
Citation: Yuan, H.; Li, D.; Wang, J.

A Robust Star Identification

Algorithm Based on a Masked

Distance Map. Remote Sens. 2022, 14,

4699. https://doi.org/10.3390/

rs14194699

Academic Editors: Zhaokui Wang,

Xiaozhou Yu, Lin Zhang and

Farid Gamgami

Received: 8 August 2022

Accepted: 15 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Robust Star Identification Algorithm Based on a Masked
Distance Map
Hao Yuan * , Dongxu Li and Jie Wang

College of Aerospace Science and Engineering, National University of Defense Technology,
Changsha 410073, China
* Correspondence: yuanhao11@nudt.edu.cn

Abstract: The authors of this paper propose a robust star identification algorithm for a ‘Lost-In-
Space’-mode star tracker for lost-cost CubeSat missions. A two-step identification framework and
an embedded validation mechanism were designed to accelerate the process. In the first step, a
masked distance map is designed to provide a shortlist of stars, and the embedded fast validation
process enables the direct output of validated stars before the second step. In the second step, local
similarity is utilized to select a set of stars from those shortlisted, and the final validation procedure
rejects all unsatisfactory stars. This algorithm can provide reliable and robust recognition even when
the captured star images include severe star positioning errors, missing stars and false stars. The
proposed algorithm was verified by a simulation study under various conditions. As low-cost star
sensors face harsh and unknown environments during deep space CubeSat missions such as asteroid
exploration, the proposed algorithm with high robustness will provide an important function.

Keywords: robust star identification algorithm; star tracker; lost-cost CubeSat; star positioning error;
false stars; missing stars

1. Introduction

Star sensors are passive optical sensors that can determine star attitudes by observation
and identification. Due to their high accuracy and integration, star sensors are widely
used in various space missions [1]. By identifying stars extracted from a captured star
image, a star sensor determines the inertial direction of the optical axis with arcsecond-level
accuracy [2,3]. Many mature algorithms for calculating a star sensor’s optical axis direction
in inertial space given the vectors of multiple stars exist, e.g., QUEST, FOAM, SVD, and
TRIAD [4,5]. The classical star sensor is a relatively complex system and was until recently
used only in high-end missions. However, with the rise of CubeSats and other low-cost
satellites [6–10], some low-cost options have emerged [11]. Arguably, one of the most
important components of a star sensor system is the star identification algorithm. The
low-cost star sensors bring many challenges to the star identification algorithm, among
which the robustness of star identification algorithms has attracted much attention.

When a star sensor initializes or recovers from a fault, it works in the ‘Lost-In-Space’
mode, with no available prior attitude information [12]. A star identification algorithm
is needed to identify a captured star in whole-sky images, and the development of this
type of algorithm is quite challenging. At present, existing algorithms transform the
star identification problem into a matching problem by building a feature database or
template database in advance and searching for a captured star in the database, which
is a process based on the hypothesis that a star image is completely separable under
certain patterns. Specifically, these algorithms can be divided into two main categories
for the feature extraction phase, namely: subgraph-isomorphism-based feature extraction
and pattern association feature extraction [1]. The basis of a subgraph isomorphism
method [13,14] involves using star points extracted from an image to construct simple
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geometric shapes (such as line segments [15], polygons [16–18], and pyramids [19]) and
extract shape features (such as angles [20], side lengths [15], and areas [16]) for matching
in a feature database built in advance. Its core lies in using the invariance of geometric
features [21]. In comparison, a pattern association method constructs a unique pattern from
the distribution of extracted stars and identifies the most similar template in a template
database. Typical pattern recognition methods include the grid method [22], polar grid
method [23–25], and statistical feature method [26]. Comparatively speaking, pattern
recognition methods have advantages in database size, recognition speed and robustness to
noise [27]. In addition, neural networks are also applied to star image recognition [28–30].
The neural-network-based method is reported to have strong robustness to various noises,
and it does not require operations such as rotation and translation alignment [29–31].
Missing stars will significantly decrease accuracy because the learned template will change.
Neural-network-based methods still need artificially designed initial features, such as
traditional features [30,31] and generated pattern pictures [29], as input. Then, templates
can be learned through neural network training, which is actually a feature enhancement
transformation. In addition, a self-organization map is also used to reduce the dimension
of the high-dimensional input space [32]. The reported methods are mostly based on
15◦ × 15◦ and 20◦ × 20◦ field of view (FOV), and the performance for smaller FOV needs
to be verified. The neural-network-based approaches should also be used with a validation
method [33] to avoid misidentification. Compared with conventional star identification
algorithms, the neural-network-based approaches can achieve a time complexity of only
O(1), but these neural networks contain fully-connected layers and require relatively large
but constant amounts of memory. Singular value decomposition (SVD) is another novel star
pattern recognition algorithm method that does not need a separate attitude determination
algorithm; rather, it directly produces the attitude, and a reliability evaluation using star
voting was introduced to relieve the problem of redundant matches [34].

At present, deep space exploration is undergoing rapid promotion [35]. Deep space
missions, especially these with low-cost CubeSats, involve many severe challenges for
star identification. Due to long-term and long-distance flights, complicated environments,
and low-cost sensor system, star sensors may suffer from calibration errors, performance
degradation, lens contamination and other problems. If a star sensor fails, the associated
spacecraft and mission may be jeopardized. These problems impose more stringent require-
ments on the robustness and reliability of star identification algorithms. Both identification
accuracy and identification speed are important criteria for algorithm evaluation, and a
trade-off must be considered. On the one hand, to obtain a higher identification accuracy,
more complex features and feature combinations are preferred for use in template matching,
but this will increase the computational complexity and lower the recognition speed of
the algorithm. On the other hand, although the computational complexity can be reduced
by reducing or simplifying the extracted features, the identification accuracy may become
weak and unreliable. Therefore, the algorithm identification accuracy and speed should
be balanced, and appropriate algorithms must be designed to meet the requirements of
specific scenarios.

