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Abstract: The main challenges of remote sensing image scene classification are extracting discrimina-
tive features and making full use of the training data. The current mainstream deep learning methods
usually only use the hard labels of the samples, ignoring the potential soft labels and natural labels.
Self-supervised learning can take full advantage of natural labels. However, it is difficult to train a
self-supervised network due to the limitations of the dataset and computing resources. We propose a
self-supervised knowledge distillation network (SSKDNet) to solve the aforementioned challenges.
Specifically, the feature maps of the backbone are used as supervision signals, and the branch learns
to restore the low-level feature maps after background masking and shuffling. The “dark knowledge”
of the branch is transferred to the backbone through knowledge distillation (KD). The backbone and
branch are optimized together in the KD process without independent pre-training. Moreover, we
propose a feature fusion module to fuse feature maps dynamically. In general, SSKDNet can make
full use of soft labels and has excellent discriminative feature extraction capabilities. Experimental
results conducted on three datasets demonstrate the effectiveness of the proposed approach.

Keywords: remote sensing images; scene classification; knowledge distillation; attention; feature
fusion; self-supervised learning

1. Introduction

Remote sensing images are a valuable data source for observing the earth surface [1].
The rapid development of remote sensing instruments provides us with opportunities
to obtain high-resolution images. Remote sensing technology has been widely used in
many practical applications, such as remote sensing image scene classification (RSISC) [2],
object detection [3], semantic segmentation [4], change detection [5], and image fusion [6,7].
Scene classification is an active research topic in the intelligent interpretation of remote
sensing images, and it aims to distinguish a predefined semantic category. For the last few
decades, extensive research work on RSISC has been undertaken, driven by its real-world
applications, such as urban planning [8], natural hazard detection [9], and geospatial object
detection [10]. As the resolution of remote sensing images increases, RSISC has become an
important and challenging task.

It is important for RSISC to establish contextual information [11]. For example, pixel-
based classification methods can distinguish the basic land-cover types such as vegetation,
water, buildings, etc. When contextual information is considered, scene classification can
distinguish high-level semantic information such as residential areas, industrial areas, etc.
Convolutional neural networks (CNNs) expand the receptive field by stacking convolu-
tional layers. However, the global interactions of the local elements in the image are not
directly modeled when using stacked receptive fields. Differing from CNNs, Vision Trans-
former (ViT) [12] directly establishes contextual information between different patches via
a self-attention mechanism and achieves remarkable performance in the field of computer
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vision. ViT is also used for scene classification [13,14] and achieved state-of-the-art (SOTA).
Unfortunately, self-attention has quadratic computation complexity, and it focuses too
much on global semantic information while ignoring local structural features, such as
those extracted by convolution. The recent work on multi-layer perceptron (MLP) [15–18]
comparisons shows that self-attention is not critical for ViT, as MLP can also directly estab-
lish contextual dependencies and achieve similar accuracy to ViT. MLP achieves local and
global semantic information extraction by alternately stacking MLP layers along spatial
and channels, respectively. It is a competitive but conceptually and technically simple
alternative that does not rely on self-attention. There is less research on MLP in RSISC.
To our knowledge, we are the first to introduce MLP work into RSISC, and we hope that the
insights extracted from this article can help promote the development of MLP in RSISC.

Remote sensing images are extremely different from conventional images due to
their unique capture methods. On the one hand, remote sensing images often have the
characteristics of broad independent coverage, high resolution, and complex components,
which causes difficulties in scene classification [1]. As shown in Figure 1a, each image
contains multiple ground objects. On the other hand, scene images of different categories
may have high similarities. Such “dense residential” and “medium residential” areas,
as shown in Figure 1b, have the same components; the distribution of densities causes
them to be slightly different. Extracting discriminative features is the key to solving such
problems. How to enhance the local semantic representation capability and extract more
discriminative features for aerial scenes remains to be investigated [19]. Another critical
challenge for scene classification is the lack of data due to the difficulty of dataset labelling
and the limitation of sensor characteristics [1]. Although a series of new datasets have been
made public recently, the number of images and object categories are still relatively small
compared with the natural scene dataset. Mining more supervision information becomes a
way to solve such problems.

(a)

(b)
Figure 1. The challenges in RSISC: (a) complex spatial arrangement, and the coexistence of multi-
ple ground objects; (b) high interclass similarity. The images are from the UC Merced Land-Use
dataset [20] and the NWPU-RESISC45 dataset [2].
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When the number of training samples is limited, acquiring more labels to super-
vise the network is an effective solution to alleviate the lack of data. We design a self-
supervised branch that takes the feature maps of the backbone network as labels and uses
self-supervised methods to process the feature maps of the backbone network as the input
of the branch network, and the output of the branch network is used as the prediction
result. Specifically, it includes a self-supervised block and a feature fusion block. The self-
supervised block uses two methods to preprocess the feature maps. One is to shuffle the
feature map after dividing the region. Noroozi et al. [21] argues that solving jigsaw puzzles
can be used to teach a system that an object is made of parts and what these parts are. It is
beneficial for the network to understand the relative position information between different
image patches. The other is to mask the background region [15,22]. Remote sensing scene
images often contain a large amount of background information, and background masking
can mask redundant backgrounds and enhance the discriminative ability of the branch
network. This is an efficient solution to address the challenge of discriminative feature
extraction. Different from SKAL [22], we propose masking the background by dividing the
patch. Subsequent experiments show that this masking method is relatively flexible.

