interest was Tokyo Bay, east coast of the Miura Peninsula, Japan, where many cruising
ships were observed. The scene IDs are ALOS2047162919-150408, ALOS2052782911-150516
and ALOS2063722919-150729 from left to right. The first and third images are in HH-
polarization, while the second image is in VV-polarization. All the data were in the
descending mode with integration times of approximately 20–30 s. The resolution was
1 m × 3 m in the azimuth and range directions, with the same pixel sizes in the correspond-
ing directions. Prior to applying the deep learning algorithm, the images were divided into
25 sections, as shown in the upper-right section of Figure 1 (each image size is approxi-
mately 8000 × 7850 pixels). Then, the sections including the images of cruising ships were
selected, and these images were used as the training datasets.
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Figure 2. Left: Examples of 4 defocused and azimuth-extended images of cruising ships due to long 
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memory requirements and exportability. In particular, the GPU memory efficiency is high 
in YOLOv5 during the learning process. The models of S, M, L, and X are the options that 
exist in YOLOv5, and, in general, the accuracy of the X-model is the highest. In this study, 
the YOLOv5 X-model was selected for the detection of cruising ships. 

The network architecture of YOLOv5 is briefly explained as follows: YOLOv5 con-
sists of three parts: the backbone, neck, and head. The data are processed to the backbone 
for feature extraction, to the neck for feature fusion, and to the head for the output. Back-
bone extracts the key features from the input images by incorporating a cross-stage partial 
network [31]. This improves the processing time and ensures a reduced model size. The 
neck is used to generate feature pyramids, which are helpful for detecting the same object 

Figure 1. Spotlight SAR images of the waters around the Miura peninsula, Japan. The images of
ships in Tokyo Bay on the right in the upper images are used for training and validation of the deep
learning algorithm. For computational purposes, each image is divided into 25 small sections, as
shown in the upper-right image. The lower 3 images are the samples used for the test.
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The four left images in Figure 2 are examples of cruising ships’ images extracted from
the training datasets, where images are defocused and extended in the azimuth direction.
An example of the image of a stationary ship is also shown on the right of Figure 2. Unlike
the cruising ships, the image of a stationary ship is well focused and often contains a strong
point-like image. The difference between these imaging characteristics can be used to
classify moving and stationary ships in the Spotlight SAR images.

Remote Sens. 2022, 14, 4691 3 of 10 
 

 

 
Figure 1. Spotlight SAR images of the waters around the Miura peninsula, Japan. The images of 
ships in Tokyo Bay on the right in the upper images are used for training and validation of the deep 
learning algorithm. For computational purposes, each image is divided into 25 small sections, as 
shown in the upper-right image. The lower 3 images are the samples used for the test. 

 
Figure 2. Left: Examples of 4 defocused and azimuth-extended images of cruising ships due to long 
integration times extracted from Figure 1. Right: Focused image of a stationary ship. The directions 
are the same as those in Figure 1. 

2.2. Deep Learning Method 
YOLO is a real-time object detection model that has a high accuracy and fast learning 

speed [26]. In the current research, YOLOv5 [27], a comparatively newer type than the 
past YOLO series [28–30], was used to build a model for the detection of cruising ships. 
YOLOv5 also has short learning times and is easy to use. In addition, YOLOv5 has better 
memory requirements and exportability. In particular, the GPU memory efficiency is high 
in YOLOv5 during the learning process. The models of S, M, L, and X are the options that 
exist in YOLOv5, and, in general, the accuracy of the X-model is the highest. In this study, 
the YOLOv5 X-model was selected for the detection of cruising ships. 

The network architecture of YOLOv5 is briefly explained as follows: YOLOv5 con-
sists of three parts: the backbone, neck, and head. The data are processed to the backbone 
for feature extraction, to the neck for feature fusion, and to the head for the output. Back-
bone extracts the key features from the input images by incorporating a cross-stage partial 
network [31]. This improves the processing time and ensures a reduced model size. The 
neck is used to generate feature pyramids, which are helpful for detecting the same object 

Figure 2. Left: Examples of 4 defocused and azimuth-extended images of cruising ships due to long
integration times extracted from Figure 1. Right: Focused image of a stationary ship. The directions
are the same as those in Figure 1.