Fruitful research has been conducted to improve the computational efficiency and
robustness of star identification algorithms. To improve the identification speed, database
structures have been optimized to reduce their size and facilitate uploading and updating
procedures [36]. Database-searching process has been accelerated by introducing data
structures such as binary trees [37], search trees [24,38], k-vectors [39–41], and labels [42].
To speed up the star image recognition convergence process, several methods, such as
step-by-step searching [43,44], iterative searching [45], and hash searching [46], have been
proposed. Research has also increased the speed of the recognition process by using
brightness information [47]. Recent work also includes optimizing the parameters of the
grid method with optimization methods [48] and by introducing an attitude estimation
step to accelerate the validation of the results of star pattern recognition [33]. Regarding
robustness, elastic template matching has been proposed to increase the robustness of the
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traditional grid method [23,24], and a distance transform [49] has been used to construct
robust features for star map recognition [50,51]. The problem of star identification in the
presence of high slew rates, false objects and image deformations introduced by the rolling
shutter has also been addressed [52].

In this paper, we first analyze the problems that star pattern recognition algorithms
face under adverse circumstances and the incapability of existing algorithms in the face
of these problems. To solve the identified problems, we then redesign the method of
reference star selection and propose a method to construct the closest neighboring star
set. Later, through an illustrative example, we describe the combination of a two-step
framework that uses a masked distance map for shortlisting and a local similarity scale
for successive identification, with an embedded verification mechanism to achieve robust
star identification. In the first step, the masked distance map is designed to provide star
shortlisting, and fast validation enables the direct output of validated stars before the
second step. In the second step, local similarity is utilized to select a star from those
shortlisted, and the final validation refuses all unsatisfactory stars. The subsequent sections
describe the details of the research problem and the proposed approach, simulation, and
benchmarking with existing star pattern recognition techniques. The paper concludes with
an analysis of the performance and application prospects of the proposed algorithm.

The main contributions of this paper are:

(1) Local scope is introduced to design a masked distance map to further improve the
robust of shortest distance transformation.

(2) The introduction of false stars causes very few misidentifications by the proposed
algorithm.

(3) The identification rate of our algorithm is high with noise, and it is also efficient.

2. Problem

This section presents the problems that star pattern recognition algorithms face under
adverse circumstances and the incapability of existing algorithms in the face of these
problems. Several concepts are demonstrated since they are important for our method.

2.1. Noise and Interfering Stars

The main challenge in star pattern recognition comes from noise and interfering stars,
which can affect the accuracy of a star sensor’s attitude output, as shown in Figure 1.
Two kinds of noise exist: star positioning errors and magnitude (brightness) noise. Star
positioning errors mainly occur due to calibration errors of the star sensor (such as focal
length errors, lens distortion, and optical axis offset errors) and errors in the star point
positioning algorithm [53] (such as those caused by motion blur). Magnitude noise indicates
the uncertainty of a sensor’s brightness sensitivity calibration. The interfering star problem
causes two effects: false stars (spikes) and missing stars. The main cause of false stars is
the appearance of celestial bodies, space debris, etc., that are difficult to distinguish from
true star points in the FOV of the star sensor. This issue may also be caused by hardware
defects, such as hot detector pixels. The other interfering star effect, missing stars, arise
when stars in the navigation star database that should have been captured do not appear in
the FOV due to a calibration error in the sensor’s brightness sensitivity.

A calibration error is not the only cause for missing stars. Even in a perfectly calibrated
star tracker, missing stars may arise due to noise (e.g., if the noise causes the star signal
of a weak star, near the limiting magnitude, to fall below the detection threshold of the
image segmentation/star detection algorithm). Additionally, random noise in an image
may augment the signal of weak stars that were not included in the on-board star catalog
just because their magnitudes were just beyond the cut-off magnitude used when building
the on-board catalog, making them temporarily visible in a star tracker image/frame.
In addition, calibration errors in the sensor’s brightness sensitivity can also cause false
stars when stars that are not stored in the database and those with weaker brightness are
captured in the FOV without corresponding matches in the template database.
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Figure 1. Main challenges in star identification.

In this paper, the sensitivity of the star sensor used in the following discussion and
simulation was 6.3. The resolution of the sensor was 1024 × 1024, and its FOV was
15◦ × 15◦, with the SAO catalog [54] as the base catalog.

2.2. Shortcomings of Existing Algorithms

Traditional methods such as the grid method generally consist of reference star se-
lection, closest-neighbor star selection, registration, feature extraction, matching, and
validation. Registration refers to the process in which a captured image is translated and
rotated for comparison to the database, as shown in Figure 2. Most of these methods
only focus on feature extraction and matching and do not consider reference star selection,
closest-neighbor star selection and validation. The reference star to be identified is usually
selected as the point closest to the center of the field of view, and the nearest-neighbor point
is only judged according to hard criteria. Moreover, verification requires the introduction
of additional reference stars.
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We performed four studies using 64,800 stars. The results revealed several problems
in the traditional method.
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(1) In the first study, we checked the number of stars remaining in the FOV after the
registration process by selecting the point closest to the center of the FOV as the
reference star to be identified. According to the results, 12.67% of stars in the FOV
were transformed out of the FOV during registration, as shown in Figure 3, which
reduced the number of available stars. The utilization rate of stars was low, and
the pattern information became sparse, which was not conducive to the subsequent
feature extraction and matching processes. In some cases, the number of star points in
star images was less than 5; thus, it is very important to retain more star points for the
identification of star maps containing fewer star points
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Figure 3. Illustration of the stars in the FOV before and after registration. (a) Reduction in the number
of stars in the FOV after registration. (b) Number of stars remaining in the FOV.