We adopt a feature pyramid network (FPN) [23] structure as the feature fusion block.
The FPN structure has been used extensively in remote sensing [24,25]. It adopts a top-
down method to fuse feature maps from different stages, and high-level features play a
guiding role for low-level features. However, low-level and mid-level features are also
essential for improving the features extracted in deep layers from a coarse level to a fine
level [26]. Thus, we add a bottom-up fusion process to the branch network. Different
locations in the image should have different attention weights, and due to the inherent
density advantage of the image, the adjacent regions tend to have similar attention weight.
Motivated by this, we propose a feature fusion module; it dynamically weights the feature
map by assigning different attention weights to the patches.

The large memory and computation cost of branch structure cannot be ignored, so
we embed the knowledge distillation method in SSKDNet. Inspired by FRSKD [27] and
BAKE [28], the branch labels are served as soft logits to distil knowledge to the backbone,
and the backbone integrates sample-similarity-level soft logits to guide itself. We only
adopt the backbone during inference to reduce the computational load.

The main contributions of this article are summarized as follows:

1. The performance of the Cycle MLP [18] model in RSISC is explored, and the SSKDNet
model is proposed, enhancing the discriminative ability of Cycle MLP through self-
supervised learning and knowledge distillation.

2. We propose a self-supervised learning branch to learn the backbone feature maps.
It includes a self-supervised block and a feature fusion block. The self-supervised
block masks background regions by an attention mechanism and shuffles the feature
map after dividing the region to improve the discriminative ability of the branch.
The feature fusion block dynamically weights the feature maps of different stages,
enhancing the high-level features from a coarse level to a fine level.

3. The backbone integrates the “dark knowledge” of the branch via knowledge distilla-
tion to reduce the computation of the inference. It ensembles the sample-similarity-
level soft logits to guide itself, which fully uses the similarity information between
samples. Moreover, SSKDNet dynamically weights multiple losses via a principled
loss function [29] to reduce training costs.

The remainder of this article is organized as follows. Section 2 presents related work
on RSISC, MLP, self-supervised learning and knowledge distillation. In Section 3, our
proposed model is described in detail. In Section 4, the effectiveness of SSKDNet is
demonstrated through experiments on three datasets. Section 5 discusses the advantages
of our self-supervised branch. Section 6 provides the concluding remarks.
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2. Related Work
2.1. Remote Sensing Image Scene Classification Methods

Early feature extraction methods in RSISC are mainly based on handcrafted feature
extraction. Handcrafted feature-based methods always use some salient feature descriptors.
Typical feature descriptors are scale-invariant feature transformation (SIFT) [30], color
histogram (CH) [31], texture descriptors (TD) [32], and HOG [33]. These methods mainly
extract low-level information from images. CH and TD can represent an entire image with
features, so they can be directly applied for remote scene classification. However, SIFT and
HOG cannot directly represent an entire image because of their local characteristics. In
order to represent an entire image with local descriptors, SIFT and HOG are encoded by
some encoding methods, such as a vector of locally aggregated descriptors [34] and bag-of-
visual-words (BoVWs) [20]. These approaches rely heavily on manual design, and it is not
easy for them to achieve satisfactory results.

With the development of artificial intelligence, deep learning methods have been
widely used in RSISC [1]. Traditional deep learning methods include CNNs, generative
adversarial networks (GANs), and graph convolutional networks (GCNs). For CNNs,
Li et al. [35], Wu et al. [36], and Shi et al. [37] proposed an attention module to
enhance the extraction ability of discriminative features; Shi et al. [38,39] designed a
lightweight module to reduce model parameters; and Bi et al. [19] and Wang et al. [22]
further improved the classification accuracy by a key area detection strategy. For GANs,
Ma et al. [40] proposed a supervised progressive growing generative adversarial net-
work and significantly improved the classification accuracy in the case of limited samples;
Gu et al. [41] introduced a pseudo-labelled sample generation method to solve the ge-
ographic errors of generated pseudo-labelled; and Ma et al. [42] designed a framework
with error-correcting boundaries and a feature adaptation metric. For GCNs, Xu et al. [43]
introduced the use of graph convolution to effectively capture the potential context rela-
tionships of the scene images; Peng et al. [44] proposed a multi-output network combining
GCNs and CNNs. Recently, some novel methods have also been applied to RSISC, such
as the CapsNet [45], neural architecture search [46], meta learning [47], etc. Deep learn-
ing methods have become the mainstream natural image feature extraction method due
to their powerful feature extraction capabilities. They can automatically learn the most
discriminative semantic-level features from the raw images compared with handcrafted
feature-based methods. Furthermore, CNN models are end-to-end trainable architectures
rather than complex multi-stage architectures [22]. However, these methods ignore logits
and potential natural labels. SSKDNet can effectively use this supervision information.

2.2. MLP

While CNNs have been the main model for computer vision [48], recently, the ViT [12]
introduced transformers into computer vision and attained SOTA performance. The trans-
former architecture computes representations for each individual token in parallel and
aggregates spatial information across tokens via a multi-head self-attention mechanism. It
can effectively establish contextual information. Lv et al. [11] explored the performance of
the ViT model in RSISC and proposed the SCViT model. Hao et al. [49] designed a two-
stream swin transformer network for special processing of remote sensing images to make
the network focus on the target object in the scene. However, the computational complexity
of self-attention is proportional to the square of tokens. In a series of works, refs. [50,51]
proposed a computational approach from local attention to global attention to improve this
problem. At the same time, researchers began to consider whether the self-attention mecha-
nism is necessary. Tolstikhin et al. [16] designed a mixed MLP to replace the self-attention
mechanism and achieved better results than ViT. Tang et al. [17] further proposed a sparse
MLP to reduce the computational complexity. Liu et al. [15] designed the spatial gating
unit to enhance the information interaction of tokens, further improving the performance of
MLP. However, the complexity of these methods is still quadratic with the size of the image.
Recently, Chen et al. [18] proposed a Cycle MLP, which achieved linear computational
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complexity through the dynamic shift and achieved competitive results in object detection,
strength segmentation, and semantic segmentation. In SSKDNet, Cycle MLP is used as the
backbone network.