The test data are shown in the lower row in Figure 1. The scene IDs are ALOS2018020809-
140922, ALOS2068602912-150831 and ALOS2062392912-150720 from left to right. These data
are all in the descending mode and HH-polarization, with the same resolution and pixel
sizes as those of the training data. In order to examine the detection accuracy, the images of
look-alikes, such as the ghost images from land areas, RFI (Radio Frequency Interference)
and the images of breakwaters are discussed.

In the analysis, the effect on polarization was not considered since the defocused and
azimuth extended images of moving ships appeared to be almost the same, regardless of
the HH- and VV-polarizations.

2.2. Deep Learning Method

YOLO is a real-time object detection model that has a high accuracy and fast learning
speed [26]. In the current research, YOLOv5 [27], a comparatively newer type than the
past YOLO series [28–30], was used to build a model for the detection of cruising ships.
YOLOv5 also has short learning times and is easy to use. In addition, YOLOv5 has better
memory requirements and exportability. In particular, the GPU memory efficiency is high
in YOLOv5 during the learning process. The models of S, M, L, and X are the options that
exist in YOLOv5, and, in general, the accuracy of the X-model is the highest. In this study,
the YOLOv5 X-model was selected for the detection of cruising ships.

The network architecture of YOLOv5 is briefly explained as follows: YOLOv5 consists
of three parts: the backbone, neck, and head. The data are processed to the backbone for
feature extraction, to the neck for feature fusion, and to the head for the output. Backbone
extracts the key features from the input images by incorporating a cross-stage partial
network [31]. This improves the processing time and ensures a reduced model size. The
neck is used to generate feature pyramids, which are helpful for detecting the same object
at different scales. A path aggregation network [32] was used as the neck. It enables the
enhanced localization of the targets. The head generates different-sized feature maps. It
can obtain the final output with class probabilities (confidence scores) and bounding boxes.

In order to prepare the information on training data for cruising ships, the annota-
tion tool of LabelImg (Available at: https://github.com/tzutalin/labelImg (accessed on
18 September 2022)) was applied to label each moving ship with a rectangular box in the

https://github.com/tzutalin/labelImg
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YOLO text format. To increase the amount of training data, the images were augmented
in terms of brightness, contrast, and rotated in the opposite azimuth direction. The im-
age rotation took into account the extended image of a cruising ship on both sides from
the center.

Figure 3 shows an example of an annotation with rectangular boxes. In total, 84, and
304 labels were used for the moving ships. The data were trained with eight batches
and 1000 epochs using YOLOv5. The number of batches was determined by the GPU
memory. A size of 640 × 640 pixels within each small image section in the upper-right
section in Figure 1 was used during the training process. The computer specifications with
CPU: AMD RYZEN 5 2600, GPU: NVIDIA Geforce RTX 2080 Ti GPU, and RAM: 32 GB
DDR4-2666 (TSUKUMO, Chiyoda-ku, Tokyo) were used. With this system, the time for the
training process was approximately 12 h. The evaluation parameters were convergence by
1000 epochs with some fluctuations. Thus, the number of epochs appeared to be sufficient
for accurate training. The model with the highest performance during the training process
of 1000 epochs was selected as the best model.
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for creating the training model.

2.3. Evaluation Method

The detected results are classified into three patterns: The first pattern defines the
bounding box that made the correct detection; i.e., it is a true positive (TP), which means
the samples identified are positive. The second pattern defines the bounding box that
made the incorrect detection; i.e., it is a false positive (FP), meaning that the samples were
incorrectly identified as positive. The third pattern defines that the object was not detected
by the bounding box; i.e., it is a false negative (FN), which means that the samples were
incorrectly identified as negative. Based on the aforementioned patterns, two types of
evaluation factors, precision (P) and recall (R), can be defined. P and R can be calculated by
the following equations.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)
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Using these parameters, the F-measure (F), which is commonly used to compare
detection performances, can be expressed by the following equation:

F = 2
PR

P + R
(3)

Another evaluation factor is average precision (AP). It refers to the area enclosed by
the precision–recall curve. It can be expressed by the following equation:

AP =
∫ 1

0
P(R)dR (4)

The average precision represents the identification accuracy of a single category. A
higher AP value indicates better detection performance using the deep learning model.

