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Abstract: Current automotive radar technology is almost exclusively implemented using frequency
modulated continuous wave (FMCW) radar in the millimeter wave bands. Unfortunately, incoherent
interference is becoming a serious problem due to the increasing number of automotive radars in
dense traffic situations. To address this issue, this article presents a sparsity-based technique for
mitigating the incoherent interference between FMCW radars. First, a low-pass filter-based technique
is developed to detect the envelope of the interference. Next, the labeled regions where interference
is present are considered as missing data. In this way, the problem of mitigating interference is
further formulated as the restoration of the echo using L1 norm-regularized least squares. Finally, the
alternating direction method of the multipliers-based technique is applied to restore the radar echoes.
Extensive experimental results demonstrate the effective performance of the proposed approach.
Compared to state-of-the-art interference mitigation methods, the proposed method remarkably
improves the quality of radar targets.

Keywords: millimeter-wave radar; frequency modulated continuous wave (FMCW); incoherent
interference; sparse optimization

1. Introduction

Radar is a highly robust and reliable sensor for automotive applications [1]. First,
automotive radars measure the relative distance, velocity, and angle of targets through time
delay and phase shift of radio signals, and therefore can perform well in adverse weather
conditions. Second, automotive radars operate in the millimeter wave band and have a
large bandwidth; hence, a high range resolution of 3 cm can be achieved [2]. In addition,
the radar system is both simple and effective, using linear frequency-modulated continuous
wave (FMCW) technology [3]. Therefore, automotive FMCW radar has the advantageous
benefits of small size, light weight, and low power consumption, and is widely used in
self-driving vehicle applications [4].

Active signal transmission is one of the advantages of radar; however, it can cause
serious interference problems with neighboring radars [5–7]. Similar to non-homogeneous
clutter [8,9], radar target detection performance is degraded by incoherent interference.
The interference probability can be reduced by alternating the parameters of radar wave-
forms [10]. Although different FMCW radars use different parameters, incoherent interfer-
ence can occur when the spectrum of the interfering signal overlaps the transmitted wave
of the radar under test. The incoherent interference produces strong noise and even ghost
targets. Consequently, suppressing the incoherent interference in radar images is one of the
most pressing issues for automotive FMCW radars.

Although the mitigation of incoherent interference remains an open problem, sev-
eral interference mitigation approaches have been proposed. The first type of approach
aims to design radar waveforms to overcome the drawbacks of FMCW radar with a fixed
time–frequency relationship. Orthogonal pseudo-random noise waveforms can be de-
signed to reduce the probability of interference [11,12]. Phase-modulated continuous wave
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(PMCW) [5] and phase-coded frequency-modulated continuous wave (PC-FMCW) [13]
approaches have been successively proposed to avoid interference with FMCW radars.
However, mutual interference can nevertheless appear between PMCW and FMCW radars.

In order to be applicable to FMCW radar images, signal post-processing techniques
have been used to develop interference suppression methods [14]. Brooker [15] deals with
interference by inverse cosine windowing and substituting zeros for the high-amplitude
transient. Before removal of transient interference by substituting zeros over the period of
interference, accurate interference detection is required in order to determine the location
of the interference. Neemat et al. [16] first used image processing techniques to detect
interference in the short-time Fourier transform (STFT) domain, then carried out beat
signal model parameters estimation analysis using autoregression in the STFT. Finally,
they replaced suppressed beat–frequency frames with linear-predicted interpolated ones.
Jung et al. [17] applied an order statistics–constant false alarm rate (OS-CFAR) algorithm
to identify the interference regions. Then, the Kalman filter was used to estimate the
state and predict the signals in the interference region. After filtering of the signal, large
peaks in the time domain beat signal were reduced and the target signal was estimated.
Wang et al. [18] first cut out the interference-contaminated region of the received signal,
then interpolated the signal samples in the cutout segment using the matrix-pencil method.