2.3. Self-Supervised Learning

Self-supervised learning of visual representations is a fast-growing subfield of un-
supervised learning. In recent years, many methods have been proposed and applied.
Doersch et al. [52] and Wang et al. [53] proposed to use the location information and pixel
values of the images as supervised labels. Bert [54] applied mask language model training
to the NLP domain. He et al. [55] further verified the effectiveness of this class of methods
by applying self-supervised masks to the computer vision domain. In scene classification,
Zhao et al. [56] introduced a multitask learning framework that combines the tasks of
self-supervised learning and scene classification. Stojnic et al. [57] showed that for the
downstream task of remote sensing images, using self-supervised pre-training on remote
sensing images can give better results than supervised pre-training on images of natural
scenes. These methods have achieved SOTA performance. However, in scene classification,
the effectiveness of self-supervised learning remains to be further explored.

2.4. Knowledge Distillation

Knowledge distillation transfers knowledge from a cumbersome teacher model to a
lightweight student model. The pioneering work [58] performs knowledge representation
of a teacher model using the softmax output layer, which converts the probability into
soft logits with a temperature parameter. Following this, many works proposed new
approaches to knowledge distillation. Tung et al. [59] proposed that similar samples have
pairwise activation similarities and supervised the student network by pairwise activation
similarities of similar samples of the teacher network. Zagoruyko et al. [60] proposed an
attention map distillation method. Ji et al. [27] utilized both feature map distillation and
soft logit distillation.

Knowledge distillation is also used to improve the RSISC accuracy. The discriminative
modality distillation approach was introduced in [61]. Xu et al. [14] proposed an end-to-end
method by employing ViT as an excellent teacher for guiding small networks in RSISC.
Zhao et al. [62] introduced a novel pair-wise similarity knowledge distillation method.
Chen et al. [63] introduced a knowledge distillation framework, which makes the output
of the student and teacher models match. Zhang et al. [64] proposed a novel noisy label
distillation method. The self-distillation learning method has few relevant research works
in RSISC. We propose an end-to-end network architecture that combines the self-supervised
learning method and knowledge distillation.

3. Materials and Methods

This section explains the specific details of the proposed SSKDNet for RSISC. The over-
all structure of the SSKDNet model is displayed in Figure 2. It consists of a backbone and
a self-supervised branch. The backbone adopts Cycle MLP [18], and the self-supervised
branch includes a self-supervised block and a feature fusion block. We present the back-
bone in Section 3.1, the self-supervised branch in Section 3.2, knowledge distillation in
Section 3.3, and loss functions of SSKDNet in Section 3.4.
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Figure 2. Structure of SSKDNet. The backbone feature maps E1–E5 are the baseline structure Cycle
MLP pre-trained on ImageNet; the feature maps T2–T5 represent the output from the self-supervised
block; the feature maps M5–M2 represent the top-down path; and the feature maps P2–P5 are the
bottom-up path.

3.1. Backbone

Cycle MLP [18] is used as our backbone in the feature extraction stage. We denote
stage1-stage5 as f1(.)– f5(.). f1(.) represents patch embedding, which downsamples a
quarter of the original input spatial dimension. f2(.)– f5(.) stack 3, 4, 24, and 3 cycle
fully connected (FC) layers (Section 3.1.1), respectively. The outputs have 96, 192, 384,
and 768 channel dimensions, respectively. After each stage, the spatial dimension is
downsampled by half. The feature maps of the backbone can be formulated as follows.

Ei = fi(Ei−1) (1)

where Ei is the output feature map of fi(.), and Ei−1 is the feature map from the former
layer. Specifically, the feature map E0 is the input image. For the j-th sample, the pre-
dictive probability vector predict1 can be obtained via a softmax function on the logits
zj = [z1

j , z2
j , . . . , zM

j ] ∈ R1×M, where M is the category number. The probability of class k
can be formulated as follows.

predict1(k) =
exp(zk

j )

∑M
i=1 exp(zi

j)
(2)

3.1.1. Cycle MLP

We denote the input feature map as X ∈ RH×W×C, where H, W, C are the height of
the feature map, the width of the feature map and the number of channels. As shown in
Figure 3a, channel FC allows communication between different channels, and it can handle
various input scales. However, it cannot provide spatial information interactions. As
shown in Figure 3b, spatial FC allows communication between different spatial locations.
However, its computational complexity is quadratic with the image scale. As shown in
Figure 3c, Cycle FC allows communication between channels and spatial locations by
adding a shift operation, and it has linear complexity.
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We use subscripts to index the feature map. For example, X i,j,c is the value of the
c-th channel at the spatial position (i, j), and X i,j,: are values of all channels at the spatial
position (i, j). The Cycle FC can be formulated as follows.

CycleFC(X)i,j,: =
C

∑
c=0

X i+δi(c),j+δj(c),c ·W
mlp
c,: + b (3)

δi(c) = (c mod SH)− 1, δj(c) = (b C
SH
cmod SW)− 1 (4)

where SH and SW are stepsizes along with the height and width dimensions, respectively.
δi(c) and δj(c) are spatial offsets on the c-th channel. Wmlp ∈ RC×Cout and b ∈ RCout are
parameters of Cycle FC. Figure 3d shows the Cycle FC when SH = 3 and SW = 1.

Figure 3. (a) Channel FC. (b) Spatial FC. (c) Cycle FC. (d) An example of Cycle FC. This image is
quoted from [18] Notably, the index in Figure 3d has been modified to start from δi(0), and the last
index is δi(8) .