(2) In the second study, we analyzed the number of incorrect choices of closest-neighbor
stars in an image by applying hard criteria. According to the results, the incorrect
selections of the nearest-neighbor star occurred in 0.62% of star images. Under the
hard criteria, only one nearest-neighbor star was selected, and its selection error rate
increased in the presence of noise and interfering stars, directly leading to subsequent
matching errors. Generally, the overall identification accuracy can only be improved
by continuously introducing additional reference stars in the verification step [55].
Among the incorrect selections, as shown in Figure 4, 86 cases (0.13%) were caused by
the absence of the nearest star in the FOV, while 315 cases (0.49%) were caused by star
positioning errors of multiple star points.

(3) In the third study, we analyzed the robustness of traditional feature extraction to
positioning errors. Because traditional feature extraction does not make full use of
the spatial similarity of stars in an image, it has poor robustness to interfering stars,
as shown in Figure 5. It is clear that star points located at the edge of the grid may
cause grid feature extraction errors in the case of positioning errors. Better feature
extraction should reflect the differences in positions. Therefore, more attention should
be given to the spatial distribution characteristics of star points in feature extraction.

(4) The fourth study was performed to analyze the efficiency of the traditional validation
method. The traditional method requires the repeated introduction of an additional
reference star, which involves high computational complexity and greatly reduces the
overall efficiency of the identification algorithm. As shown in Figure 6, it is necessary
to continuously introduce a reference star to verify and identify star points until all
star points are individually identified. After identification fails for all extracted stars,
the image will be refused. It was found that the refuse mechanism has a low efficiency.



Remote Sens. 2022, 14, 4699 6 of 24

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 26 
 

 

matching errors. Generally, the overall identification accuracy can only be improved 
by continuously introducing additional reference stars in the verification step [55]. 
Among the incorrect selections, as shown in Figure 4, 86 cases (0.13%) were caused 
by the absence of the nearest star in the FOV, while 315 cases (0.49%) were caused by 
star positioning errors of multiple star points. 

(a) (b)

reference star

wrong closest neighbor 
star

right closest neighbor star

reference star

wrong closest 
neighbor star

right closest 
neighbor star

 
Figure 4. Illustration of incorrect closest-neighbor stars. (a) Incorrect case due to the absence of the 
nearest star in the FOV. (b) Incorrect case due to star positioning errors of multiple star points. 

3) In the third study, we analyzed the robustness of traditional feature extraction to po-
sitioning errors. Because traditional feature extraction does not make full use of the 
spatial similarity of stars in an image, it has poor robustness to interfering stars, as 
shown in Figure 5. It is clear that star points located at the edge of the grid may cause 
grid feature extraction errors in the case of positioning errors. Better feature extrac-
tion should reflect the differences in positions. Therefore, more attention should be 
given to the spatial distribution characteristics of star points in feature extraction. 

ideal star 
position 0 0

0 1

1 0

0 0 star position 
with noise

grid feature of 
ideal star position

grid feature of 
star position with noise

 
Figure 5. Demonstration of the poor positioning tolerance of traditional feature extraction. 

4) The fourth study was performed to analyze the efficiency of the traditional validation 
method. The traditional method requires the repeated introduction of an additional 
reference star, which involves high computational complexity and greatly reduces 

Figure 4. Illustration of incorrect closest-neighbor stars. (a) Incorrect case due to the absence of the
nearest star in the FOV. (b) Incorrect case due to star positioning errors of multiple star points.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 26 
 

 

matching errors. Generally, the overall identification accuracy can only be improved 
by continuously introducing additional reference stars in the verification step [55]. 
Among the incorrect selections, as shown in Figure 4, 86 cases (0.13%) were caused 
by the absence of the nearest star in the FOV, while 315 cases (0.49%) were caused by 
star positioning errors of multiple star points. 

(a) (b)

reference star

wrong closest neighbor 
star

right closest neighbor star

reference star

wrong closest 
neighbor star

right closest 
neighbor star

 
Figure 4. Illustration of incorrect closest-neighbor stars. (a) Incorrect case due to the absence of the 
nearest star in the FOV. (b) Incorrect case due to star positioning errors of multiple star points. 

3) In the third study, we analyzed the robustness of traditional feature extraction to po-
sitioning errors. Because traditional feature extraction does not make full use of the 
spatial similarity of stars in an image, it has poor robustness to interfering stars, as 
shown in Figure 5. It is clear that star points located at the edge of the grid may cause 
grid feature extraction errors in the case of positioning errors. Better feature extrac-
tion should reflect the differences in positions. Therefore, more attention should be 
given to the spatial distribution characteristics of star points in feature extraction. 

ideal star 
position 0 0

0 1

1 0

0 0 star position 
with noise

grid feature of 
ideal star position

grid feature of 
star position with noise

 
Figure 5. Demonstration of the poor positioning tolerance of traditional feature extraction. 

4) The fourth study was performed to analyze the efficiency of the traditional validation 
method. The traditional method requires the repeated introduction of an additional 
reference star, which involves high computational complexity and greatly reduces 

Figure 5. Demonstration of the poor positioning tolerance of traditional feature extraction.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 26 
 

 

the overall efficiency of the identification algorithm. As shown in Figure 6, it is nec-
essary to continuously introduce a reference star to verify and identify star points 
until all star points are individually identified. After identification fails for all ex-
tracted stars, the image will be refused. It was found that the refuse mechanism has 
a low efficiency. 

extracted 
stars

reference star 
selection

star 
identification

Is the identified 
star the same as 

one of the stars in 
the FOV?

identified
star

stars in FOV

output
outcome

F

T

all stars have been recognized?
F

refuse image

T

 
Figure 6. Traditional validation method requiring iterative validation. 