Unlike the above-mentioned methods of zeroing or reconstructing the signal for
interference-contaminated areas, processing of the entire received signal is another technical
route to interference suppression. Lee et al. [19] considered the low-intensity target signal
as the noise component to be removed and the high-intensity pulse-like interference signal
as the signal to be retained. Using a wavelet transform and thresholding the wavelet
coefficients of the low-pass filter output, they were able to extract the pulse-like interference
signal. Afterwards, the interference signal was subtracted from the original low-pass
filter output to generate the desired target signals. The beat frequencies of real targets
always present a positive frequency, whereas only the noise and the interference are in the
negative half of the frequency spectrum. Thus, Jin and Cao [20] calculated the power of
the negative frequency as a reference of interference and fed the positive frequency and
negative frequency components into the primary and reference channel, respectively, of
an adaptive noise canceler (ANC). Wu et al. [21] proposed an iterative modified threshold
method based on empirical mode decomposition (IMT-EMD) for interference suppression
in FMCW automotive radars, and applied the consecutive mean square error algorithm
to determine the interference-dominated components after decomposing. Specifically, the
interference problem can be considered as the sum of two component signals, i.e., the
target signal plus the interfering signal. Therefore, interference reduction can be achieved
by separating the interfering signal from the received signal. From this perspective, [22]
developed an interference mitigation technique to successfully separate the interference
from the received signal in the tunable Q-factor wavelet transform domain. Uysal [23]
applied morphological component analysis (MCA) [24] theory to decompose the received
signal into interference and target signals. Rock et al. [25] evaluated a convolution neural
network (CNN)-based method for carrying out interference reduction on real FMCW radar
measurements by combining real measurements with simulated interference in order to
obtain input–output data suitable for training their CNN model.

In summary, the incoherent interference problem is a pressing problem in automotive
FMCW radars that considerably negates the inherent advantages of radar by decreasing
the detection probability and reliability of sensors. Although this challenge has been
investigated and several aforementioned approaches have been developed in this field,
there remains a need for an efficient solution that can help to mitigate the strong interference
in radar images. The contributions of this work to this problem can be summarized
as follows:
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• A simple yet effective interference detection technique using a low-pass filter is pre-
sented, and the presence of interference is further determined from the statistics of
the output envelope of this filter. In this way, the results of interference detection can
indicate the presence or absence of interference. We propose an interference mitigation
algorithm that cannot be started in the absence of interference, which significantly
increases real-time processing performance.

• A sparsity model is presented to reduce the incoherent interference by considering
the interference regions as missing data. Using L1 norm-regularized least squares, an
alternating direction method of multipliers (ADMM)-based technique is been derived
to restore the radar echoes.

• In several comparison experiments, dynamic incoherent interference is generated; the
case of dynamic interference is much closer to the real-world self-driving situation.
In experiments with dynamic interference signals, the comparative performance
of different algorithms is comprehensively evaluated and the potential use of the
algorithms in real roads is further analyzed.

• In addition, both the wavelet-based [19] and the MCA-based [23] methods are im-
proved when using our proposed interference envelop detection approach.

• Our extensive experiments demonstrate that the proposed method significantly out-
performs the state-of-the-art methods on both simulated and real radar interference
mitigation tasks.

The rest of this paper is outlined as follows. Section 2 introduces the formulations
related to the incoherent interference between FMCW radars. Section 3 proposes detection
and mitigation of incoherent interference. Section 4 demonstrates the extensive measure-
ments used to compare the proposed techniques with state-of-the-art methods. Section 5
discusses sparsity-based methods, algorithm complexity, and the impact on performance
of interference regions that lead to missing data components. Finally, we present our
conclusions in Section 6.

2. Incoherent Interference

According to recommendations by the International Telecommunication Union (ITU),
most automotive radars currently operate within the 76–81 GHz bandwidth with FMCW
signals [26]. The transmitted radar signal stx(t) can be written as follows:

stx(t) = Atxcos(2π fct + πkrt2), (1)

where t is time, Atx is the amplitude of the transmitted signal, fc is the center frequency of
the radar, and kr is the chirp rate. Suppose a vehicle at a distance R meters from the radar
is driving at a speed v m/s; then, the corresponding radar echo is described as

srx(t) = Arxcos[2π fc(t− ∆t) + πkr(t− ∆t)2], (2)

where Arx is the amplitude of the echo, the delay time ∆t = 2(R + vt)/c, and c is the
velocity of light.