3.2. Self-Supervised Branch

The self-supervised branch includes a self-supervised block and a feature fusion block.
The self-supervised block is shown in Figure 4. This block performs patch embedding on
the backbone feature maps E2–E5, and then feeds the features into the gMLP [15] to extract
local information S2–S5. The final feature maps T2–T5 are obtained by passing the adjacent
S2–S5 through a Cross MLP, which is an information interaction module. Notably, E2–E5
are processed differently. E2 masks a part of the background by background masking. E3
shuffles the regions after dividing the regions by jigsaw puzzle. E4 is fed directly into the
gMLP after patch embedding. E5 is utilized to calculate the attention map. The feature
fusion block is shown at the bottom of Figure 2, which is achieved by a top-down and
bottom-up bidirectional fusion. We use a feature fusion module to fuse adjacent feature
maps and use the feature maps P2–P5 as the self-supervised prediction results.
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3.2.1. Background Masking

Masking background regions is an effective way to extract discriminative features [22].
As shown in Figure 4a,d, we calculate the attention map of the high-level feature map E5.
The attention map attn for each position (i, j) is calculated as follows.

attni,j =
1
C

C

∑
k=1

E5,i,j,k (5)

where E5,i,j,k is the element of E5, and C is the number of channels of E5. We upsample the
attention map attn to the same spatial shape as E2 by the nearest interpolation, record the
positions of 75% of feature points with the lowest attention weights, and then delete the
corresponding tokens in the feature map E2. We pad a vector 1 with an initial value of 1 to
replace the deleted tokens. It is well known that high-level feature maps contain high-level
semantic information, and the network tends to pay more attention to points with higher
activation values. Thus, the channel means of the feature map E5 can effectively calculate
the attention map of the network. Later experiments can also verify this.

Figure 4. The self-supervised block. Hi, Wi, pi are the height, width and patch size of the feature map
Ei, respectively.

3.2.2. Jigsaw Puzzle

We expect SSKDNet to learn more location information about images. Noroozi et al. [21]
proposed to divide the feature map into different regions, erase the edge information and
randomly shuffle the regions. As shown in Figure 4b, we adopt a similar method to divide
the feature map into four regions, erase the edge information of the feature map, and then
shuffle them randomly.
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3.2.3. Cross MLP

Compared with convolution and transformer, gMLP [15] alternately constructs FC
layers along the channel dimension and the token dimension, which can extract global
features easily. As shown in Figure 5, we propose a Cross MLP module to obtain more
complete semantic information from adjacent feature maps. The Cross MLP has two
parallel gMLP with a larger receptive field. It can be formulated as follows.

Xch = Concat(Pemb(X1), Pemb(X2), dim = channel)

Xtok = Concat(Pemb(X1), Pemb(X2), dim = token)

Cross MLP(X1, X2) = FCchannel(gMLP(Xch)) + FCtoken(gMLP(Xtok)))

(6)

where X1 ∈ RH1×W1×C1 and X2 ∈ RH2×W2×C2 are the input feature maps. Pemb(.) rep-
resents patch embedding with patchsize = 1. Pemb(X1) and Pemb(X2) are split tokens,
Pemb(X1) = [x1

1, x2
1, . . . , xN

1 ]
T , Pemb(X2) = [x1

2, x2
2, . . . , xN

2 ]
T , where N is the number of to-

kens. We concatenate Pemb(X1) and Pemb(X2) along the channel dimension and token
dimension to obtain Xch and Xtok by Concat, respectively. gMLP [15] is used for informa-
tion interaction between channels and tokens, and FCchannel and FCtoken are FC layers along
the channel dimension and token dimension to adjust the size of Xch and Xtok, respectively.

Figure 5. The Cross MLP module.

As shown in Figure 4, the feature maps S2–S5 are the input. We can obtain the
self-supervised block output T2–T5 from the following formula.

T t =


Conv(upsample(St + Cross MLP(St, St+1))), t = 2
Conv(upsample(St + Cross MLP(St, St−1) + Cross MLP(St, St+1))), t = 3
Conv(upsample(St + Cross MLP(St, St−1) + Cross MLP(St, upsample(St+1)))), t = 4
Conv(upsample(St + Cross MLP(St, downsample(St−1)))), t = 5

(7)

Before Cross MLP, the feature maps St−1 and St+1 are adjusted to be the same as the
spatial size of the St by upsample or downsample. The upsample adopts nearest interpo-
lation, and the downsample adopts convolution with kernel size (2× 2) and stride = 2,
where Conv(·) denotes a 1× 1 convolutional layer. We adjust the output T2–T5 to the same
size as E2–E5 by upsample and Conv(·).

As shown in Table 1, we show the parameter settings for patch embedding in the self-
supervised block, where pi and ci are patch size and the number of channels, respectively,
and (a)–(d) correspond to the different branchs of Figure 4.
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Table 1. The parameter settings in the self-supervised block.

Branch Input Size Patch Embedding Middle Output Size Output Size

(a) E2(64× 64× 96) p2 = 4, c2 = 96 S2(16× 16× 96) T2(64× 64× 96)
(b) E3(32× 32× 192) p3 = 2, c3 = 96 S3(16× 16× 96) T3(32× 32× 192)
(c) E4(16× 16× 384) p4 = 1, c4 = 96 S4(16× 16× 96) T4(16× 16× 384)
(d) E5(8× 8× 768) p5 = 1, c5 = 96 S5(8× 8× 96) T5(8× 8× 768)

3.2.4. Feature Fusion Block

We dynamically weight adjacent feature maps by setting a weight for each patch of the
feature map. As shown in Figure 6, for the input X1 ∈ RH1×W1×C1 and X2 ∈ RH2×W2×C2 ,
the feature fusion module can be formulated as follows.

