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Abstract: Convolutional neural network (CNN)-based remote sensing (RS) image segmentation has
become a widely used method for building footprint mapping. Recently, DeeplabV3+, an advanced
CNN architecture, has shown satisfactory performance for building extraction in different urban
landscapes. However, it faces challenges due to the large amount of labeled data required for model
training and the extremely high costs associated with the annotation of unlabelled data. These
challenges encouraged us to design a framework for building footprint mapping with fewer labeled
data. In this context, the published studies on RS image segmentation are reviewed first, with a
particular emphasis on the use of active learning (AL), incremental learning (IL), transfer learning
(TL), and their integration for reducing the cost of data annotation. Based on the literature review,
we defined three candidate frameworks by integrating AL strategies (i.e., margin sampling, entropy,
and vote entropy), IL, TL, and DeeplabV3+. They examine the efficacy of AL, the efficacy of IL in
accelerating AL performance, and the efficacy of both IL and TL in accelerating AL performance,
respectively. Additionally, these frameworks enable the iterative selection of image tiles to be
annotated, training and evaluation of DeeplabV3+, and quantification of the landscape features of
selected image tiles. Then, all candidate frameworks were examined using WHU aerial building
dataset as it has sufficient (i.e., 8188) labeled image tiles with representative buildings (i.e., various
densities, areas, roof colors, and shapes of the building). The results support our theoretical analysis:
(1) all three AL strategies reduced the number of image tiles by selecting the most informative
image tiles, and no significant differences were observed in their performance; (2) image tiles
with more buildings and larger building area were proven to be informative for the three AL
strategies, which were prioritized during the data selection process; (3) IL can expedite model
training by accumulating knowledge from chosen labeled tiles; (4) TL provides a better initial learner
by incorporating knowledge from a pre-trained model; (5) DeeplabV3+ incorporated with IL, TL, and
AL has the best performance in reducing the cost of data annotation. It achieved good performance
(i.e., mIoU of 0.90) using only 10–15% of the sample dataset; DeeplabV3+ needs 50% of the sample
dataset to realize the equivalent performance. The proposed frameworks concerning DeeplabV3+
and the results imply that integrating TL, AL, and IL in human-in-the-loop building extraction could
be considered in real-world applications, especially for building footprint mapping.

Keywords: building footprint mapping; DeepLabV3+; active learning; incremental learning; transfer
learning

1. Introduction

Worldwide, rapid urbanization and urban revitalization are occurring, and approxi-
mately two-thirds of the world population will live in urban areas by 2050 [1]. Extracting
and updating building footprints is critical for a wide range of sustainable development
applications, including urban planning, population health, and risk assessment [2,3].
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Due to rapid advancements in remote sensing (RS) technology and deep learning
(DL), pixel-level image segmentation using very high resolution (VHR) RS data and Con-
volutional Neural Network (CNN) architectures have become widely used methods for
extracting building footprints, with many studies focusing on developing new models or
improving the accuracy of existing models [2,4–9]. Some CNN architectures have demon-
strated good performance in mapping the building footprints in a variety of landscapes
(e.g., urban areas, suburban areas, urban villages/slums, and damaged buildings) [4,10–13].
More recently, DeeplabV3+, the latest Deeplab architecture, has been increasingly used for
building extraction and multiple land use mapping as it enables refinement of the building
boundaries while incorporating other strategies, such as dilated convolution and spatial
pyramid pooling [5,14–16].

In real-world applications, generating sufficient informative labeled data is an impor-
tant issue for achieving accurate building extraction. Although there are some open-source
datasets for building footprints, such as SpaceNet, Inria Aerial Image, Massachusetts
Building dataset, and WHU aerial building dataset [14,17–21], and some publicly available
pre-trained models, mapping building footprints in a specific study area, especially a large-
scale region, still needs a sufficient number of training and validation samples to calculate
and update the hyperparameters due to landscape differences and the complexity and di-
versity of buildings [6,22,23]. However, manual data labeling is highly dependent on prior
knowledge of RS and geographic information systems (GIS), time consuming, and labor
intensive [24,25]. Additionally, RS images covering the study area should be divided into
an appropriate number of image tiles, with a small size (e.g., 512 × 512 pixels) acceptable
CNN architectures. However, it is commonly unknown which image tiles are informative
for model training. These limitations impede the efficient extraction and updating of
building footprints, particularly when large-scale building footprint mapping is required.
In this case, it is crucial to propose an efficient framework for selecting informative data
and achieving a satisfying building footprint map with fewer labeled data.