After the dechirp operation, the received signal is expressed as

rt(t) = Atcos(2π∆tkrt + φr), (3)

where At is the amplitude of the received signal and φr is the phase that includes the target
Doppler information. The frequency of the target signal with respect to time t is further
derived as

ft(t) = ∆tkr. (4)

If the neighboring radars and the radar under test have the same transmit waveform,
then coherent interference may appear; false targets are generated when this type of
interference signal enters the radar receiver baseband. Fortunately, this kind of interference
is very unlikely to happen because the phase noise between the radar under test and
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interfering radars is not correlated. The transmitted signal of a neighboring radar is
formulated as

stxi(t) = Atxicos[2π fi(t + t0) + πki(t + t0)
2], (5)

where t0 is the time offset with the radar under test as the reference, Atxi is the amplitude,
fi is the center frequency, and ki is the chirp rate for the neighboring radar.

When the transmitted signal of the neighboring radar passes through the receiver of
the radar under test, the interfering signal after dechirping is

ri(t) = Aicos[2π( fc − fi)t + π(kr − ki)t2 − 2πkit0t + φi], (6)

where Ai and φi are the amplitude and residual phase of the interfering signal, respectively.
According to the above equation, the frequency of the interfering signal with respect to
time t is

fi(t) = fc − fi − kit0 + (kr − ki)t. (7)

It can be seen that the above interfering signal is a linear FM signal, which is called
incoherent interference. The part of the interfering signal with a frequency below half of the
radar receiver sampling frequency is fully sampled, and the rest above it is undersampled.

The total received signal can be considered as the sum of the target signal and the
interfering signal, that is, r(t) = rt(t) + ri(t), as shown in Figure 1. It is worth mentioning
that the power of the target signal is proportional to R−4 while the amplitude of the inter-
ference is proportional to R−a

i , where a is a factor that describes the multi-path transmission
of the interfering signal and Ri is the distance between the interfering radar and the radar
under test. Low-intensity incoherent interference signals have little effect on radar perfor-
mance, and only raise the noise floor. In this work, the intensity of the interfering signal is
considered to be stronger than that of the target signal, which makes it difficult to suppress
the interference. Therefore, 2 ≤ a < 4.

Figure 1. Demonstration of incoherent interference.

3. Proposed Approaches
3.1. Interference Envelope Detection

Interference envelope detection is the first priority in interference mitigation. The
precise location of the interference facilitates the reduction of interference with minimal
computational complexity. After discrete-time quantization sampling, the received signal
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can be described as r(n), where n denotes the nth sample. First, the amplitude information
is obtained by taking the modulus of the radar received signal as

Ar(n) = |r(n)|. (8)

Next, one low-pass finite impulse response filter (LP-FIR) is designed to detect the
envelop. The frequency response of the filter is

H(ω) =
K

∑
n=0

hne−jnω, (9)

where K is the order of the filter and hn is a coefficient of the filter. Thus, the impulse
response of the filter can be written as

h(n) =
K

∑
i=0

hiδ[n− i] = hn, 0 ≤ n ≤ K. (10)

There are many methods that can be used to solve the filter coefficients, such as the
window function method and the frequency sampling method [27]. Here, a minimum
mean square error (MMSE)-based method is applied to design the filter.

To simplify the design, h(n) is expected to be even symmetric and the order K is
set as an odd number. Hence, the discrete-time Fourier transform (DTFT) of h(n) can be
rewritten as

H(ω) = e−jω(N+1)/2
(K+1)/2

∑
n=0

hncos
(

ω

(
K + 1

2
− n

))
, (11)

According to the above equation, the phase response of the filter is φ(ω) = e−jω(K+1)/2.
Thus, a desired filter Hd(ω) can be predefined by combining the phase response φ(ω) with
a desired amplitude response. The design of the filter can then be further expressed as an
MMSE problem:

min
h(n)

(
E(ω) =

∫ π/2

−π/2
| H(ω)− Hd(ω) |2 dω

)
. (12)

The above problem is minimized by applying the partial derivative of E(ω) with
respect to h(n) to obtain the solution,

h(n) =
∫ π/2

−π/2
cos(nω)Hd(ω)dω. (13)

Because the frequency of the interference envelope is low, the normalized cutoff
frequency of the filter is set to 0.2, the passband normalized frequency is 0.005, the or-
der of the filter is set to 19, and a filter coefficient vector is designed: h(n) = 0.01 ∗
[0.59, 1.08, 1.91, 2.99, 4.25, 5.61, 6.94, 8.10, 8.97, 9.43, 9.43, 8.97, 8.10, 6.94, 5.61, 4.25, 2.98, 1.91,
1.08, 0.59]. The amplitude response of the filter is shown in Figure 2.

