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Abstract: Surface subsidence caused by coal mining has become an important factor that affects and
restricts the sustainable development of mining districts. It is necessary to use appropriate methods
for effective subsidence monitoring. It is hard to monitor large gradient ground deformations with a
high accuracy by using differential interferometric synthetic aperture radar (DInSAR) technology.
Unmanned aerial vehicle (UAV) photogrammetry is limited in that it monitors the basin edge by
subtracting two DEMs (digital elevation models). Therefore, in this paper we propose a combination
of DInSAR and UAV photogrammetry to complement the two data advantages and to achieve a
high-precision monitoring of mining subsidence areas. The subsidence of coal panel 81,403 in the
Yangquan coal mine was obtained using DInSAR and UAV photogrammetry technologies. The
appropriate fusion points were selected for the two datasets and the agreement between the fusion
data and the leveling data was verified. The results indicated that the combination of DInSAR and
UAV technology could monitor the settlement more accurately than the single use of DInSAR or
UAV technology.

Keywords: subsidence monitoring; DInSAR; UAV photogrammetry; fusion data; leveling

1. Introduction

Coal is one of the important energy sources in the world and coal mining in several
countries is an important and basic industry for the national economy. Whilst coal resources
bring a great economic benefit, their over-exploitation causes surface subsidence and envi-
ronmental disasters. This brings significant ecological and environmental risks to mining
areas and threatens the safety of lives and property in mining areas [1]. A ground subsi-
dence basin is gradually formed in the process of the working face advancing. Therefore, it
is necessary to find ways to achieve the effective monitoring of the surface in coal mining
areas to determine the movement rules and minimize the associated mining losses. This
significantly influences disaster assessment, comprehensive management, and planning
in mining areas [2,3]. Traditional mining area deformation monitoring methods such as
leveling and global navigation satellite systems (GNSSs) have previously been widely used
for deformation monitoring in mining areas. However, with the development of produc-
tion demands, traditional monitoring methods have a difficulty in achieving large-scale
and long-term dynamic monitoring because of shortcomings such as their large working
intensity, long operational cycle, significant weather impact, small monitoring scope, and
deformation monitoring points buried on the surface being prone to damage [4,5].
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In this era of the fast development of remote sensing technologies, space-borne syn-
thetic aperture radar (SAR), visible spectrum remote sensing, unmanned aerial vehicles
(UAVs), and other technologies have been applied to deformation monitoring to varying
degrees. As a new earth observation technology, differential interferometric SAR (DInSAR)
has the advantages of a wide coverage, a high resolution, high accuracy, all-weather, all-day
operations, and a low cost. It is sensitive to the small deformation monitoring of surfaces
and can effectively obtain such information in mining areas. The observation accuracy can
reach the centimeter or even millimeter level [6–9]. This approach has been widely used in
ground subsidence monitoring induced by underground coal mining. Gabriel et al. [10]
demonstrated the initial use of DInSAR technology to detect ground deformation at the
cm level, opening a new chapter in the monitoring of surface deformation with InSAR
technology. Carnec et al. [11] used three ERS-1 images, showing for the first time that
DInSAR technology could be used to monitor subsidence in mining areas. Since then,
researchers have conducted further studies on how to accurately obtain deformation using
DInSAR or time series InSAR technology [12–15]. In the process of InSAR data processing,
Ge et al. [16] used GPS measurements as ground control points to reduce the error of
the InSAR results and achieve the high-precision monitoring of subsidence caused by
underground mining. Lian et al. [17] fused Sentinel-1A and Sentinel-1B data to realize the
high-precision monitoring of subsidence in the Datong mining area of China. The proposed
method improved the time resolution of the DInSAR technologies.

UAVs also have advantages of flexibility, being fast and efficient, a low cost, high
spatial and temporal accuracies for image acquisition, and all-weather monitoring. With
the continuous advent of various high-precision, light and small sensors, UAV photogram-
metry technology has been applied in various degrees in geographical mapping, land
and resources surveys, disaster prevention, and other fields. Compared with traditional
monitoring methods, the information obtained by UAVs is more visible and richer and has
good application prospects for deformation monitoring [18–20]. Chen et al. [21] collected
topographic information as a digital surface model (DSM) in open-pit mines using a UAV.
Ge et al. [22] studied the application of UAVs in the Ulan and Tahmoor mines, respectively.
It preliminarily confirmed the feasibility of UAVs in monitoring side slope stability and
underground subsidence. Wikaa et al. [23] successfully monitored the discontinuous de-
formation of a mining area by using UAV photogrammetry technology. Lian et al. [24]
realized surface subsidence monitoring at the Yangquan coal mine area in China using
UAV photogrammetry. These results show that UAV technologies have high monitoring
accuracies in large gradient deformation areas. However, the accuracy of small deformation
areas at the edge of subsidence basins requires further improvement.