X = Fusion(X1, X2) = Pemb(X1) ·W1 + Pemb(upsample(Conv(X2))) ·W2 (8)

where Conv(·) denotes a 3× 3 convolutional layer, and upsample is the nearest interpo-
lation. We adjust X2 to the same spatial and channel shape as X1 by Conv and upsample
(when the spatial size of X2 is greater than X1, replace the upsample with the downsample).
Then the feature maps X1 and X2 are split into fixed-size tokens by Pemb(.). Pemb(X1) =
[x1

1, x2
1, . . . , xN

1 ]
T , and Pemb(X2) = [x1

2, x2
2, . . . , xN

2 ]
T , where N is the number of tokens.

X = [x1, x2, . . . , xN]T is the feature map after fusion of X1 and X2. We adjust the weight
of the tokens by setting a pair of learnable vectors W1 = [w1

1, w2
1, . . . , wN

1 ]T and W2 =
[w1

2, w2
2, . . . , wN

2 ]T . Specifically, the j-th token xj is calculated as follows.

xj = xj
1 × wj

1 + xj
2 × wj

2 (9)

Dividing the feature map into patches allows the network to flexibly assign different
attention weights to patches.

Figure 6. The feature fusion module.

The top-down feature maps M2 −M5 can be formulated as follows.

Mt =

{
upsample(Conv(T t)), t = 5
Fusion(T t, Mt+1), t = 2, 3, 4

(10)

Similarly, the bottom-up feature maps P2 − P5 can be formulated as follows.

Pt =

{
downsample(Conv(Mt), t = 2
Fusion(Mt, Pt−1), t = 3, 4, 5

(11)

The difference between Mi and Pi is that upsample is substituted by downsample,
and the downsample adopts convolution with kernel size (2× 2) and stride = 2.
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For the setting of parameters wj
1 and wj

2, we initialize wj
1 and wj

2 to 1 and normalize
them by the softmax function. It can be formulated as follows.

wj
i =

exp(wj
i)

∑k exp(wj
k)

, ∀i ∈ {1, 2} (12)

The weights are normalized to the range 0 to 1 by softmax to represent the importance
of each input, which is an efficient attention calculation method. In the feature fusion block,
we set the patch size of the patch embedding to 6, 8, and 16 in the top-down approach
and set the patch size to 8, 4, and 2 in the bottom-up approach, respectively. The other
settings are the same as FRSKD [27].

3.2.5. Feature Map Loss

For the backbone feature map Et ∈ RH×W×C, we denote E′t ∈ RH×W×1 as the channel
mean of Et. eavg and estd are the mean and variance of E′t, respectively. The normalization
process can be formulated as follows.

E′t,i,j = (E′t,i,j − eavg)/estd (13)

Similarly, for the branch feature map Pt, we can calculate the normalized feature map
P′t. The feature map loss can be formulated as follows.

LFM
em =

5

∑
t=2

H

∑
i=1

W

∑
j=1

(E′t,i,j − P′t,i,j)
2 (14)

The gradients through E′t,i,j are not propagated to avoid the model collapse issue.

3.3. Knowledge Distillation

Knowledge distillation can be viewed as normalizing the training of the student
network with soft targets that carry the “dark knowledge” of the teacher network. We
combine two knowledge distillation methods so that the backbone can obtain knowledge
from the branch and itself. The knowledge distillation methods include soft logit distillation
and batch distillation.

We denote Z = [z1, z2, . . . , zN ] ∈ RN×M as the logit vectors of the backbone in the
same batch. For the j-th sample, the backbone logit vector zj = [z1

j , z2
j , . . . , zM

j ] ∈ R1×M,
where M is the number of categories, and N is the number of samples in a batch.

3.3.1. Soft Logits Distillation

The soft logit output by the network contains more information about sample than
just the class label. For the j-th sample, the backbone soft logits pτ

j ∈ R1×M can be obtained
by a softmax function, and the soft logits of the k-th class can be formulated as follows.

pτ
j (k) =

exp(zk
j /τ)

∑M
i=1 exp(zi

j/τ)
(15)

The τ is the temperature hyper-parameter which is used to soften the logits. Similarly,
we can obtain the branch soft logits qτ

j ∈ R1×M. The Kullback–Leibler (KL) loss is used to
measure the similarity of two distributions. The KL loss can be formulated as follows.

LKL
logits = LKL(qτ

j ‖ pτ
j ) =

M

∑
i=1

qτ
j (xi)log

qτ
j (xi)

pτ
j (xi)

(16)



Remote Sens. 2022, 14, 4813 12 of 25

3.3.2. Batch Distillation

Samples with high visual similarities are expected to make more consistent predictions
about their predicted class probabilities, regardless of these truth labels. In this part,
the batch knowledge ensembling (BAKE) [28] is introduced to obtain excellent soft logits.
It achieves knowledge ensembling by aggregating the “dark knowledge” from different
samples in the same batch. We can obtain the pairwise similarity matrix A ∈ RN×N by the
dot product of the logits. Ai,j represents the affinity between the samples with indexes i
and j, and it can be formulated as follows.

Ai,j = σ(zi)
Tσ(zj) (17)

where σ( f ) = f /‖ f‖2. We normalize each row of the affinity matrix A to obtain Â,

Âi,j =
exp(Ai,j)

∑i 6=j exp(Ai,j)
, ∀i ∈ {1, 2 . . . N} (18)

For the i-th sample, the soft logits pτ
j ∈ R1×M, we denote the soft logits of samples

within the same batch as Pτ = [pτ
1 , . . . , pτ

N ]
T ∈ RN×M. Based on Equations (17) and (18),

we can obtain the soft logits Qτ = [qτ
1 , . . . , qτ

N ]
T ∈ RN×M aggregated from the sample

information,
Qτ = (1−ω)(I −ωÂ)−1Pτ (19)

where ω ∈ [0, 1] is the weighting factor. For the j-th sample, the batch KL loss can be
formulated as follows.