Applying the designed filter to the amplitude sequence, the envelope A(n) can
be obtained:

A(n) =
N−1

∑
k=0

h(k)Ar(n− k), (14)

where N is the length of the received signal.
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Figure 2. The amplitude response of the designed filter.

3.2. Generating Missing Data for Interference Regions

The method for detecting of the interference envelope described above applies to all
the received signals. Next, it is necessary to determine whether there is interference in the
received signal. Because the target echo signals are superimposed as complex sine waves,
the mean and maximum values of the echo amplitude do not differ very much. However,
according to a large number of experiments, the maximum value of the interfering signal
amplitude is at least three times larger than the mean value of the echo amplitude; thus,
the presence of interference is determined by

labelinter =

{
1 max(|A(n)|) > 3 ∗mean(|A(n)|),
0 otherwise.

(15)

In addition, the labelinter label indicates whether the proposed data interpolation
algorithm is stopped or started, reducing the processing complexity. Then, the nth received
signal sample is further determined as either an affected or unaffected sample according to
the following equation:

z(n) =

{
1 labelinter&|A(n)| > β ∗mean(|A(n)|),
0 otherwise.

(16)

where β is a parameter that depends on the power of the interference.
The interfering areas are then set to be missing data:

y∗(n) =

{
0 z(n) = 1,
r(n) z(n) = 0.

(17)

In keeping with the above equations, Figure 3 presents the detected interference
envelope and the received signal with missing data. As can be seen from the plots, the
proposed method is able to effectively detect four interference regions and accurately
identify the affected samples. As plotted in Figure 4, in the absence of interference the
proposed approach accurately sets labelinter as 0, the received signal is identified as the
target signal, and no further interference detection or mitigation is required.
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Figure 3. In the presence of interference (labelinter = 1): (a) the real part of the received signal; (b) the
amplitude of the received signal; (c) the interference envelope detected by LPF; and (d) the received
signal containing the affected samples. The dashed line in the subplots indicates the mean value of
the corresponding signal.
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Figure 4. In the absence of interference (labelinter = 0): (a) the real part of th received signal; (b) the
amplitude of the received signal; (c) the echo envelope detected by LPF; and (d) the received signal
that does not contain affected samples. The dashed line in the sub-figures indicates the mean value of
the corresponding signal.
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3.3. Data Interpolation Using L1 Norm Least Squares Method

Suppose the length of a signal y(n) is N; then, the M-point (M ≥ N) inverse DFT of
the signal y(n) is defined as follows:

y = Wx, (18)

where

W =
1
M


1 1 · · · 1

1 e
j2π
M · · · e

j(M−1)2π
M

...
...

...

1 e
j(N−1)2π

M · · · e
j(N−1)(M−1)2π

M

,

y = [y(0), y(1), · · · , y(N − 1)]T, and the DFT coefficients x = [x(0), x(1), · · · , x(M− 1)]T.
Therefore, the DFT coefficient is expressed as

x = WHy, (19)

with

WH =


1 1 · · · 1

1 e
−j2π

M · · · e
−j(N−1)2π

M

...
...

...

1 e
−j(M−1)2π

M · · · e
−j(M−1)(N−1)2π

M

,

and WWH = I.
In the above discussion the target signal is in the form of a complex sine wave, and is

therefore sparse in the DFT domain. Thus, the problem of missing data imputation can be
formulated with the L1 norm as

arg min
x

‖x‖1,

s.t. y∗ = z(Wx),
(20)

where y∗ = [y∗(0), y∗(1), · · · , y∗(N − 1)]T, and z = [z(0), z(1), · · · , z(N − 1)]T.
The target signal with missing data can be reconstructed by minimizing the objec-

tive function:

J(x) =
1
2
‖y∗ − z(Wx)‖2

2 + λ‖x‖1, (21)

where λ is the parameter for the L1 norm term.
The above object function can be further rewritten as

arg min
x

J(x),

s.t. x− v = 0,
(22)

where v is a new variable vector.
Using the augmented Lagrangian method, the above problem is formulated as