Numerous methods have been proposed in the field of artificial intelligence to facilitate
model training with fewer labeled samples from a variety of perspectives, including
active learning (AL), incremental learning (IL), and transfer learning (TL). To begin with,
a framework incorporating AL and deep learning is used to query the unlabeled dataset.
It prioritizes informative unlabeled data for human annotation, thereby lowering the cost
of data annotation and optimizing the performance of models built with fewer labeled
data [26]. Recently, it has been applied to a variety of computer vision tasks, including
segmentation of satellite images [27,28], segmentation of medical images [29,30], and image
classification [31]. Secondly, IL accelerates the accumulation of DL model knowledge by
retaining previous model knowledge and continuously fine-tuning the previous model
with new samples, which has been used in land use mapping [22,32,33]. Thirdly, TL refers
to a method of learning that makes use of pre-trained models’ knowledge to address
target tasks [34]. In RS applications, pre-trained models are often transferred in space
and time for the same task, such as transferring pre-trained CNN architectures for crop
mapping to identify crop types in different regions or periods [35,36], or pre-trained models
are transferred based on their similarity to two distinct tasks, such as transferring CNN
architectures trained on nighttime light intensities to predict poverty [37]. Additionally,
it has been demonstrated that combining AL with IL and/or TL accelerates DL model
training with fewer labeled data in a variety of tasks [33,38]. To our knowledge, no studies
on the performance of AL, IL, TL, and incorporated methods in building footprint mapping
have been conducted to date.

In this context, focusing on building footprint mapping using DeeplabV3+, this study
aims to clarify the effectiveness of AL in reducing the efforts of data annotation and the role
of both IL and TL in facilitating DeeplabV3+ training and propose a human-in-the-loop
framework for building footprint mapping by integrating AL, IL, and TL. It makes three
contributions as follows: (i) We summarize the commonly used AL strategies, IL, and TL
for RS image segmentation, as well as their interrelations. (ii) We propose a framework by
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integrating AL, IL, TL, and DeeplabV3+ and greatly improve the effectiveness of building
footprint mapping. The proposed framework suggests that leveraging the knowledge of
an appropriate pre-trained model and incrementally acquiring knowledge from actively
selected samples can significantly reduce the effort associated with data annotation. (iii) We
preliminarily understand the priority of image tiles in data annotation to achieve an efficient
building footprint mapping.

The remainder of this paper is organized as follows: Section 2 reviews related works
on AL strategies, IL, and TL for RS image segmentation; Section 3 proposes three candi-
date frameworks for improving the effectiveness of building footprint mapping; Section 4
outlines experiments quantifying and comparing the performance of the candidate frame-
works; Section 5 presents the results of the experiments; Section 6 discusses the limitations
of this study and makes some recommendations for future building extraction; Section 7
summarizes the major findings in this study.