DInSAR technology is affected by many factors, including the orbit error and atmo-
spheric delay [25]. A local surface deformation gradient that is too large will weaken the
quality of the interference phase and cause decoherence in the interference image pairs,
which significantly reduces the accuracy of DInSAR monitoring [26–29]. The accuracy of
coal mining subsidence data from UAVs is less than the millimeter level, making it difficult
to monitor small subsidence deformations at the edge of mining areas and providing a
poor edge deformation expression ability [24]. The ground movement and deformation
induced by mining is a complex time and space process. Both the single DInSAR or UAV
technologies have difficulty in obtaining the complete subsidence basin information of
mining areas. Zhang et al. [30] monitored the deformation of the Tianziling landfill from
millimeter to millimeter using InSAR and UAV technologies. The results showed that these
two technologies have a mutual verification in landfill monitoring. Deffontaines et al. [31]
determined the structural geometry of the Pingting terraces through the method of obtain-
ing a digital terrain model (DTM) by using UAV technology and then used InSAR time
series interferometry to analyze the interseismic deformation. Meng et al. [32] combined
InSAR with UAV photogrammetry technology to study the loess landslide of Hongheyan in
Northwest China. It was found that InSAR has greater advantages in monitoring creeping
deformation and UAV technology was more suitable for monitoring large sudden slides.
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At present, there are few studies on the joint monitoring of mining subsidence by using
InSAR and UAV technologies. In this paper, we propose a method to combine them to
monitor surface subsidence deformation in mining areas. This approach complements the
advantages of the two technologies to comprehensively monitor and analyze the surface
subsidence of mining areas.

2. Study Area and Datasets
2.1. Study Area

From the Yangquan coal mine, Shanxi Province, China, coal panel 81,403 was selected
as the study area. The strike length of the panel was 1345 m, the dip length of the panel was
226 m, the average mining depth was 446.8 m, the average dip angle of the coal seam was
4◦, and the average coal thickness of the working face was 7.24 m. The working face began
to be mined in October 2019. The topography of the mining area was high in the middle
and low in the north and south. There was low vegetation on the surface of the working
face, but the ground was not completely covered. Three observation lines were arranged
above the surface: a half-strike observation line was arranged, which was line A, and two
dip observation lines were arranged; namely, line B and line C. The ground subsidence
of line A and line C was analyzed in this study. Line A contained 33 effective monitoring
points and line C contained 17 effective monitoring points. The position of the study area,
working face, and measured leveling point is shown in Figure 1. In Figure 1, AK1 and
AK2 are the control points of observation line A; BK1, BK2, and BK3 are the control points
of observation line B; and CK1 and CK2 are the control points of observation line C. The
black framework in Figure 1 is the working face boundary. The geological profile of the
study area is shown in Figure 2. The coal-bearing strata in the mining area were mainly the
Taiyuan Formation and Shanxi Formation, containing 6–15 coal seams. The minable coal
seams in the minefield were 3#, 6#, 8#, 12#, and 15#.
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Figure 2. Vertical section of mining area. # represents coal seam number.

2.2. Datasets

The image data from Sentinel-1A, launched by ESA in 2014, were used. ESA head-
quarters in Paris, France. Single look complex (SLC) images with the interference width
(IW) mode were selected with a spatial resolution of 5 m × 20 m. Four ascending images
covering the study area obtained from 14 June, 26 June, 8 July, and 20 July 2020 were
processed. The external DEM was shuttle radar topography mission (SRTM) data; data
with a 30 m resolution were selected. The parameters of the interference data are shown
in Table 1.

Table 1. Data information of Sentinel-1A for the study area.