Our method considers the selection of the reference star and the nearest-neighbor 
star to maximize the number of stars remaining in the FOV after registration and to de-
crease incorrect selections of closest-neighbor stars. In addition, a masked distance map 
and local similarity are introduced into two-step matching, and an embedded validation 
mechanism is applied to avoid repeated verification. 

The rest of this paper is structured as follows. Section 3 describes the methods of 
reference star selection, closest-neighbor star set identification, feature extraction, tem-
plate database construction, two-step matching, and embedded validation in detail. Ex-
ample simulation and benchmarking results are shown in Section 4. Finally, concluding 
remarks are presented in Section 5. 

3. Method 
First, we briefly introduce the features extracted for comparison between a captured 

image and the template database. Second, the construction of the template database is 
presented. Third, registration between a captured image and the template is described in 
detail, which is a process based on the selection of a reference star and closest-neighbor 
star set under flexible criteria. Then, the two similarity criteria used in two-step matching 
are introduced, followed by a discussion of the two validation steps embedded into two-
step matching. Finally, a schematic overview of the algorithm is presented. 

3.1. Pixel Coordinate Feature 
The proposed algorithm directly uses the pixel coordinates of stars as raw features. 

Compared with geometric feature matching algorithms in which the pixel coordinates of 
stars are usually converted to unit vectors, our method benefits from lower computational 
complexity and a smaller database size. The pixel coordinate features extracted from the 
camera image need to be compared to those extracted from a star catalog, which, in this 
case, is the SAO J2000 catalog [54]. On the one hand, pixel coordinate features can be seen 
as the most intensive grid, which enables the maximum utilization of the spatial geometry 
information in a star image. On the other hand, the geometrical relations between pixel 
coordinates have moderate robustness to rotation and translation when applied to the 
narrow or middle FOV of a star sensor, as in this paper. In addition, due to the gnomonic 

Figure 6. Traditional validation method requiring iterative validation.

Our method considers the selection of the reference star and the nearest-neighbor star
to maximize the number of stars remaining in the FOV after registration and to decrease
incorrect selections of closest-neighbor stars. In addition, a masked distance map and local
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similarity are introduced into two-step matching, and an embedded validation mechanism
is applied to avoid repeated verification.

The rest of this paper is structured as follows. Section 3 describes the methods of
reference star selection, closest-neighbor star set identification, feature extraction, template
database construction, two-step matching, and embedded validation in detail. Example
simulation and benchmarking results are shown in Section 4. Finally, concluding remarks
are presented in Section 5.

3. Method

First, we briefly introduce the features extracted for comparison between a captured
image and the template database. Second, the construction of the template database is
presented. Third, registration between a captured image and the template is described in
detail, which is a process based on the selection of a reference star and closest-neighbor star
set under flexible criteria. Then, the two similarity criteria used in two-step matching are
introduced, followed by a discussion of the two validation steps embedded into two-step
matching. Finally, a schematic overview of the algorithm is presented.

3.1. Pixel Coordinate Feature

The proposed algorithm directly uses the pixel coordinates of stars as raw features.
Compared with geometric feature matching algorithms in which the pixel coordinates of
stars are usually converted to unit vectors, our method benefits from lower computational
complexity and a smaller database size. The pixel coordinate features extracted from the
camera image need to be compared to those extracted from a star catalog, which, in this
case, is the SAO J2000 catalog [54]. On the one hand, pixel coordinate features can be seen
as the most intensive grid, which enables the maximum utilization of the spatial geometry
information in a star image. On the other hand, the geometrical relations between pixel
coordinates have moderate robustness to rotation and translation when applied to the
narrow or middle FOV of a star sensor, as in this paper. In addition, due to the gnomonic
projection of a small patch of the celestial sphere surface onto the imaging plane of a star
sensor, the introduction of distortions into star images is inevitable, even with an ideal
distortionless pinhole camera model. A robust two-step matching process was carefully
designed to handle this problem and was evaluated in the simulation.

3.2. Construction of the Template Database

Stars with magnitudes of less than 6.3 are used to form the template database. Each
star in the template database is considered individually at the center of the FOV and is
used together with all nearby stars within the pattern radius to extract the abovementioned
features. The pattern radius is equal to the number of pixels corresponding to the size of the
FOV. The relation between the pattern radius (PR) and the FOV is given by Equation (1).

FOV = 2 tan−1
(

PR
2( f /ρ)

)
(1)

where FOV is the field of view of the star sensor, f is its focal length, ρ is the pixel size, and
PR is the maximum pixel distance.

The FOV is oriented such that all stars in the FOV are aligned on the nearest neighbor
outside a certain radius. The pixel coordinates of stars in the oriented FOV, except the
central star, constitute a coordinate column stored as the template corresponding to the star
ID in the template database, which is given by Equation (2).

SPID = [(xi, yi)], i = 1, 2, · · · , nID (2)

where xi, yi are the pixel coordinates of other stars in the oriented FOV and nID is the
number of stars in the FOV, excluding the central star.
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3.3. Registration between a Captured Image and the Template

There are three steps in the registration between a captured image and the template.
Step One: The reference star Sre f is selected from image I for identification based on

the criterion that the maximum number of stars in the FOV should be preserved after
relocating Sre f and part of the surrounding sky, such that Sre f lies at the center of the FOV,
and this process is given by Equation (3).