LA(x, λ, µ) = J(x) + λ(x− v) +
µ

2
‖x− v‖2

2, (23)
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where µ ≥ 0 is a penalty parameter. ADMM is applied to perform minimization with
respect to each of x and v to obtain the following iterations:

xk = arg min
x

λ‖x‖1 +
µ

2
‖x− vk − dk‖2

2,

vk = arg min
v

1
2
‖y∗ − z(Wxk)‖2

2 +
µ

2
‖xk − v− dk‖2

2,

dk+1 = dk − (xk − vk),

(24)

where k is the iteration number and dk is an intermediate variable vector.
First, minimization with respect to x is implemented using a soft thresholding:

xk = soft
(

vk + dk,
λ

2µ

)
, (25)

where the soft thresholding operation is defined as

soft(x, ø) = x ·max(1− ø/|x|, 0).

Next, minimization with respect to v is a constrained least squares regularization.
Because WWH = I, the solution can be simplified as

vk = WH(y∗ − z(Wxk)). (26)

Finally, after convergence of the solution, the estimated received signal is obtained by

ŷ = Wxk. (27)

3.4. Implementation Details

Figure 5 summarizes the procedures of the proposed techniques. Each echo is pro-
cessed one by one, then the DFT-based image focusing algorithm is used to focus the radar
target, and finally a radar image without interference contamination is obtained. In the
radar image focusing algorithm, the data focus is directed to the the ranging and Doppler
domains by applying the Fast Fourier Transform (FFT) method. The vectors vk and dk
are set as zero for the first iteration. Because the intensity of radar echoes is small, the
parameters in Equation (24) can be set according to the mean value of the radar echoes;
specifically, λ can be set to 1 and µ can be set to be proportional to the inverse of the
mean intensity of the received signal. Additionally, the iteration number for missing data
imputation can be set as 20, which produces satisfactory performance.
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Figure 5. The procedures of the proposed techniques.

4. Validation Experiments

In the following experiments, the proposed technique is compared with three state-
of-the-art methods. The first approach is one of the simplest ubiquitous signal processing
methods, substituting zeros for the interference regions [15]. The second one represents a
more advanced signal processing method using a three-level Haar wavelet with the hard
thresholding approach [19]. The final comparison is a sparsity-based MCA method that uses
DFT and STFT bases to separate the interfering and target signals, respectively [23]. In the
following comparison experiments, the parameters of the wavelet-based and MCA-based
methods are set according to references [19] and [23], respectively.

Furthermore, both the wavelet-based [19] and MCA-based [23] methods are improved
using the proposed interference envelop detection. Specifically, based on the results of
our proposed interference envelope detection method, only the signals in the interference
regions are replaced by the outputs of the wavelet and MCA methods.

The comparisons are divided into three groups: stationary interference experiments,
dynamic interference experiments, and real radar interference experiments. The first two
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types of experiments are implemented by simulations. In the following experiments, both
the radar under test and the interfering radar are static and the targets are moving. For the
stationary interference experiments, the timing between the victim and interfering radars is
synchronized, and the jamming appears in the same area of the received signal. In practice,
timing synchronization between radars rarely occurs due to relative motion between the
radar under test and the interfering radar, making dynamic interference common. As a
result, interference appears in different regions in the received signal of the radar under
test. Due to the constraints of the experimental conditions, the radar senors in the described
experiments are static; however, the timing between the victim and interfering radars is set
asynchronously in order to simulate dynamic interference.

Additionally, thermal noise is added to the simulated signals. The power of the noise
was calculated as Pnosie = κTeB, where κ is Boltzman’s constant, Te is the noise temperature,
and B is the bandwidth of the radar receiver.

In the case of one-dimensional signals, the signal to interference plus noise ratio (SINR)
is used to objectively evaluate the performance of interference suppression. However, for
two-dimensional radar images, the radar target is focused through two dimensional range
and Doppler domains. Therefore, the peak intensity of the target to interference plus noise
ratio (PTINR) is defined here as an objective evaluation index for interference mitigation.
Using the peak intensity of the focused target, the PTINR is defined as

PTINR =
Ptarget

Pinterference + Pnoise
, (28)

where Ptarget is the peak intensity (power) of the focused target and Pinterference is the power
of the interference.

In addition, the subjective evaluation of radar images is mainly based on the quality of
the focused target, sidelobes of the focused target, noise floor level, and residual interference
distribution as comparative details.