LKL
batch = LKL(qτ

j ‖ pτ
j ) =

M

∑
i=1

qτ
j (xi)log

qτ
j (xi)

pτ
j (xi)

(20)

Notably, in Equation (20), qτ
j is different from Equation (16). The parameters for

knowledge distillation are set the same as in BAKE [28].

3.4. Loss Function of SSKDNet

The SSKDNet is optimized by minimizing the loss function. Our loss function consists
of three parts, including knowledge distillation loss (Equations (16) and (20)), cross-entropy
loss (Equations (22) and (23)), and feature map loss (Equation (14)). The total loss can be
formulated as follows.

Ltotal = α1 × LKL
logits + α2 × LKL

batch + α3 × Lce1 + α4 × Lce2 + α5 × LFM
em (21)

Lce1 = −
M

∑
k=1

(yk × log(predict1(k))) (22)

Lce2 = −
M

∑
k=1

(yk × log(predict2(k))) (23)

where predict1 and predict2 are the backbone and branch predictions, respectively. Lce1

and Lce2 represent the cross-entropy loss functions from the backbone and self-supervised
branch. α1, α2, α3, α4, and α5 are the weight coefficients. We introduce a multi-task loss
function [29] to reduce the extra cost of hyperparameters. Specifically, we set the weight
coefficients as learnable variables and optimize them using the following formula.

Ltotal =
1

2α1
2 LKL

logits +
1

2α22 LKL
batch +

1
2α32 Lce1 +

1
2α4

2 Lce2 +
1

2α52 LFM
em +

5

∑
i=1

log(αi) (24)
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where α1, α2, α3, α4, and α5 are learnable parameters. This loss function is smoothly differ-
entiable and is well-formed such that the task weights do not converge to zero. In contrast,
directly learning the weights using a simple linear sum of losses would result in weights
that quickly converge to zero.

4. Results

In this section, we conduct comprehensive experiments and analyses on three public
scene classification datasets. We first introduce these datasets, evaluation metrics and
experimental settings. Then, we compare the performance differences between our method
and several SOTA methods. Finally, we perform ablation experiments for each module.

4.1. Datasets

To verify the effectiveness of SSKDNet, we used three commonly used datasets,
including the UC Merced Land-Use (UCM) dataset [20], the Aerial Image (AID) dataset [2],
and the NWPU-RESISC45 (NWPU) dataset [65].

(1) The UCM dataset is one of the oldest datasets in the RSISC domain. It has 21 classes
(“harbour”, “intersection”, “overpass”, “chaparral”, etc.) and 1000 images per cate-
gory extracted from the United States Geological Survey National Map, Urban Area
Imagery collection. The size of each image is 256× 256 pixels. Some sample examples
are shown in Figure 7.

(2) The AID dataset is a high-spatial-resolution dataset for aerial scene classification,
which has a size of 600 × 600 pixels. It has 30 classes (“church”, “medium residential”,
“storage tanks”, “port”, “playground”, etc.). All images are extracted from Google
Earth Imagery. Some sample examples are shown in Figure 8.

(3) The NWPU dataset contains 45 scene classes (“lakes”, “beach”, “church”, “desert”,
“freeway”, etc.) with 700 images in each class, and the size of each image is 256 × 256
pixels. Some sample examples are shown in Figure 9.

Figure 7. Some samples from the UCM dataset.
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Figure 8. Some samples from the AID dataset.

Figure 9. Some samples from the NWPU dataset.

4.2. Evaluation Metrics

The overall accuracy (OA) and confusion matrix were used as the primary quantitative
measures. OA is the proportion of the number of correctly predicted samples in the total
data, which reflects the overall performance of the classification. The confusion matrix is a
two-dimensional table that analyses the between-class classification errors and confusion
degree. Rows and columns represent all samples of a predicted class and samples of a true
class, respectively.

We randomly split datasets using the same training ratio, repeated the experiment five
times, and reported the mean and standard deviation.
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4.3. Experimental Setup

We followed the conventional settings. A total of 80% of images from the UCM dataset
were randomly selected for training, and the remainder data were used for evaluation.
Similarly, we randomly selected 20% and 50% of the images from AID for training and 10%
and 20% of the images of NWPU for training. During training, the image size was set to
256 × 256. The image augmentation methods included random horizontal flipping, random
resized cropping and random erasing. All models were trained for 60 epochs, with a batch
size set to 50 and AdamW (with a weight decay of 0.05) [66] chosen as optimizer. The initial
learning rate was set to 0.0001, divided by 10 every 30 epochs. We used an RTX3090 GPU
in all experiments. The implementation was based on Python 3.8 with Pytorch.

4.4. Comparison with Other Methods

This subsection describes the experimental results on the three remote sensing scene
image datasets in detail. We divided the compared methods into two categories: classic
CNNs-based methods, including GoogLeNet [2], VGG-VD-16 [2], SCCov [67], ResNet50 [68],
ResNet-50+EAM [68], LCNN-BFF [69], BiMobileNet [70], DFAGCN [43], and MF2CNet [71],
and ViT-based methods, including Fine-tune ViT [11] and ET-GSNet [14]. The backbone
Cycle MLP [18] was also included for comparison.