2. Related Works
2.1. AL in RS Image Segmentation

AL aims to query data iteratively using a variety of different strategies, select informa-
tive data from an unlabeled dataset for manual annotation in each iteration, and optimize
model performance using fewer labeled data. As a result, AL enables the cost of human
annotation to be reduced. There are several types of query strategies described in the
literature on AL, including uncertainty sampling, query-by-committee, expected model
change, expected error reduction, variance reduction, and density-based methods [39].
Uncertainty sampling is the most frequently used method in machine learning or DL-based
LULC mapping, which selects samples with the greatest prediction uncertainty. For in-
stance, Li et al. (2014) computed margin sampling to select candidate samples for the
margin of the model and enhanced the performance of the model in LULC mapping using
Landsat images and 15 different pixel- and object-based machine learning classifiers [40].
Hamrouni et al. (2020) efficiently constructed a global random forest classifier for poplar
plantations from a local one by using margin sampling and entropy to select informative
samples in new geographical regions and retain the local classifier [41]. Recently, Wang et al.
(2021) investigated landslide mapping using two widely used AL strategies, uncertainty
sampling and query by committee, in conjunction with a support vector machine classifier.
They found that uncertainty sampling significantly reduced the cost of data annotation and
outperformed queries by committee [42]. Robinson et al. (2020) used entropy, min-margin,
randomness, and mistakes to fine-tune the model for high-resolution LULC mapping, and
compared the performance of models to that of models fine-tuned with human-selected
samples [27]. Additionally, random sampling is frequently used as a baseline for evaluating
the contribution of AL strategies to machine learning and DL tasks [27,41].

2.2. IL in RS Image Segmentation

IL aims to incrementally update the model with new data while retaining the knowl-
edge gained from previous data, thereby speeding up the training process. Thus, IL com-
plements the current DL model by continuously accumulating knowledge. It has benefited
land use (LU) mapping based on image segmentation in RS communities in recent years.
For instance, Zhang et al. (2017) constructed a neural network (NN), adjusted the hidden
layer of the NN to incrementally learn from new samples, and obtained an efficient and
accurate model of road type recognition using 1 million RS images [43]. Tasar et al. (2019)
proposed an IL method based on three RS datasets with multiple spectral bands and very
high spatial resolution that enables learning capability for new LU classes while main-
taining dense labeling capability for previous classes [32]. Yang et al. (2020) proposed a
geographical IL model (named GeoBoost) for achieving the building footprint mapping
required by the CNN architecture, a model that combines the U-Net and NASNet-Mobile
to learn from data containing varying geographical information. The proposed method
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is valid for image segmentation when applied to a self-defined building dataset covering
100 cities worldwide with red, green, and blue spectral bands and a spatial resolution of
30 cm [22].

2.3. TL in RS Image Segmentation

TL, which includes inductive, transductive, and unsupervised TL, aims to use the
knowledge gained from an existing task to solve a new task that is related to the existing
one [34]. It is a viable option for reducing the effort required to collect training data and
training time in real-world applications, which has benefited image segmentation in the
RS community [44]. For example, Wurm et al. (2019) examined model transferability by
focusing on slum mapping and transferring the pre-trained FCN model on QuickBird to
Sentinel-2 and TerraSAR-X using an inductive TL approach. The findings indicate that
pre-trained FCNs can significantly improve segmentation accuracy when used in conjunc-
tion with Sentinel-2 [4]. Ulmas and Liiv (2020) trained the ResNet50 on the BigEarthNet
dataset, used the pre-trained model as the encoder for the modified U-Net, and retrained
the modified U-Net on a small dataset to obtain land cover (LC) maps [45]. Zhang et al.
(2020) addressed road extraction on Wuhan satellite data using the ResNet37 model trained
on other two road datasets (i.e., Deepglobe and Spacenet road datasets) and FND-Linknet
as encoder and decoder, respectively [46]. Nowakowski et al. (2021) addressed crop type
classification using VGG16 and GoogLeNet trained on the ImageNet dataset, a computer
vision dataset and fine-tuned the parameters of pre-trained models using training data de-
rived from unmanned aerial vehicles (UAVs) [35]. TL and CNN architectures, in particular,
can be used in conjunction to transfer knowledge and overcome the lack of training data.
However, pre-trained models should be used carefully, and it provides a better starting
point for the final convergence of the target task in case of sufficient data in the source task
and high similarity between source and target tasks [47].