Interference
Image Pairs

Acquisition Date
Time-Baseline (d) Datatype

Main Image Secondary Image

1 14 June 2020 26 June 2020 12
IW (SLC)2 26 June 2020 8 July 2020 12

3 8 July 2020 20 July 2020 12

The UAV data collection for the study area was conducted on 14 June and 20 July 2020,
respectively. The UAV flight platform used was the D2000 FEIMA Intelligent Aerial Survey
System, equipped with a visible light D-CAM2000 sensor. The system was a multi-rotor
UAV system with a small size, long endurance, and high-precision mapping application.
The equipment was stored in a special box, which was compact, portable, and convenient
for field work. The route plan and parameter setting were performed using the UAV
manager software. The parameters were set according to the actual condition of the study
area to ensure both data quality and flight safety. The forward overlap was set to 80% and
the side overlap was set to 70%. The ground resolution was designed to be 4 cm. The drone
automatically took off after confirming the flight safety.

The coordinates for and height information of each monitoring point were obtained
by adjustments and inspections using total station and GPS measurement methods; thus,
the leveling data were finally obtained. The leveling data acquisition time in the study area
was 14 June and 21 July 2020, which did not fully match with the acquisition time of the
SAR images and UAV data. It was necessary to interpolate the leveling data according to
the time interval to obtain the leveling data on 20 July 2020. The two periods of data were
then subtracted to obtain the surface subsidence obtained by the leveling method.
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3. Research Methods
3.1. DInSAR Data Processing

Combined with the external DEM, SARscape software was used to process the image
pairs discussed in Table 1. The software was developed by the Swiss SARmap company
based on an ENVI remote sensing image processing platform. The software version used for
this data processing is ENVI5.3. A two-pass approach was used in the processing. The main
processing included the image registration, interferogram generation, adaptive filtering,
coherent generation, phase unwrapping, geocoding, and phase rotation deformation. To
reduce the influence of the time baseline on the image coherence, the data were divided
into three interference image pairs based on the time series in the processing to ensure the
minimum time interval for each interference image pair. The one-dimensional deformation
of the radar line of sight (LOS) was obtained by DInSAR; the LOS deformation was then
converted into the vertical deformation to obtain the settlement result. Finally, ArcGIS was
used to superimpose the difference results and obtain the difference from 14 June to 20 July
2020 (Figure 3). The DInSAR monitoring values for each monitoring point were extracted
and compared with the leveling data. The comparison results of the two are shown in
Figure 4. The “Measured subsidence” in Figure 4 denotes the leveling data. And Line A,
Line B and Line C are marked with letters A, B and C respectively.
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The experimental results showed that the DInSAR monitoring before the ninth moni-
toring point along line A (A9) was consistent with the leveling data. After the A9 monitoring
point, a large subsidence magnitude caused decoherence in the DInSAR and provided
incorrect monitoring results. The actual subsidence increased near the center of the subsi-
dence basin, but the value—as monitored by DInSAR in this region—was still relatively
small. Thus, the entire ground subsidence basin information could not be extracted. The
same result was true for line C. Figure 3 reveals that there was an obvious decoherence
in the center area of the subsidence basin. Thus, the DInSAR monitoring value was quite
different from the leveling data. We concluded that large settlements greatly influenced the
DInSAR monitoring results. The points with small settlements at the edge had small errors
and the points with large settlements at the center had large errors. In the large subsidence
area, the correct subsidence value could not be effectively monitored, which is part of the
characteristics of DInSAR monitoring for small deformations.

3.2. UAV Data Processing

In this study, we processed the original data using UAV manager software. The
dense matching point cloud, DSM, and digital orthophoto map (DOM) were obtained
based on the structure from motion (SFM). Point cloud filtering was performed using
the automated filtering tool in Terrascan software, which was developed by Terrasolid
company, Finland. The filtered ground points were then obtained by an inverse distance
weighted interpolation method to acquire the DEM data for 14 June and 20 July 2020.
The DEM on 14 June was then subtracted from the DEM on 20 July to obtain the surface
subsidence basin in the study area between these times (Figure 5). In Figure 5: Line A,
Line B and Line C are marked with letters A, B and C respectively. The red framework
is the working face boundary, and the blue framework is the mined boundary. The UAV
monitoring values for each point were extracted and compared with the measured leveling
data in Figure 6.
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Figure 6. Comparison of UAV monitoring and leveling data along line A (a) and line C (b).