Sre f = argmax
Si∈I

card
{

star′
∣∣d(star′, Si

)
< PR

}
(3)

where Si is one of the star points extracted from image I, with star′ being any star points in
the image except Si, d(star′, Si) being the distance between star′ and Si, and card calculating
the number of set elements.

Step Two: The nearest-neighbor star set is constructed. Star positioning errors and the
distances from stars to the edge of the FOV are considered to design the flexible criteria for
the construction of the closest-neighbor star set. Specifically, stars are added into the nearest-
neighbor star set nbs when their distance to Sre f is within the range of [drmin, drmin + d],
where drmin is the minimum distance from stars whose distance to Sre f is greater than
the threshold b but smaller than the shortest distance from Sre f to the edges of the FOV
and d is the tolerance for star positioning errors. The nearest-neighbor star set is used to
align the FOV. The goal of imposing the threshold b is to ensure that any member of the
nearest-neighbor star set is not so close to Sre f that a small positioning error of any member
star will introduce large positioning errors to other stars upon aligning the FOV. Note that b
needs tuning, and a parameter analysis was conducted to determine its value in simulation.
The goal of imposing the threshold bo is to ensure that all members of the nearest-neighbor
star set lie in the FOV centered on Sre f . The threshold bo is determined as the shortest
distance from other stars except Sre f to the boundaries of the FOV. The soft criteria can be
given by Equation (4).

nbs =
{

star′
∣∣∣drmin ≤ d

(
star′, Sre f

)
≤ drmin + d

}
drmin = min

{
d
(

star′, Sre f

)∣∣∣b < d
(

star′, Sre f

)
< bo

} (4)

where star′ is any star point in the image except Sre f , with bo being the shortest distance
from star′ to the boundaries of the FOV.

Step Three: The FOV is translated and rotated to align with the template. First, Sre f
and the surrounding FOV are translated such that Sre f lies at the center of the FOV. Second,
the stars are rotated and aligned on the nearest-neighbor star set nbs. Third, the pixel
coordinate features of the image are extracted using the stars in star′ remaining in the FOV
except Sre f , and this process is given by Equation (5).

IP =
[(

x′ i, y′ i
)]

, i = 1, 2, · · · , nre f (5)

where x′ i, y′ i are the pixel coordinates of the stars in star′ remaining in the FOV after
registration and nre f is the number of stars in star′.

3.4. Shortlisting Similarity
3.4.1. Shortest Distance Transformation

The shortest distance transformation is a common mathematical transformation in the
field of image processing. In this paper, it is defined as follows. The entire set Ω consists of
all pixels in an image, and for each pixel point p in it, the shortest distance can be defined
by a certain subset Ωc consisting of the pixel points of the stars. This definition is given by
Equation (6).

D(p) = min{d(p, q)|q ∈ Ωc} (6)
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where D(p) is the shortest distance of point p with respect to the star image and q represents
the pixel point in which a star is located in the image. In this case, the Euclidean distance in
pixels is given by Equation (7).

d(p, q) =
√
(px − qx)

2 +
(

py − qy
)2 (7)

The shortest distance transformation is preferred because of its invariance to transla-
tion and rotation.

3.4.2. Similarity

In this paper, the shortest distance transformation is used to calculate the similarity of
the image to every template. We define the subset Ωc consisting of stars in the image and
calculate the shortest distance transformation of every star stari in one template SPID of the
template database with respect to Ωc as DTID = {dmi|dmi = D(stari), i = 1, 2, · · · , nID}.
DTID is sorted in ascending order to obtain DTsorted

ID =
[
dmj

]
, j = 1, 2, · · · , nID. Then, the

similarity between the image and template can be defined as Equation (8).

smID = −
nsm

∑
j=1

dmj (8)

where
nsm = min

(
nre f , nID

)
(9)

Note that not only the distance but also the information of the angle between stars are
hidden in the distance map, which is actually another form of grid.

3.4.3. Local Scope

The similarity defined in Equation (8) will encounter difficulties when facing false or
missing stars because the shortest distance transformation is related to the global subset
Ωc, which means that any changes in Ωc will interfere with the calculation of the similarity
between the image and template. Therefore, a local scope is defined to improve the
robustness of the shortest distance transformation, as shown in Figure 7. Figure 7 shows
how the improved local scope similarity is calculated: First, the similarity map is calculated
based on the shortest distance transformation; then, the local scope mask with K = 5 is
used to mask the similarity map to achieve the improved local scope similarity. The local
scope radius denoted as K is used to obtain a mask with specific size, and star points whose
max coordinate difference is greater than the scope radius K are eliminated.

In Figure 7, an example with K equal to 1 is used to illustrate the local scope and
improved local scope similarity. A portion of the similarity map calculated by Equation (8)
is masked by the local scope with K. Note that K is a tuning parameter and takes value
of 5 at last. As a result, star points in blue are counted in the improved local scope
similarity, while star points in yellow are ignored. The improved local scope similarity can
be defined as

lsmID = −
nsm

∑
j=1

dmj · local
(
dmj, K

)
(10)

local
(
dmj, K

)
=

{
1, dmj ≤ K
0, dmj > K

(11)
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3.5. Fast Validation

The improved local scope similarity is used in the first step of matching, in which
embedded fast validation is designed. Fast validation accelerates the overall identification
process because a star passing the fast validation can be directly output as an identification
outcome without requiring the second matching step.

Fast validation is based on the principle that the distances between the stars in an image
and the corresponding stars in the correctly identified template are small. Therefore, one
type of verification method determines whether the number of close stars whose shortest
distance is less than a certain threshold account for greater than a certain proportion of the
total [50]. If so, the recognition is validated. Otherwise, the recognition is rejected. This
kind of method is defined by Equation (12).