4.1. Simulations

Table 1 provides the simulation parameters for the incoherent interference experiments.
Two interfering sources are developed with different start frequencies and chirp rates. The
distances of the two interfering sources are 30 m and 50 m from the radar under test,
respectively. All the radar sensors are active at the same time. The RCS is 1 m2 and 3 m2 for
two radar targets at 15 m and 30 m, respectively. The target located at 15 m is moving at
5 m/s, while the other target is static. As shown in Figure 6, there are four interference
regions present in the received signal.

Figure 7 illustrates the comparative stationary interference experiments. According
to Figure 7a, the stationary interference is distributed on the axis of zero velocity of the
focused image, causing the second target to be completely swamped by the large amount
of strong noise generated on this axis. Traditional signal processing-based methods such as
the ANC and wavelet-based methods are able to suppress the interfering signal to a certain
extent. However, the interfering signal is much stronger than the target signal, making it
difficult to suppress the interference by traditional signal processing methods, as shown in
the plots. Figure 7c illustrates that the wavelet-based approach has difficulty suppressing
this strong interference. Using the proposed interference envelope method, the improved
wavelet-based method does not perform better; see Figure 7d. This means that the reference
regions have not been successfully recovered. Although the MCA method provides slightly
better results (Figure 7e), there is a considerable amount of interference energy left in the
zero velocity axis, resulting in failure to detect the second radar target. After introducing
the proposed interference envelope detection method to improve the MCA method, both
targets are successfully recovered and the interference signal energy is more effectively
eliminated, as shown in Figure 7f. Figure 7g shows that the simple zero-setting method
avoids the interfering signal. However, due to the loss of the target signal in the interfering
regions, it leads to strong sidelobes in the focused image. According to Figure 7h, the
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proposed method produces a promising focused image that is very close to the ground
truth. In many real-world vehicle scenarios, the primary and interfering radars have
relative motion, producing dynamic interference. Compared with stationary interference,
the interference energy from dynamic interference is distributed in different areas on the
focused image; see Figure 8a. As the interference energy is distributed in different regions
of the image, the interference intensity is relatively lower, and the different interference
suppression algorithms consequently have better performance for dynamic interference
suppression, as shown in Figure 8. Similarly, the proposed interference envelope detection
approach greatly improves the performance of the MCA method; see Figure 8f. Again, as
illustrated in Figure 8h, the proposed approach produces the most focused radar image.

Table 1. Simulation parameters for interference experiments.

Radars Parameters Values

Common parameters
Bandwidth 500 MHz

Sampling rate 10 Msps
Chirp number 128

Radar under test
Start frequency 77 GHz
Chirp duration 51.2 µs

Chirp rate 9.76 × 1012 Hz/s

Interferer 1
Start frequency 77.7 GHz
Chirp duration 25.6 µs

Chirp rate −1.95 × 1013 Hz/s
Distance 30 m

Interferer 2
Start frequency 76.9 GHz
Chirp duration 17.07 µs

Chirp rate 2.93 × 1013 Hz/s
Distance 50 m

Figure 6. The received signal with interference: (a) the real part of the received signal and (b) the
magnitude of the received signal. The regions marked by circles in (b) are the envelopes in which
interference appears.
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Figure 7. Comparisons on stationary interference simulations. (a) Original image; (b) Interference-
free image; (c) Lee et al. [19]; (d) Lee et al. [19] + Proposed interference detection; (e) Uysal [23];
(f) Uysal [23] + Proposed interference detection; (g) Brooker [15]; and (h) The proposed method.
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Figure 8. Comparisons on dynamic interference simulations. (a) Original image; (b) Interference-
free image; (c) Lee et al. [19]; (d) Lee et al. [19] + Proposed interference detection; (e) Uysal [23];
(f) Uysal [23] + Proposed interference detection; (g) Brooker [15]; and (h) The proposed method.
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Comparisons of object evaluation were conducted as well. The results are reported
in Table 2. The larger PTINRs along with the absence of ghost targets indicate the better
suppression performance of the associated method. The proposed method has the best
performance index in the simulated experiments. Because the static target appears on
the zero velocity line axis of the focused image, and is therefore covered by strong inter-
ference energy, its PTINR value is −6.1 dB. The wavelet-based method and MCA-based
method have limited improvement on this index, while the proposed method can realize
an improvement of up to 19.1 dB, a total improvement of 25.2 dB, which is beneficial for
subsequent target detection and tracking.