Large subsidence can be monitored by UAV technology; it is formed in the process of
advancing the working face and the surface above the working face is affected by mining.
By comparing the subsidence obtained by the UAV with the leveling data, we found that
the error was small near the maximum subsidence value and the error was large at the edge
of the basin with the small subsidence. In summary, the UAV photogrammetry technology
could monitor the maximum subsidence and reflect the overall subsidence trend, but it
was not sensitive to a small deformation.

3.3. Data Fusion of DInSAR and UAV

Points with a subsidence value of 10 mm are generally used as boundary points for
surface subsidence basins [33]. However, the observation accuracy of DInSAR technology
can reach the millimeter level. As shown in Figure 7, under the influence of mining, a
subsidence basin larger than the mined-out area is formed on the surface. The numbers in
Figure 7 represent different points on the ground, and it can be seen that the movement
direction of each point in the basin points to the center of the basin. The subsidence value
at the edge of the basin is small; therefore, in order to monitor and analyze the ground
subsidence more completely and accurately, DInSAR technology was used to monitor
the edge of the ground subsidence basin with a small deformation and UAV technology
was used to monitor the center of the ground subsidence basin with a large gradient
deformation.
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3.3.1. Threshold Value of DInSAR Results

The coherence coefficient of the DInSAR interference was used to screen the DInSAR
monitoring values. Baran et al. [34] considered the influence of the coherence coefficient
on the detectable deformation gradient of DInSAR and obtained the following mathemati-
cal model:

Dmax = dmax + 0.002(γ − 1) (1)

where Dmax indicates the ability of the InSAR to monitor the maximum deformation
gradient, γ is the coherence coefficient after interference ranging from 0 to 1, and dmax is
the maximum theoretical deformation gradient that can be detected by DInSAR. It can
be seen from this formula that as the coherence increases, the Dmax increases accordingly.
When γ = 1, Dmax = dmax and the maximum detectable deformation gradient is equal to
the maximum theoretical deformation gradient that can be detected by DInSAR. Various
decorrelation factors such as atmospheric delay and the natural attenuation of scatterers
cause a SAR image loss correlation, making the detectable deformation gradient of DInSAR
generally far less than its theoretical value.

For C-band Sentinel-1A images with a 20 m resolution, the maximum detectable
deformation gradient of the DInSAR is nearly 0 when the coherence coefficient is less than
0.3. Therefore, this value was used as the screening threshold for DInSAR monitoring. The
coherence coefficient of each monitoring point was extracted; the coherence coefficient
of the A12 monitoring point after A9 was less than 0.3. Points closer to the center of the
subsidence basin gave lower coherence coefficients and even exhibited a decoherence
phenomenon. Therefore, DInSAR monitoring was used for the A9 monitoring points and
before (near the basin edge). For line C, the coherence coefficient of the monitoring points
between C11 and C24 was less than 0.3. Therefore, DInSAR monitoring was used for the
C11 monitoring point and before, and at C24 and after.

3.3.2. Threshold Value of UAV Results

The UAV monitoring results for each monitoring point were extracted and the thresh-
old T for the UAV monitoring was obtained based on the formula:

T = ±

√√√√√ n
∑

i=1
(Ui − Wi)

n

2

(2)

where Ui is the UAV monitoring value of the ith monitoring point, Wi is the measured
leveling value of the ith monitoring point, and n is the number of monitoring points. This
threshold was used to screen the monitoring values obtained from the UAV. Points where
the UAV monitoring value was greater than the threshold, which were the furthest away
from the center of the subsidence basin, were selected.

The calculated threshold for the UAV monitoring of line A was 0.162 m. Compared
with the UAV monitoring values at each monitoring point, the value of the A9 monitoring
point was 0.104 m, which was less than the threshold of 0.162 m. In the A12 monitoring
point (after A9), the UAV monitoring value was 0.224 m, which was greater than the
threshold. Therefore, the DInSAR monitoring value was used before the A9 monitoring
point and the UAV was used after that. This brought the fused monitoring value closer
to the measured data. For line C, the threshold for the UAV monitoring was 0.171 m.
Comparing the UAV monitoring values at each monitoring point suggested that only the
UAV monitoring value of monitoring point C11 was greater than the threshold. Considering
the superiority of DInSAR at monitoring the basin edge, the monitoring points between
C11 and C24 were taken from the UAV and the rest were from DInSAR.