Vrate =
nclose
nsm

(12)

nclose =
nsm

∑
j=1

local
(
dmj, K

)
(13)

However, this method has a problem that distortion in the gnomonic projection of a
patch of spherical surface onto the plane surface of the imager causes positioning errors for
stars in the nearest-neighbor star set nbs. Because the registration process will rotate the
image according to the vector between the reference star and the closest-neighbor star, the
positioning errors of the nearest-neighbor star will be transferred to the stars other than
the reference star and the nearest-neighbor star. Specifically, the registration process will
amplify this kind of position error proportional to the distance from the reference star to
the other stars, which will interfere with the described validation. As shown in Figure 8,
the practical closest-neighbor star position PN has a position error ns1 with respect to the
ideal closest-neighbor star position IN. Then position error ns1 will introduce a position
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error ns2 to another star PS with its ideal position IS during the registration process. b is
the distance between IN and RS. l is the distance between IS and RS. There is a relationship
of similar triangles as

ns1
b

=
ns2

l
(14)

where ns1, ns2, b, and l are in pixels. For the registered matching template, the shortest
distance introduced by these positioning errors and the distance from the star to the
center of the FOV can fit a line with a small but non-zero fitting residual because of image
plane distortion.
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Based on the idea described above, we developed a method for fast validation. The
shortest distance of stars [dmi], i = 1, 2, · · · , nsm and their distance to the center of the FOV[

d
(

stari, Sre f

)]
, i = 1, 2, · · · , nsm are used to fit the line L f (·). If the mean square error

of line fitting MR defined by Equation (15) is smaller than a tuning threshold th1, the
recognition is validated, and a star with maximum shortlisting similarity is directly output.
Otherwise, the second matching step will be executed. We will show that these validation
criteria can help provide a clear distinction between correct and incorrect identifications
with a proper th1 value in Section 4.2. Note that th1 needs tuning, and a parameter analysis
was conducted to determine its value in simulation.

MR =

√
nsm

∑
i=1

(
dmi − L f

(
d
(

stari, Sre f

)))2
/nsm (15)

3.6. Decisive Similarity

Decisive similarity DSM is designed to match the shortlisted templates that do not
pass fast validation with the image. As shown in Equation (16), both the fraction of close
stars Vrate and the specific shortest distance smID are taken into account. To avoid the
selection of templates containing much fewer close stars, which is obviously not the desired
outcome, the fraction of close stars Vrate is given a much greater weight. Note that Vrate can
be calculated by Equation (12).

DSM = w1 ∗Vrate + w2 ∗ smID
w1 � w2

(16)

where w1, w2 are the weights for Vrate and smID, with fine-tuned w1 = 1 and w2 = 10−5 values.
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3.7. Final Validation

A star sensor needs to avoid false recognitions as much as possible; thus, a rejection
mechanism is required. A correctly recognized pattern will include a large percentage of
close stars, and the percentage of close stars Vrate can be calculated by Equation (12). In this
paper, final validation determines whether the percentage of close stars Vrate is less than a
tuning threshold th2 [50]. If so, the recognition is validated. Otherwise, the recognition is
rejected. Note that th2 needs tuning, and a parameter analysis was conducted to determine
its value in simulation.

3.8. Overall Framework

In conclusion, a schematic overview of the proposed algorithm is shown in Figure 9.
A two-step matching framework with fast validation embedded facilitates identification,
while shortlisting similarity based on the distance transformation and local spatial infor-
mation offers sufficient robustness. The whole framework not only improves recognition
reliability but also ensures recognition efficiency. Note that the designed two-step vali-
dation mechanism can directly refuse an image without the need to repeatedly identify
other stars.
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4. Simulation Results and Analysis
4.1. Simulation Conditions

To thoroughly test the proposed algorithm, Monte Carlo simulations were conducted.
A total of 1,000,000 images with the simulated star sensor’s center of FOV evenly distributed
on the celestial sphere were created, as shown in Figure 10, to form the star image test
set used in various subsequent tests. Methods of distributing points evenly on a sphere
have been profoundly studied [56]. We adopted a tool provided by Anton Semechko to
evenly produce points on the celestial sphere [57]. There were 4956 stars in the test on the
celestial sphere.



Remote Sens. 2022, 14, 4699 13 of 24

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 26 
 

 

Selection of Reference Star

Construction of the Nearest Neighbor Star Set

Registration between Captured Image and Template

 Calculation of Shortlisting Similarity

Calculation of Decisive Similarity

Output Outcome with 
Maximum Decisive Similarity 

First Step of Matching

Shortlisting of Templates

Fast Validation

Begin

End

Final Validation

Output Outcome with 
Maximum Shortlisting 

Similarity Directly

Refuse

Second Step of Matching

T

F

T

F

 
Figure 9. Schematic overview of the proposed algorithm. 

4. Simulation Results and Analysis 
4.1. Simulation Conditions 

To thoroughly test the proposed algorithm, Monte Carlo simulations were con-
ducted. A total of 1,000,000 images with the simulated star sensor’s center of FOV evenly 
distributed on the celestial sphere were created, as shown in Figure 10, to form the star 
image test set used in various subsequent tests. Methods of distributing points evenly on 
a sphere have been profoundly studied [56]. We adopted a tool provided by Anton 
Semechko to evenly produce points on the celestial sphere [57]. There were 4956 stars in 
the test on the celestial sphere. 

 
Figure 10. Distributing points evenly on a sphere. 

4.2. Parameter Analysis 
First, the effectiveness of the proposed method for selecting a reference star was 

tested. As a result, the proposed method for selecting a reference star for identification 

Figure 10. Distributing points evenly on a sphere.