3. Results

A detection model was built using the aforementioned training data shown in the
upper row in Figure 1. A three-fold cross-validation was carried out by combining the
training and validation image datasets. Cross-validation is widely used to reduce the effect
of over-fitting, which may occur during training in deep learning models. In this study,
56 images were used for training and 28 images were used for validation from a total of
84 images (304 labels).

Table 1 shows the precision, recall, and F-measure values of the S- and X-model during
the training process. The values are the best parameters, which showed the highest AP
during the entire training process using the YOLOv5 model, and the mean values of three
best parameters from the three-fold cross-validation are listed in Table 1.

Table 1. Mean values of precision, recall, and F-measure for 3-fold cross-validation with the YOLOv5
S- and X-models.

P R F-Measure

S-model 0.819 0.844 0.831
X-model 0.854 0.894 0.874

From the results, the X-model showed a higher detection capability with precision
and recall rates of approximately 0.85 and 0.89, respectively. Thus, the recall rate was
sufficiently high to facilitate the accurate detection of moving ships in Spotlight SAR
images with approximately a 10% error, i.e., 10% misdetection, and therefore the recall rate
higher than approximately 0.9 can be used for automatic detection. In addition, the mean
value of the F-measure was approximately 0.87 during the three-fold cross-validation, and
it is reasonable to conclude that these values are sufficiently high to ensure the effectiveness
of the detection model.

Figure 4 shows an example of the result of the automatic detection, showing both the
almost stationary and moving ships. The detected bounding box indicates the moving ship
on the bottom-left side of the image, whereas the image of an almost stationary ship on
the upper-right is not classified as a moving ship. As mentioned, the images of moving
ships have the unique characteristic of an extended outline in the azimuth direction, which
is used for automatic detection. However, other images also show similar characteristics,
including images of breaking waves known as azimuth streaks [33]. Such images are not
considered in the present model, and are left for further study.
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Figure 4. Example of detecting cruising ships and avoiding stationary ships. The left bottom image
within the white bounding box is a cruising ship successfully detected with a high confidence score
of 0.94. The right two images of ships are defined as stationary.

4. Discussion

Following the training and validation of the YOLOv5 model, further detection tests
were conducted using the Spotlight SAR images shown at the bottom of Figure 1. Here, the
test images were close to the port areas that included not only moving ships but also other
objects such as azimuth ambiguity from land, breakwaters, and moored ships at the port.

Figure 5 shows examples of detection results using the test images with the best model
developed in the previous section. A comparison was made between the detected images
and AIS data. Note, again, that the test images were not used in the training and validation
processes. In the following, the results of correct detected and undetected cruising ships
are described. Misdetection and detection in the presence of ghost images and RFI are
discussed along with the detection of range moving ships.

Figure 5a shows an example of a successful detection of three cruising ships with
confidence scores higher than 0.9, as indicated in the brackets. One ship was not detected as
it was stationary according to the AIS data. The results using 18 test images are summarized
in Table 2, where TP, FP, and FN the true positive (TP), false positive (FP) and false negative
(FN), respectively, as explained earlier, and non-AIS shows the number of detected ships
without AIS data. Table 2 also shows the P, R, and F-measure calculated by these parameters.
Comparing Table 1 with Table 2, the values in the test case in Table 2 were lower than those
of the training and validation cases in Table 1.

Table 2. Detection results using the test images confirmed by AIS data. TP and FP are the numbers of
correctly detected moving ships and misdetected ships, respectively. FN is the number of moving
ships but not detected, and non-AIS is that of detected ships without AIS data.

TP FP FN Non-AIS P R F-Measure

28 10 5 10 0.7370 0.848 0.789

Figure 5b–d show examples of correct detection, misdetection and undetected. In
Figure 5b, the breakwaters are classified as moving ships for their similar shapes to the
azimuth extended images of cruising ships. There are several ghost images as a result of
azimuth ambiguity shown in the elongated circles, but the model correctly disregarded
these as moving ships. In Figure 5c, the cruising ship on the top-left was not detected for
the reason that the image was overlaid over the RFI, and images of this type were not
used in the training process. In Figure 5d, four azimuth moving ships were successfully
detected, but the range moving ship on the left was not detected mainly due to the fact that
the image was extended in the azimuth direction.
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direction is not detected (image size is approximately 8000 × 7850 pixels). 