As seen from Figure 8, the differences between the DInSAR and UAV monitoring
values before the A9 monitoring point were not significant. After A9, the deformation
gradient of the subsidence basin increased and the difference between the DInSAR and
UAV monitoring values suddenly increased. When approaching the center of the basin, a
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significant difference appeared between the UAV and DInSAR monitoring values, indicat-
ing that the DInSAR was uncertain in the area behind the A9 monitoring point as it had
exceeded its monitoring range and had inaccurate results. Therefore, the A9 monitoring
point was selected as the fusion point; DInSAR was used on and before this point and the
UAV was used after.
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Figure 8 also shows that as the deformation gradient of the subsidence basin increased
between the C11 and C24 monitoring points, the UAV and DInSAR significantly differed.
This indicated that there was uncertainty in the DInSAR between these points as it exceeded
the monitoring range of the DInSAR and resulted in inaccurate monitoring results.

3.3.3. Null Value Processing after Fusion

If there are nulls in the monitoring points between the fused data, the inverse distance
weighting method can be used to determine the monitoring values of these intermediate

points. That is, from the distance dj =
√
(mi − mj)

2 + (ni − nj)
2 between the monitoring

points (mi, ni) and (mj, nj), the null value is calculated as:

Wi =
n

∑
j=1

dj
n
∑

j=1
dj

Wj (3)

where i is the point to be solved, j is the monitoring point around the point to be solved,
and Wi and Wj represent the monitoring values of the corresponding points. As there was
no value between the fusion boundaries of the DInSAR and UAV monitoring points on
lines A and C in this experiment, no inverse distance weighting was required to calculate
the null values.

3.3.4. Coherence Test

To ensure the fused data could accurately express the settlement of the working face,
we needed to verify the calculation results. The fusion and leveling data were regarded as
two samples. The correlation coefficient of the samples was used to analyze the relationship
between the two groups of data, which was shown as:

ρ =

n
∑

i=1
(xi − x)(yi − y)√√√√ n

∑
i=1

(xi − x)2

√
n
∑

i=1
(yi − y)2

(4)
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where, ρ represents the correlation coefficient between the leveling data (xi) and fusion data
(yi), x represents the means of the leveling data, and y represents the means of the fusion data.
For line A, the correlation coefficient between the two datasets was 0.960. For a significance
factor of α = 0.01, there were 31 (n − 2) degrees of freedom and the corresponding correlation
coefficient threshold was 0.442. For line C, the correlation coefficient between the two datasets
was 0.971. For a significance factor of α = 0.01, there were 17(n − 2) degrees of freedom and the
corresponding correlation coefficient threshold was 0.575. As a comparison, both lines A and C
showed a high correlation between the leveling and fusion data. The fusion results for lines A
and C are shown in Figures 9 and 10, respectively.
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4. Experimental Results and Analysis

Based on the leveling data of the study area, the maximum absolute error, mean
absolute error (MAE), and root mean square error (RMSE) were calculated to verify the
accuracy of the method of combining DInSAR and UAV technologies. Table 2 indicates
that before the fusion boundary of the A9 monitoring point, the monitoring accuracy of
the DInSAR was higher than that of the UAV, which also reflected the superiority of the
DInSAR technology in monitoring the edges of the subsidence basins. The UAV had poor
edge expression abilities, making it difficult to monitor small subsidence deformations.
Near the center of basin after the A9 measuring point, the accuracy of the DInSAR was
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far less than that of the UAV. This was because the DInSAR exhibited incoherence when
monitoring a large gradient subsidence, which resulted in inaccurate monitoring. The
UAV could accurately monitor large gradient surface subsidence with its advantage of
monitoring large deformations. This also explained the results for line C; the combination
of the DInSAR and UAV monitoring methods could improve the accuracy of deformation
monitoring in mining areas (Table 3).

Table 2. Accuracy comparison between the single means and fusion monitoring along line A.

Monitoring
Method

Maximum Absolute Error (m) MAE (m) RMSE (m)

Outside
Fusion Border

Within
Fusion Border

Outside
Fusion Border

Within
Fusion Border

Outside
Fusion Border

Within
Fusion Border

DInSAR 0.043 1.427 0.022 0.579 0.025 0.706
UAV 0.123 0.426 0.070 0.150 0.079 0.186

Fusion
monitoring 0.426 0.112 0.159

Table 3. Accuracy comparison between the single means and fusion monitoring along line C.