4.2. Parameter Analysis

First, the effectiveness of the proposed method for selecting a reference star was tested.
As a result, the proposed method for selecting a reference star for identification enabled the
star point preservation rate to increase from 87.17% to 90.31%, providing more abundant
and reliable information for subsequent matching.

Second, a parameter analysis was conducted to determine the values of the parameters
in the proposed algorithm, which included the radius threshold b, position tolerance scale d,
number of shortlists N, fast validation threshold th1 and final validation threshold th2.

The average number of stars in the closest-neighbor star set and the choice accuracy of
closest-neighbor stars under different radius thresholds b and different position tolerance
scales d were studied, as shown in Figures 11 and 12, respectively. The former determined
the computational complexity, while the latter determined the upper limit of the subsequent
recognition accuracy. It can be seen that parameter b had little effect on the average number
of stars but parameter d had an effect. Both parameter b and parameter d had effects on the
choice accuracy of the closest-neighbor star. We set b as 24 pixels and d as 2 pixels, such that
the choice accuracy of closest-neighbor stars was almost the highest and robust to various
noises and the number of stars in the closest-neighbor star set was relatively small.
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As shown in Figure 13, the probability of shortlisting correctly identified stars under
different numbers of shortlisted stars N was also analyzed. We set N as 90, such that the
probability of shortlisting correctly identified stars was relatively large, with a moderate
computational complexity.
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Both the value of the fast validation threshold th1 and the value of the final validation
threshold th2 need to be optimized. To examine how the fast validation and final valida-
tion criteria separate correct identifications from incorrect identifications, we constructed
histograms of both criteria. The criteria are depicted on the horizontal axis, and the vertical
axes indicate the numbers of correct and incorrect identifications.

As seen from Figures 14 and 15, the fast validation and final validation criteria clearly
separate correct cases from incorrect cases and correctly identify most cases. The principle
of the value optimization of th1 and th2 is to separate correct recognitions from incorrect
recognitions and to ensure robustness as much as possible. In this case, we set th1 to
23 pixels and th2 to 75%, such that correct and incorrect determinations were clearly
separated by the criteria. It was shown that the metrics used in fast validation and final
validation could well-separate incorrect determinations from correct determinations, also
facilitating the selection of th1 and th2.
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of line fitting MR.
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4.3. Ideal Case

We compared highly reliable geometric algorithms (including the geometric voting
algorithm (GMV) [15] and pyramid algorithm [19]) and pattern recognition algorithms
(including the search tree-based algorithm (STOD) [37] and polestar algorithm [24]) with
our proposed algorithm.

In an ideal scenario, no positioning errors or interfering star exist in the simulated
image. However, star identification methods still face the problem of losing stars during the
registration process. The results in Table 1 show that the proposed algorithm outperformed
the other methods in identification accuracy in the test environment. However, the speed
of the proposed method was moderate. We therefore began looking for a way to eliminate
the need for explicit translation and rotation of the image and to construct a more efficient
template database. The test for the robustness of star identification in scenarios including
positioning noise or interfering stars in the simulated images is presented later in this sec-
tion. Both the identification rate and misidentification rate are key indicators of robustness,
although a filter is also used in attitude determination to reject incorrect attitude solutions
resulting from misidentifications. Example benchmarking results of other methods are
provided by Samirbhai [43].

Table 1. Benchmarking of star identification methods—ideal case.

Method Identification Accuracy (%) Run Time (s)

GMV [15] 94.3 0.567
STOD [34] 90.3 0.21

Polestar [24] 97.86 0.386
Pyramid [19] 99.98 0.41

Proposed 100 0.52

4.4. Sensitivity to Star Positioning Errors

Star point information is obtained by a star point extraction algorithm, which in-
troduces positioning errors or noise into the star points. Existing star point extraction
algorithms can reach an accuracy level of approximately 0.1 pixels. In addition, defects in
an image sensor and optical system may also cause star positioning errors. In particular,
low-quality components in low-cost cameras may cause large positioning errors.

To test the sensitivity of the proposed algorithm to positioning errors, we added
Gaussian noise to the test image set and set the mean noise value to 0 and the standard
deviation to 1–10 pixels, corresponding to 50–500 arcseconds.

The robustness was evaluated by the identification accuracy, which was calculated
as the number of correct identifications divided by the total number of tests, and the
misidentification rate, which was calculated as the number of misidentifications divided by
the total number of tests. In addition, the acceptance accuracy was calculated as the number
of correct identifications divided by the sum of correct identifications and misidentifications.

As shown in Figure 16, the proposed algorithm maintained an approximately 100%
acceptance accuracy with the introduction of 1–10-pixel positioning errors. When the
positioning error was 2 pixels, the identification accuracy of the algorithm was still greater
than 90%. Even when the positioning error was 10 pixels, which far exceeded practical
values, the accuracy and reliability of the proposed algorithm were verified and confirmed.

Compared with the other algorithms, the proposed algorithm had a strong advan-
tage in robustness to star point positioning errors, as shown in Figures 17 and 18. The
proposed algorithm maintained the highest identification accuracy and rejected almost
all misidentifications.

It is important to note that in Figure 18, the misidentification rate of the proposed
algorithm remained the lowest, with a value equal to zero. In addition, the misidentification
rates of the geometric methods, including the GMV and pyramid methods, were much
higher than those of the other pattern recognition methods.
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The strong star positioning error robustness of the proposed algorithm is due to its
designed inclusion of the global and local features of star point distributions and the
comprehensive utilization of the geometric information in star images.
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4.5. Sensitivity to Missing Stars

Due to registration errors of the maximum sensitivity and sensor component failure,
the camera may lose some stars that could have been captured in the FOV. To test the
robustness of the proposed algorithm to the problem of missing stars in the FOV, we
randomly discarded 1–10 stars from the FOV of each image in the test set.