2.4. Interrelations between AL, IL, and TL

More recently, integrating AL, IL, and/or TL has been used to solve the problem with
less resource consumption. For example, Zhou et al. (2017) successfully combined AL
and IL to process biomedical images by fine-tuning the parameters of an existing network,
thereby reducing both annotation effort and training time [38]. Lin et al. (2020) used a
combination of three AL strategies and IL to segment ALS point clouds. They actively
selected unlabeled data for annotation and incrementally fine-tuned the parameters of
PointNet++ [33]. Shi et al. (2019) used a pre-trained multiple-input deep neural network
(MIDNN) model and AL to select samples from unlabeled data and incrementally fine-
tune the previous model to detect atrial fibrillation using electrocardiogram data [48].
These applications imply the interrelations between AL, IL, and TL in image segmentation
tasks: adaptive use of a pre-trained model on the source domain data can provide more
useful knowledge for model training; AL permits iteratively querying the target domain
data using different strategies to select more informative unlabeled data to be annotated;
IL permits accumulation of knowledge obtained from the pre-trained model and newly
labeled data and incrementally updates the parameters in the process of the model training
(Figure 1).
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3. The Candidate Frameworks for Efficient Building Footprint Mapping

Based on the interrelations between AL, IL, and TL (Figure 1) and the human–machine
collaboration method for LULC mapping [27], three candidate frameworks for efficient
building footprint mapping using DeeplabV3+ are proposed (Figure 2).
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Figure 2. Three candidate frameworks for building footprint mapping by incorporating the
DeeplabV3+ model, AL, IL, and TL. In each framework, the blue arrows indicate the steps in the first
iteration; the orange arrow shows the data flow for model evaluation; and the black arrows indicate
the data selection, data annotation, updating labeled dataset, and model re-training per iteration from
the second iteration. The red arrows indicate calling the previous model for fine-tuning. Framework
(a) shows the basic process of incorporating DeeplabV3+ with AL. Framework (b) shows the process
of incorporating DeeplabV3+ with AL and IL. Framework (c) shows the process of incorporating the
DeeplabV3+ with AL strategies, IL, and TL.

They have the following common steps: (1) model training and evaluation in the first
iteration, and (2) AL-based data selection, manual data annotation, collection of all labeled
data, model re-training, and model evaluation in each iteration from the second iteration.

Differently, framework (a) examines the efficacy of various AL strategies and uses
the seed set to initialize the model in the first iteration and trains the model from scratch
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(i.e., constructing and training a new model) in the next iteration; framework (b) examines
the efficacy of using both AL and IL and also uses the seed set to initialize the model in
the first iteration, but keeps the last trained model and fine-tunes it in the next iteration;
framework (c) examines the efficacy of using AL, IL, and IL and uses a pre-trained model
(i.e., a model trained on another dataset) in the first iteration and fine-tunes it in the
next iteration.

Each framework generates a series of trained models (i.e., one trained model per
iteration), which are evaluated using the testing set.

3.1. DeepLabV3+

DeepLabV3+ is one of the most powerful image segmentation networks available [49].
It uses DeepLabV3 to encode multi-view information and decode it using the corresponding
low-level features. DeepLabV3 takes advantage of a combination of atrous spatial pyramid
pooling (ASPP) and variable dilation rates. It improves the resolution of the final feature
map while also dealing with multi-scale objects. This study chose pre-trained MobileNetV2
as the backbone of DeepLabV3. MobileNetV2 is a lightweight Deep Convolutional Neu-
ral Network (DCNN). It accelerates computations by substituting Depthwise separable
convolution for standard convolution. MobileNetV2 also makes use of residual blocks.
The key enhancements to Deeplab models are atrous convolution and ASPP. In DCNN,
a constrained receptive field limits the amount of information gained from the upper layers.

Subsampling techniques such as pooling and convolution are always used to increase
the receptive field and reduce computation. However, traditional subsampling methods
reduce the resolution of the feature map, making it more difficult to segment the image
precisely. Atrous convolution and ASPP address this issue by extracting information at
multiple scales with varying dilation rates. Rather than processing pixels one after the
other, atrous convolution and ASPP jump a fixed number of pixels to efficiently expand the
receptive field while maintaining an acceptable feature map resolution. DeeplabV3+ further
improves atrous convolution by introducing atrous separable convolution. It combines
atrous and depthwise separable convolution to significantly accelerate the computation.
In the case of ASPP, both cascaded and parallel modules can improve performance. In this
project, parallel modules were chosen. Instead of upsampling bilinearly by the fixed
number, DeepLabV3+ upsamples twice and makes use of low-level features from DCNNs
in the decoder. Due to the detailed pixel-level information obtained from DCNN, the
additional decoder module significantly outperforms the naive decoder module.