Table 2 shows the comparison results on the UCM dataset. Since there are only 420 test
images in this dataset, many current methods can easily achieve more than 99% accuracy.
The classification accuracy tends to be saturated. Compared with other algorithms, our
method achieves a higher accuracy of 99.62%, with an improvement of 0.1%. The confusion
matrix on the UCM dataset is shown in Figure 10. Only one image in medium residential is
misclassified as tennis courts, while other classes can achieve 100% accuracy.

Table 2. The comparison of OA on the UCM Dataset.

Method Year 80% Training Ratio

GoogLeNet [2] 2017 94.31± 0.89
VGG-VD-16 [2] 2017 95.21± 1.20

SCCov [67] 2019 99.05± 0.25
ResNet50 [68] 2020 98.69± 0.49

ResNet-50+EAM [68] 2020 98.98± 0.37
LCNN-BFF [69] 2020 99.29± 0.24

BiMobileNet [70] 2020 99.03± 0.28
DFAGCN [43] 2021 98.48± 0.42
MF2CNet [71] 2022 99.52± 0.25

Fine-tune ViT [11] 2020 99.01± 0.21
ET-GSNet [14] 2022 99.29± 0.34

Cycle MLP [18] 2022 99.05± 0.39
Ours 2022 99.62± 0.10

Table 3 shows the results on the AID dataset. It can be seen that when the training
ratios were 20% and 50%, our method achieved the best performance of 95.96% and 97.45%,
respectively. Compared with other algorithms, the average OAs are improved by 0.38%
and 0.27%, respectively. The confusion matrix on the AID dataset is shown in Figure 11,
in which 29 categories can achieve more than 99% accuracy. The most confusing categories
are park and square. It can be seen in Figure 8 that the park and square categories have few
distinct features, which makes them difficult to classify.

Table 4 presents the performance of our algorithm on the NWPU dataset. When the
training ratios were 10% and 20%, we achieved results of 92.77% and 94.92%, which are
0.05% and 0.42% higher than the previous best method, respectively. The confusion matrix
of the NWPU dataset is shown in Figure 12. Only two categories are lower than 90%
accuracy, palace and church. These two categories are relatively complex.
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The computation costs (FLOPs) and parameters of the methods GoogLeNet [2], VGG-
VD-16 [2], ResNet50 [68], Fine-tune ViT [11], BiMobileNet [70], MF2CNet [71] and Cycle
MLP [18] are compared with our model. As shown in Table 5, SSKDNet has slightly more
parameters than some baseline models, but we achieve higher accuracy. For instance, when
compared with ResNet50 [68] on the AID dataset, we have an improvement of 3.41%. We
only use the backbone during inference, so the inference speed of SSKDNet is same as Cycle
MLP [18]. Compared with the ViT [11], we have a 1.08% improvement at lower FLOPs
and parameters.

Figure 10. Confusion matrix on the UCM dataset under the training ratio of 80%.

Figure 11. Confusion matrix on the AID dataset under the training ratio of 50%.
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Table 3. The comparison of OA on the AID Dataset.

Method Year 20% Training Ratio 50% Training Ratio

GoogLeNet [2] 2017 83.44± 0.40 86.39± 0.55
VGG-VD-16 [2] 2017 86.59± 0.29 89.64± 0.36

SCCov [67] 2019 93.12± 0.25 96.10± 0.16
ResNet50 [68] 2020 92.57± 0.17 95.96± 0.17

ResNet-50+EAM [68] 2020 93.64± 0.25 96.62± 0.13
LCNN-BFF [69] 2020 91.66± 0.48 94.62± 0.16

BiMobileNet [70] 2020 94.83± 0.24 96.87± 0.23
DFAGCN [43] 2021 − 94.88± 0.22
MF2CNet [71] 2022 95.54± 0.17 97.02± 0.28

Fine-tune ViT [11] 2020 94.90± 0.29 96.49± 0.18
ET-GSNet [14] 2022 95.58± 0.18 96.88± 0.19

Cycle MLP [18] 2022 95.31± 0.15 97.18± 0.17
Ours 2022 95.96± 0.12 97.45± 0.19

Table 4. The comparison of OA on the NWPU Dataset.

Method Year 10% Training Ratio 20% Training Ratio

GoogLeNet [65] 2017 82.57± 0.12 86.02± 0.18
VGG-VD-16 [65] 2017 87.15± 0.45 90.36± 0.18

SCCov [67] 2019 89.30± 0.35 92.10± 0.25
ResNet50 [68] 2020 88.48± 0.21 91.86± 0.19

ResNet-50+EAM [68] 2020 90.87± 0.15 93.51± 0.12
LCNN-BFF [69] 2020 86.53± 0.15 91.73± 0.17

BiMobileNet [70] 2020 92.06± 0.14 94.08± 0.11
DFAGCN [43] 2021 − 89.29± 0.28
MF2CNet [71] 2022 92.07± 0.22 93.85± 0.27

Fine-tune ViT [11] 2020 91.59± 0.19 93.90± 0.20
ET-GSNet [14] 2022 92.72± 0.28 94.50± 0.18

Cycle MLP [18] 2022 91.84± 0.17 94.27± 0.11
Ours 2022 92.77± 0.05 94.92± 0.12

Figure 12. Confusion matrix on the NWPU dataset under the training ratio of 20%.
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Table 5. Comparison of computational costs and parameters on the AID dataset.