Table 2. Detection results using the test images confirmed by AIS data. TP and FP are the numbers 
of correctly detected moving ships and misdetected ships, respectively. FN is the number of moving 
ships but not detected, and non-AIS is that of detected ships without AIS data. 

TP FP FN Non-AIS P R F-Measure 
28 10 5 10 0.7370 0.848 0.789 

When a ship is traveling to the range direction, an azimuth image shift also occurs 
and the original position is shifted in the azimuth direction by the distance proportional 
to the slant-range velocity component, and the image is not well focused. Figure 6 shows 
the images of range moving ships in the Spotlight image, and the white broken lines are 
the trails of the corresponding ships from the AIS data. The size and speed are also de-
picted. The small ship of length 15 m is not clear, while the image of the large ship of 
length 113 m is clear although it is defocused. Thus, small ships moving fast in the range 
direction are difficult to detect using the present model. 

Figure 5. Examples of successful and misdetection results in the test images that were not used in the
training and validation processes. The azimuth and range directions are from top to bottom and right
to left, respectively. (a) Successful results for detecting moving ships. The numbers in brackets are the
confidence score. (b) Results of detection and misdetection. The model could avoid the misdetection
of ghost images in the white ellipses, while parts of breakwaters were incorrectly detected. (c) Two
detected cruising ships and an undetected image over the Radio Frequency Interference (RFI). (d) Four
detected cruising ships on the right-hand while a ship cruising in the range direction is not detected
(image size is approximately 8000 × 7850 pixels).

When a ship is traveling to the range direction, an azimuth image shift also occurs
and the original position is shifted in the azimuth direction by the distance proportional to
the slant-range velocity component, and the image is not well focused. Figure 6 shows the
images of range moving ships in the Spotlight image, and the white broken lines are the
trails of the corresponding ships from the AIS data. The size and speed are also depicted.
The small ship of length 15 m is not clear, while the image of the large ship of length 113 m
is clear although it is defocused. Thus, small ships moving fast in the range direction are
difficult to detect using the present model.
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muth extended image features and avoiding ambiguous ghost images, the misdetection 
of objects such as breakwaters was found as their image shapes are similar to those of 
azimuth moving ships. As for range moving ships, the detection is difficult using the pre-
sent model. This study showed the methodology and effectiveness of the YOLOv5 model 
for detecting the azimuth moving ships. Nevertheless, increasing data and application 
with the other deep learning models are desired to improve the detection model. For a 
future study, a new model is expected for both the detection and the velocity of moving 
ships by combining the present method and velocity estimation by the sub-look method 
[25]. In addition, our model was developed for water areas, and water–land mask could 
be an optional method to enhance the detection results. 
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Figure 6. Example of range moving ships in a Spotlight SAR image compared with AIS data. The
continuous dots show the trail of ship by AIS over one minute. The small ship moving to the range
direction is difficult to image; meanwhile, the relatively large ships moving in the range direction can
be imaged but not focused well.

Owing to the limited training data used in this study, additional training data of range
moving ships will be required in future studies.

5. Conclusions

A deep learning method for detecting cruising ships in the azimuth direction was
presented using the YOLOv5 model and ALOS-2 Spotlight images. The model was trained
with image characteristics of the azimuthally extended feature of azimuth moving ships.
From the three-fold cross-validation, the results showed fairly high mean precision and
recall rates of 0.85 and 0.89, respectively, and in addition, the mean F-measure was 0.87. By
comparison of the results with AIS data, the confidence scores were found to be low in the
case of almost stationary or slow-moving ships of speed less than approximately 0.5 knots.
While the confidence scores were high for detecting moving ships with clear azimuth
extended image features and avoiding ambiguous ghost images, the misdetection of objects
such as breakwaters was found as their image shapes are similar to those of azimuth
moving ships. As for range moving ships, the detection is difficult using the present model.
This study showed the methodology and effectiveness of the YOLOv5 model for detecting
the azimuth moving ships. Nevertheless, increasing data and application with the other
deep learning models are desired to improve the detection model. For a future study, a new
model is expected for both the detection and the velocity of moving ships by combining
the present method and velocity estimation by the sub-look method [25]. In addition, our
model was developed for water areas, and water–land mask could be an optional method
to enhance the detection results.
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