As shown in Figure 19, when two stars were lost, the acceptance accuracy remained at
almost 100%. When 10 stars were lost, the acceptance accuracy dropped by 5.24%. When
the number of missing stars was less than three, although the number of rejections increased
because of the lack of star points in the FOV, the total identification accuracy remained
over 80%. Therefore, these results proved that the proposed algorithm is robust to missing
star problems.
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Compared with the other algorithms, the proposed algorithm had a strong advantage
in robustness to missing stars, as shown in Figures 20 and 21. Figure 21 shows that
the misidentification rate of the proposed algorithm was relatively low. Similarly, the
misidentification rates of the geometric methods were higher than those of the other pattern
recognition methods.
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However, compared with the robustness to positioning errors and false stars, the
recognition accuracy was the lowest in the case of missing stars. The reason for this result
is that the developed method also uses the closest neighbor to register an image, and this
process can undergo interference when the correct nearest-neighbor star is missing. At the
cost of computational complexity, the registration process can be improved to enhance the
algorithm’s robustness against missing stars.

4.6. Sensitivity to False Stars

False stars are star points appearing in the FOV for which a match cannot be found in
the template database. Reasons for the generation of false stars can be divided into five
categories as follows:

(1) Natural targets (such as planets and natural satellites) and manned objects (such as
artificial satellites and space debris) may pass through the camera’s FOV, forming
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false stars. Due to the reflection of sun rays by the object, a false star produced in this
case may have high brightness. Some planets, such as Uranus and Neptune, having
visual magnitudes between 6 and 8, are very dim objects, near or beyond the detection
threshold of the most wide field of view star trackers.

(2) Various noise sources in the camera, such as flaws in the lens and detector components,
may produce false stars. This situation can be controlled by using high-quality
components but involves a high cost.

(3) The complex radiation environment of the universe and the impact of high-energy
particles may also produce false stars in the camera’s FOV.

(4) Sensitivity calibration errors in the camera detector and the absence of variable or real
stars in the onboard star tracker catalog may also cause the appearance of false stars.

(5) Novas, which are stars that temporarily increase in brightness by many orders of
magnitude, may also cause the appearance of false stars.

To test the sensitivity of the proposed algorithm to false stars, we added 1–10 false
stars with random positions to each test image generated by a Gaussian distribution into
the FOV.

As shown in Figure 22, the proposed algorithm maintained approximately 100%
acceptance accuracy and identification accuracy upon the random introduction of 1–10 false
stars. Therefore, the results proved that the proposed algorithm is extremely insensitive to
false stars. Compared with the other algorithms, the proposed algorithm also had a strong
advantage in this evaluation, as shown in Figures 23 and 24.
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5. Discussion

Providing an incorrect solution is much worse than not providing an identification so-
lution, since the attitude solution provided by the star sensor based on an incorrect solution
can endanger a spacecraft if not properly filtered by the attitude determination process.

It is encouraging that the introduction of false stars caused very few misidentifications
by the proposed algorithm. The results clearly showed that false stars can hardly pass
fast validation, in which the line-fitting residual is checked, or final validation, in which
the percentage of close stars is checked. Our originally proposed masked distance map
and embedded validation mechanism not only accelerate recognition but also reduce the
misidentification rate in the face of various errors and noise. However, there are also
disadvantages of the proposed method. Missing stars will significantly decrease accuracy
because missing stars will cause significant damage to the pattern of the masked distance
map. Additionally, the efficiency of the proposed method can be improved. We are
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looking for a way to eliminate the need for the explicit translation and rotation of the
image and to construct a more efficient template database. Above all, in the ideal case,
the proposed method achieved the best results. This is because the proposed method can
improve recognition accuracy with a small increase in computing time through reasonable
matching feature design and embedded verification. When facing star position errors, the
proposed method has the highest robustness, and overall, the robustness of the pattern
recognition method was found to be lower than that of the geometric method. This is
because the absolute constraint of pattern designed by traditional pattern matching method
on star point position is weaker and softer than that of the geometric method. For the
missing star problem, the polestar method has achieved the best score, followed by our
method. This is because the pattern of the polestar method is specially designed for the
star missing problem and is fundamentally robust for the star shortage problem. Generally,
the robustness of the pattern matching method was found to be higher than that of the
geometric method. This is because the similarity comparison of the geometric method
is based on hard criteria. The missing star problem will greatly damage the geometric
relationship between stars, such as edges and angles. When facing the problem of fake stars,
our method shows very high performance, also because the feature of masked distance map
we designed is very robust to fake stars; this also leads to our high acceptance accuracy,
and the embedded verification makes our method’s mis-identification rate very low. GMV
achieved the worst result because its features were obtained not with a robust design but
only with a voting screening design. Although the pyramid method is a geometric method,
it also shows good robustness because it also considers the problem of fake stars in the
geometric feature design.

6. Conclusions

The algorithm described here provides robust star identification, even with the pres-
ence of star positioning errors, false stars, and missing stars, as proven by the simulation
results. The algorithm favorably compares with existing star identification methods in
terms of accuracy and performance. The proposed algorithm with high robustness to
various kinds of star noise could play a role in deep space missions such as asteroid explo-
ration missions, in which star sensors inevitably face dangerous environments that include
uncertainty. Additionally, the proposed algorithm will help reduce the requirements of
optical systems of star sensors and thus lower the cost of related equipment, which is
favorable for small satellites produced with limited budgets. The potential of distance map
in application to star identification has not been fully tapped. Future work will include a
combination of distance map and neural network. We look forward to test the proposed
method in a CubeSat mission.
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