Methods FLOPs Parameters 20% Training Ratio

GoogLeNet [2] 1.97 G 6.62 M 83.44
VGG-VD-16 [2] 20.19 G 15.75 M 86.59
ResNet50 [68] 5.37 G 25.56 M 92.57

Fine-tune ViT [11] 21.98 G 86.38 M 94.90
BiMobileNet [70] 0.45 G 29.59 M 94.83

MF2CNet [71] 2.42 G 33.20 M 95.54
Cycle MLP [18] 13.41 G 63.96 M 95.31

Ours 16.14 G 77.15 M 95.98

4.5. Ablation Experiments

We validated the effectiveness of our module through ablation experiments. For each
experiment, we set the same parameters and removed only one module at a time. Ex-
periment 1 removed the background masking module and the jigsaw puzzle module in
Figure 4. Experiment 2 removed the Cross MLP module in Figure 4. Experiment 3 removed
the feature fusion module. Table 6 shows the performance on the AID dataset. When the
background masking module and the jigsaw puzzle module are removed, the classification
accuracy drops by 0.19%. When the Cross MLP module is removed, the classification
accuracy drops by 0.16%. When the feature fusion module is removed, the accuracy drops
by 0.1%. These results demonstrate the effectiveness of our proposed modules.

Table 6. Ablation experiments of modules on the AID dataset.

Plan Architecture 20% Training Ratio

1 Without masking module and
Jigsaw puzzle module 95.79

2 Without Cross MLP module 95.82

3 Without Feature Fusion
module 95.88

4 SSKDNet 95.98

Next, we conducted ablation experiments regarding the loss function on the AID
dataset. The batch distillation loss (20) was removed in Experiment 1, the soft logit loss (16)
was removed in Experiment 2, and the feature map loss (14) was removed in Experiment
3. As shown in Table 7, the accuracy drops by 0.32% when the batch distillation loss is
removed, 0.16% when the soft logits loss is removed, and 0.21% when the feature map loss
is removed. The results showed that each loss is an important element.

Table 7. Ablation experiments of loss function on the AID dataset.

Plan Architecture 20% Training Ratio

1 Without batch distillation loss 95.66
2 Without soft logit loss 95.82
3 Without feature map loss 95.77
4 SSKDNet 95.98

In addition, we also experimented with the masking ratio of the background masking
module on the AID dataset. Figure 13 shows the influence of the masking ratio. We found
that the network accuracy is the highest when the masking ratio is 75%. On the one hand,
since the image is highly dense, the masking area can copy features from surrounding areas
when the masking ratio is low. A high masking ratio can force the branch network to learn
more information from the image. On the other hand, the discriminative regions usually
occupy only a small part due to the high resolution of remote sensing images. A high
masking ratio can make the branch network extract more precise discriminant features.
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Figure 13. The influence of masking ratio.

5. Discussion

In SSKDNet, the backbone and branch are optimized together. On the one hand,
the self-supervised branch learns the feature map of the backbone by feature map loss.
On the other hand, the backbone integrates the “dark knowledge” of the branch via soft
logits. This is a mutual learning process.

We visualized the background masking module on the UCM dataset. Figures 14 and 15
show our background masking results on the original images with 75% and 50% scales, re-
spectively. By the 30th epoch, the network can already accurately determine the background
location. These results show that the branch can detect the background and discriminative
region locations significantly. SKAL [22] uses a similar method to calculate the discrimi-
native regions. The difference is that they can only crop out a continuous square region.
In contrast, we use patch embedding to process each token attention information, and the
extracted tokens can be discontinuous in spatial position, which is relatively flexible.

We also selected the UCM dataset to generate the energy maps of P2–P5 at different
training stages to explore the branch learning process. As shown in Figures 16 and 17,
the attention of the feature map gradually transfers to the discriminative area as the training
progresses. Additionally, even the low-level feature map P2 can focus on the discriminative
area. The results show that our network can extract accurate discriminative regional
features and further verify the effectiveness of the self-supervised branch.
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Figure 14. Example of 75% background masking on the UCM dataset.

Figure 15. Example of 50% background masking on the UCM dataset.
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Figure 16. An example of an energy map for feature maps P2–P5.

Figure 17. An example of an energy map for feature maps P2–P5.

To further demonstrate the classification results of our SSKDNet, we used T-SNE [72]
to map the prediction vectors in the high-dimensional space to the low-dimensional space.
In addition, we visualize Cycle MLP and SSKDNet by randomly selecting 1000 test samples
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on the AID and UCM datasets, respectively. Figure 18a,b represent the visualization results
of Cycle MLP and SSKDNet on the AID dataset, respectively. Figure 18c,d represent the
visualization results of SSKDNet on the UCM dataset, respectively. It can be seen that
SSKDNet has smaller intraclass distance and larger interclass distance than Cycle MLP.

c d

a b

Figure 18. Visualization results of predictions of Cycle MLP and SSKDNet on the AID dataset and
the UCM dataset. (a,b) represent the T-SNE results on the AID dataset. (c,d) represent the T-SNE
results on the UCM dataset.

6. Conclusions

This article investigated the Cycle MLP models for RSISC. We have also proposed the
SSKDNet model to improve the discriminative ability of the Cycle MLP model. First, a self-
supervised branch is introduced, which generates labels through feature maps to alleviate
the problem of insufficient training data. Second, an attention-based feature fusion module
is introduced to fuse adjacent feature maps dynamically. Finally, a knowledge distillation
method is proposed to distil the “dark knowledge” of the branch to the backbone. Moreover,
a multi-task loss function weighting method is introduced to weight the SSKDNet loss
function dynamically. We evaluate the performance of our model on three public datasets,
achieving 99.62%, 95.96%, and 92.77% accuracy on the UCM, AID, and NWPU datasets,
respectively. Results on multiple datasets show that SSKDNet has more competitive
classification accuracy than some SOTA methods, and MLP can achieve a similar effect to
the self-attention mechanism. For future work, we will try to reduce the time consumption
of the SSKDNet method in the training phase and further improve the performance on
small-scale datasets.
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