3.2. Sample Selection

Three frequently used AL strategies were used in this study to iteratively select new
data for manual annotation: margin sampling (MS), entropy (H), and vote entropy (VE).
All three strategies choose informative samples based on Pθ(yi|x), which is the probability
of x being classified as yi in the current model θ. MS is an example of an uncertainty-based
strategy in which the difference between the first and second-largest probability of a sample
is calculated and the samples with the smallest difference are selected [50].

MS(x) = argminx(Pθ(ŷ1|x)− Pθ(ŷ2|x)) (1)

where MS(x) denotes the difference between the first and second-largest probabilities of
the sample, and ŷ1 and ŷ2 denote the labels with the largest and second-largest probabilities,
respectively.

H is another uncertainty-based strategy that ranks all unlabeled data in descend-
ing order by Shannon’s entropy and chooses samples with a high entropy for human
annotation [50].

H(x) = argmaxx −∑i Pθ(yi|x) ∗ ln Pθ(yi|x) (2)

where H(x) denotes Shannon’s entropy and yi ranges over all possible labels of x.
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VE is one of the AL strategies for query-by-committee that assesses the level of
committee disagreement and selects the samples with the highest entropy for human
annotation [50].

VE(x) = argmaxx −∑i
V(yi)

C
∗ ln

V(yi)

C
(3)

where VE(x) denotes the voter entropy, V(yi) is the number of votes that a label received
from the committee member, and C is the number of the committee members.

All unlabeled image tiles in the training set are predicted using the last-trained
DeeplabV3+ to compute the probability per pixel (i.e., the probability that a pixel is classi-
fied as building or non-building). Then, the score values are computed for pixels of each
tile using AL, and a score per image tile is given by averaging the scores of pixels. A fixed
number of unlabeled image tiles are selected by sorting the image tile-level scores and
selecting the tiles with higher scores (Figure 3). Additionally, to evaluate the performance
of AL strategies, random sampling was used and the same amount of unlabeled data was
selected in each iteration.
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3.3. IL and TL

In frameworks (b) and (c), IL is used to fine-tune the CNN model using both AL
strategies and random sampling in each iteration, as well as previously selected tiles. It is
worth noting that the task of this study is a binary classification (i.e., built-up/non-built-up
mapping), and no new classes are introduced during the AL process. Additionally, to
introduce TL in framework (c), we make use of pre-trained CNN models to implement the
initial selection of informative samples via AL strategies and random sampling.

3.4. Model Evaluation per Iteration

Based on the testing set, we evaluated the model performance using mIoU, which
represents the ratio of intersection and union of ground truth and prediction. The mIoU is
calculated as follows [50]:

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0(pji − pii)
(4)
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where k + 1 denotes the total number of classes, pii denotes the number of pixels belonging
to i that are predicted to be class i, pij denotes the number of pixels belonging to i that are
predicted to be class j, and pji denotes the number of pixels belonging to j that are predicted
to be class i.

4. Datasets and Experiments
4.1. Datasets

To illustrate the effectiveness of frameworks (a), (b), and (c), three experiments (i.e.,
experiments (a), (b), and (c)) were conducted using the WHU aerial building dataset, re-
spectively. It is a standard dataset of building footprints consisting of 8188 labeled tiles with
512 × 512 pixels and a spatial resolution of 0.30 m [46]. It includes three datasets: training,
validation, and testing sets (Table 1), which are spatially separated (Figure 4). It includes
tiles with buildings of various densities, areas, roof colors, and shapes (Figure 4) [18].
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Table 1. The number of tiles in the training set, validation set, and testing set of the WHU aerial
building dataset.