Monitoring
Method

Maximum Absolute Error (m) MAE (m) RMSE (m)

Outside
Fusion Border

Within
Fusion Border

Outside
Fusion Border

Within
Fusion Border

Outside
Fusion Border

Within
Fusion Border

DInSAR 0.016 1.521 0.018 0.859 0.018 0.995
UAV 0.273 0.166 0.188 0.118 0.211 0.160

Fusion
monitoring 0.272 0.103 0.145

The fused subsidence line reflected that the farther away from the center of the mining
area, the smaller the subsidence value; the closer to the center of the mining area, the larger
the subsidence value. The shape of the subsidence line conformed with the general law of
mining subsidence.

5. Discussion

(1) Through the difference processing of the Sentinel-1A data, the subsidence of the
monitoring points on the working face of the study area was extracted and compared
with the measured leveling data. The comparative results revealed that the image was
incoherent due to settlement and mutation, which significantly influenced the DInSAR
monitoring results. The points with small settlements had small errors. For points with
large settlements in the center of the subsidence basin, the settlement—as obtained
by DInSAR—was still relatively small; thus, the correct settlement value could not be
effectively monitored. This agreed with the characteristics of the DInSAR monitoring
of regions with small deformations.

(2) The monitoring value obtained via UAV photogrammetry was compared with the
measured leveling data. The results indicated that the maximum subsidence could
be monitored using UAVs, which comprehensively reflected the influence range of
the mining subsidence. However, it was difficult to monitor the edges of the mining
areas with a high precision, giving a poor edge expression ability. Therefore, the UAV
technologies could not effectively monitor small subsidence deformations.

(3) Monitoring mining subsidence could be realized through the combination of DInSAR
and UAV technologies. The monitoring values for the DInSAR and UAV were screened,
an appropriate point was found to fuse the two datasets, and a coherence test was
performed to verify the fusion results, which suggested that the fused data were highly
correlated with the measured level data. The RMSE of the subsidence values for
observation line A after fusion was 0.159 m. The RMSE of the subsidence values for
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observation line C after fusion was 0.145 m. The accuracy of the results improved
compared with the results of the DInSAR or UAV, which proved that the determined
fusion threshold values were reasonable. However, as DInSAR technologies can only
obtain one-dimensional deformations in the radar line of sight (LOS), and this study
only realized the monitoring of one-dimensional subsidence of the target area, realizing
the high-precision monitoring of the three-dimensional (3D) deformation of mining
districts by combining InSAR and UAV technologies is worthy of a future study.

6. Conclusions

DInSAR and UAV technologies were combined to monitor the ground subsidence of
the working face of coal panel 81,403 in Yangquan Coal Mine. The following conclusions
were obtained:

(1) The high-precision monitoring ability of DInSAR was primarily reflected in the small
deformation monitoring. In practice, the influence of atmospheric errors, topographic
errors, space–time baselines, and other decoherence factors caused the actual moni-
toring ability to decrease relative to the theoretical monitoring, making it difficult to
obtain large gradient deformation information from the subsidence basins.

(2) The UAV obtained high-precision and high-resolution point cloud data of mining sub-
sidence areas by periodic aerial surveys on the ground. The DEM was then generated
by filtering and a ground point interpolation. Finally, the large gradient subsidence of
surfaces was obtained by superimposing and subtracting the two DEMs. However, its
edge expression ability was poor and unable to monitor small subsidence deformations.

(3) The combination of the DInSAR and UAV technologies could more accurately express
the surface deformation law of high-strength coal mining areas. This not only made use
of the high accuracy of UAV data in the center of subsidence areas, but also retained
the advantages of the DInSAR differential results in edge monitoring. This made up
for the shortcomings of the DInSAR method for the decoherence of large gradient
deformations and UAV technologies in small deformation edge monitoring. The
accuracy of the results obtained from the proposed method was improved compared
with the singular DInSAR or UAV results. Thus, the fusion results were more consistent
with the leveling data. This provides new methods and means for mining subsidence
monitoring and has a certain reference value for geological disaster assessments as well
as preventing geological disasters and the ecological reconstruction of mining areas.
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