Dataset Training Set Validation Set Testing set Total

WHU aerial
building dataset 4736 1036 2416 8188

4.2. Experiments

As illustrated in Figure 2, the seed set was selected from the training set and used to
train the DeeplabV3+ model in experiments (a) and (b) in the first iteration. To introduce TL
in experiment (c), we trained a DeeplabV3+ model with all image tiles of another dataset,
namely WHU satellite building dataset II. This dataset is frequently used in building
footprint mapping; it includes 3135 image tiles in the training set and 903 image tiles in the
testing set covering East Asia cities. All image tiles have the same size (i.e., 512 × 512 pixels)
and spatial resolution (i.e., 0.45 m) [18]. This pre-trained model was applied in the first
iteration of experiment (c) for the initial data selection. Then, using an active and random
selection process, 5% of the dataset was selected at a time for data annotation, and all
the labeled tiles in previous iterations were used to retrain the DeeplabV3+ model. Here,
the portion of data was selected as 5% to query in each iteration subjectively because
selecting one tile per iteration requires a significant amount of time to run the training
and selection processes, and selecting more tiles (e.g., 10% and 20%) per iteration conflicts
with the objective of AL (i.e., reducing the cost of data annotation). In experiment (a), the
DeeplabV3+ model was trained from scratch. The DeeplabV3+ model was fine-tuned in
experiments (b) and (c) using all labeled data to introduce IL and TL. The obtained model
in each iteration was used to segment the image tiles in the testing set, and the mIoU was
calculated by comparing the predicted results to the labels in the testing set. The epoch
was set to 100 for the mIoU computation, the mIoU was computed every 20 epochs, and
the maximum of the five mIoU values was saved. Additionally, the learning rate was set to
0.1 and the batch size was set to 64 during training. The experiments (a), (b), and (c) were
implemented without interruption on two Nvidia Tesla V100 GPUs until all image tiles in
the training set were used. The DeeplabV3+ models used in experiments (a), (b), and (c) all
had the same parameters as those in Table 2.

Table 2. Experiment parameters used in the study.

Parameters Description

GPU Tesla V100 × 2
Image size 320, 320

Loss function Cross entropy loss
Epoch 100

Batch size 64
Learning rate 0.1

Optimizer Stochastic gradient descent (SGD)
Seed set 240 tiles

Active selection size 240 tiles
Max iteration 20

Selection mode VE, H, MS, and random sampling
Parallel computing Distributed data parallel (DDP)

4.3. Comparison of Tiles Selected per Iteration and That of the Testing Set

To determine which image tiles will be prioritized by active learning, the average
percentage of buildings per iteration, the number of tiles without buildings per iteration,
and the average number of buildings per iteration were computed based on labeled tiles
selected for each iteration in frameworks (a), (b), and (c) and three class-level metrics
(i.e., the proportion of landscape, total area, and the number of patches) provided by
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PyLandStats, an open-source Pythonic library for computing landscape metrics [51]. We
also computed the same landscape metrics for image tiles of the testing set to compare the
difference between selected tiles of each iteration (i.e., tiles used for model training in the
next iteration) and the testing set.

5. Results
5.1. Comparison of AL Strategies and Random Sampling in Terms of Model Performance and
Landscape Metrics

Figure 5 presents the performance of the framework incorporating DeeplabV3+ and
AL (i.e., framework (a) in Figure 2) and the values of landscape metrics in each iteration
of experiment (a). The mIoU of DeeplabV3+ increases with the increase in the number of
iterations (i.e., the increase in the number of selected tiles), and AL strategies consistently
outperformed random sampling. This demonstrates that incorporating DeeplabV3+ and
AL selects informative image tiles for DeeplabV3+ model training and thus minimizes
data annotation effort. However, when comparing the three AL strategies, it is difficult to
determine which one is superior. In terms of landscape metrics of image tiles selected by
AL, the average number of buildings (Figure 5a) and the average percentage of buildings
(Figure 5b) have been trending downward with the increase in the number of tiles. The
tiles without building had little or no effect on model training between the 2nd and 17th
iterations (Figure 5c). In contrast, landscape metrics for tiles selected randomly and the
testing set remain relatively constant throughout the sample selection process (Figure 5a–c).
This demonstrates that when incorporating DeeplabV3+ and AL, image tiles with more
building patches and a larger building area are preferred.
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Figure 5. Comparison of AL strategies and random sampling based on WHU aerial building dataset.
The X-axis represents the number of iterations in the experiments (a–c). The left Y-axis represents
the mIoU value of DeeplabV3+ in each iteration. The right Y-axis represents the landscape metric
value of selected tiles per iteration and all image tiles in the testing set. The active selection starts
from the second iteration, and the image tiles with more buildings and the larger area of buildings
are prioritized during the process of active data selection.

5.2. Comparative Analysis of Incorporating IL and TL in Deep Active Learning in Terms of Model
Performance Improvement

Figure 6 presents the comparison of frameworks (a), (b), and (c) in terms of model
performance and the number of image tiles. Compared with framework (a), framework
(b) (i.e., integrating IL with framework (a)) greatly improved the model performance (see
the blue curves in Figure 6). It allows the model performance to be improved rapidly
with increasing sample size, reaching satisfactory accuracy with fewer labeled tiles. This
confirms that accumulating knowledge from previously selected tiles and fine-tuning can
accelerate the model training. Framework (c) (i.e., integrating TL with framework (b))
could achieve the optimal accuracy of building footprint mapping with the fewest labeled
image tiles. The high mIoU values (i.e., 0.85–0.87) in the first iteration for framework (c)
suggest that pre-trained models incorporated the knowledge from other datasets and can
provide a stronger foundation for the next iteration (see the green curves in Figure 6).

Moreover, the three frameworks have a large difference in terms of model performance
when using a small size of labeled image tiles (e.g., from 2nd to 6th iteration). Taking the
4th iteration as an example, the image segmentation accuracies achieved by frameworks
(a), (b), and (c) are 0.86, 0.88, and 0.91, respectively. The segmented results are shown in
Figure 7; the results derived from framework (c) are closer to the labels.
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The red lines indicate the mIoU value of DeeplabV3+ in each iteration derived from framework (a), the
blue lines indicate the mIoU value of DeeplabV3+ in each iteration derived from framework (b), and
the green lines indicate the mIoU value of DeeplabV3+ in each iteration derived from framework (c).
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Figure 7. Illustration of the results of building extraction in the 4th iteration based on three proposed
frameworks on the WHU aerial building dataset. The first column indicates the aerial image. Columns
2, 3, and 4 indicate the segmentation results of DeeplabV3+ with AL; DeeplabV3+ with AL and IL;
and DeeplabV3+ with TL, AL, and IL, respectively. The last column shows the ground truth of each
aerial image. Subfigures (a–d) represent the results for random selection, entropy, vote entropy, and
margin sampling, respectively.

5.3. Comparative Analysis of Incorporating IL and TL in Deep Active Learning in Terms of
Landscape Metrics

Figure 8 presents the mIoU values, the average number of buildings, the average
percentage of building area, and the number of tiles without buildings in each iteration.
Compared with the results of framework (a) (Figure 3), the three landscape metrics selected
by framework (b) and framework (c) keep the same trends of change with the increase in
the number of tiles. During the process of active data selection (i.e., from the 2nd and the
20th iteration), the average number of buildings (Figure 8a–c) and the average percentage
of buildings (Figure 8d–f) have been trending downward, and the tiles without building
had little or no effect on model training between the 2nd and 17th iterations (Figure 8g–i).



Remote Sens. 2022, 14, 4738 14 of 18

1 
 

 
 
Figure 8 

Figure 8. Comparison of performance of the three frameworks based on WHU aerial building dataset
in terms of mIoU, the average number of buildings, the average percentage of building area, and the
number of tiles without buildings. The X-axis represents the percent of training data used for model
training. The left Y-axis represents the value of mIoU in each iteration. The right Y-axis represents
the landscape metric values per iteration.

6. Discussion

This study has described the interrelations between AL, IL, and TL; examined their
efficacy in reducing the number of unlabelled images to be annotated in building footprint
mapping based on DeeplabV3+; and proposed an efficient framework integrating the
DeeplabV3+ with AL, IL, and TL. In this study, three candidate frameworks were proposed
and their performance was evaluated using experiments with a very high spatial resolution
building dataset with a variety of landscape features. By comparing the results of the
three frameworks, this study confirmed that AL can reduce the effort required for data
annotation by selecting informative tiles (i.e., tiles with more buildings and a larger area of
buildings) for the actual model, IL can accumulate knowledge learned by the model, and
appropriate TL can provide a capable initial learner. These findings inspire us to consider
the framework integrating TL, AL, IL, and DeeplabV3+ (i.e., framework (c) in Figure 2) in
future building mapping, especially for large-scale building mapping.
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The good results can be attributed to the following: (1) the light-weighted DeeplabV3+
with MobileNet backbone was able to avoid model overfitting during the iterative process
of model training; (2) the high-quality building dataset used in this study consisted of
manually delineated and checked building footprints; and (3) the pre-trained DeeplabV3+
used in framework (c) was derived from the WHU satellite building dataset II, which is
comparable to the WHU aerial building dataset in terms of landscape features, spatial
resolution, and spectral bands [18]. They have labeled image tiles with the same size (i.e.,
512 × 512 pixels) and close spatial resolution (i.e., 0.45 m and 0.3 m).

This research focused on a binary image segmentation task based on DeeplabV3+,
a straightforward situation involving building and non-building classes. The building
footprint mapping based on other state-of-the-art CNN models and other real-world appli-
cations of binary VHR image segmentation tasks may benefit from the framework proposed
to aid in visual interpretation during labeled data collection. However, several issues should
be considered while using the proposed framework: (1) The representative landscapes
within the whole study area (e.g., residential, commercial, and industrial buildings) should
be considered in the testing set [23]. (2) the spatial independence between training and
testing areas should be considered while splitting data in real-world applications [52]. The
adjacent image tiles often have similar building landscapes, and the spatial correlation of
the image tiles in the two sets affects the model evaluation based on the testing set. (3) the
selection of a pre-trained model should be judicious. An inappropriate pre-trained model
can make the starting accuracy of the model (i.e., the mIoU of the pre-trained model in the
first iteration) even lower than that of the model trained on the seed set [47]. The initial
model with high accuracy allows faster achievement of satisfactory accuracy and reduction
of the gap to the best performance of the model trained on all training data.

In addition, the following aspects may be considered in the future to reduce the effort
associated with data annotation in building footprint mapping. To begin with, incorporat-
ing other AL strategies such as diversity-based strategies or hybrid active learning (HAL)
alongside IL and TL may be an effective way to increase the annotation effort reduction
effectiveness [53]. Secondly, images with a greater number of spectral bands may be used.
The dataset of buildings was used, each of which consisted of image tiles with red, green,
and blue bands. However, satellite image with blue, green, red, and near-infrared (NIR)
bands could be used to compute the Normalized Difference Built-up Index (NDBI) and
Ratio Build-up Index (RBI) [54], which might give the tile-level label using the Gaussian dis-
tribution of indices. Collecting informative tiles at both the pixel and tile levels may be more
efficient in terms of achieving model training with acceptable accuracy. Third, one-shot AL
may be more practical than the iterative process of data selection and model training, as
the iterative framework necessitates more interaction with subject matter experts, as well
as more time spent reading data and training models [55].

7. Conclusions

Based on the interrelations between AL, IL, and TL, this study proposed three can-
didate frameworks for efficient building footprint mapping based on DeeplabV3+ by
incorporating three AL strategies, IL, and TL. They were evaluated on a standard building
dataset, and the comparison of the results of the three frameworks indicates that AL can
reduce data annotation effort by selecting informative unlabelled data to be manually
annotated. The image tiles with more buildings and the larger building area are prioritized
during the data selection process. IL and TL can facilitate the model training to achieve
satisfactory performance by accumulating knowledge and providing a more capable initial
learner, respectively. The findings imply that DeeplabV3+ incorporating AL, IL, and TL
could be considered in future building footprint mapping, especially for large-scale tasks,
and the proposed frameworks could also be applied to other binary image segmentation
tasks in the RS community.
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