Table 2. Comparisons of PTINRs via simulations. The first number in each term is the result of
stationary interference and the second number is the result of dynamic interference.

Methods Target 1 Target 2
(dB) (dB)

Original image 25.6, 29.8 −6.1, 6.2
Ground truth without interference 36.8 25.5

Lee et al. [19] 24.9, 30.2 −3.3, 14.9
Lee et al. [19] + the proposed

interference detection 26.5, 30.8 −2.7, 20.3

Uysal [23] 26.4, 28.9 3.1, 12.5
Uysal [23] + proposed
interference detection 28.6, 35.8 17.7, 23.7

Brooker [15] 19.2, 19.3 15.1, 23.1
The proposed method 31.2 , 36.4 19.1, 24.2

4.2. Real Radar Field Experiments

As shown in Figure 9, real radar interference experiments were conducted using
two Texas Instruments AWR1642 mm wave radars and an electric bicycle traveling at
approximately 5 m/s forward or backward relative to the radar under test. The distance of
the interfering radar was 4 m. The experiment parameters are presented in Table 3.

Figure 10 demonstrates the collected radar data with strong interference. The signal of
the sine wave in the plot is the radar target signal, and the signal that changes suddenly
and quickly with high intensity is the interfering signal. This coincides with the theoretical
derivation in Section 2.

Table 3. Radar parameters used for measurements.

Radars Parameters Values

Common parameters Start frequency 77 GHz
Bandwidth 547.5 MHz

Radar under test

Chirp number 128
Sampling rate 10 Msps

Chirp duration 36.5 µs
Chirp rate 1.5 × 1013 Hz/s

Interferer

Chirp duration 18.25 µs
Chirp rate 3.0 × 1013 Hz/s

Sampling rate 6.25 Msps
Distance 4 m
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Figure 9. Real radar field experiments.

Figure 10. The received signal during the measurement experiments: the plots on the top row is the
real part of the signal, and the plots on the bottom row is the magnitude of the received signal.

Figure 11 presents the comparison results of the real radar interference experiments.
The stationary targets are distributed on the axis of zero velocity of the focused image,
however the moving target is not visible due to strong interference. Compared to the
other approaches, the proposed method has the best performance. As shown in Figure 11a,
the strong interference energy is distributed over the focused radar image. The main
reason for this is that the interfering signal does not repeat at the same location in each
received signal with dynamic interference. Compared to the simulated results, the zeroing
method produces stronger sidelobes on the focused image, which leads to difficulty in
distinguishing between real moving targets; see Figure 11g. The evaluation results reported
in Table 4 indicate that the proposed method has the best performance index in the real
radar experiments.
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Figure 11. Comparisons using real radar data. (a) Original image; (b) Interference-free image; (c) Lee
et al. [19]; (d) Lee et al. [19] + Proposed interference detection; (e) Uysal [23]; (f) Uysal [23] + Proposed
interference detection; (g) Brooker [15]; and (h) The proposed method.
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Table 4. Comparisons using measured real radar data.

Methods PTINRs (dB) Ghost Targets

Original image 5.1 Yes
Ground truth 24.6 No
Lee et al. [19] 5.9 No

Lee et al. [19] + the proposed interference detection 10.3 Yes
Uysal [23] 3.4 Yes

Uysal [23] + the proposed interference detection 15.7 No
Brooker [15] 15.1 Yes

The proposed method 21.2 No

5. Discussion
5.1. Beyond Sparsity-Based Methods

Certain radar targets have a large radar cross-section (RCS), such as metal buildings on
the side of a road, while others have a small RCS, such as pedestrians. All in all, the dynamic
range of the received signal is large. Therefore, it is difficult to extract weak targets in an
interference environment. Unfortunately, sparsity-based methods have a general drawback
in that they tend to remove weak signals as noise. As shown in Figures 7, 8 and 10, the
traditional sparsity-based method [23] can only recover strong targets, and loses weak
targets. The proposed method, although retaining a sparse framework, proposes an
interference detection method that enables signal recovery only for the region where the
interference occurs, thus effectively maintaining the signal energy and suppressing the
interference signal at the same time.

5.2. Computational Complexity

The complexity of the interference suppression algorithm needs to be as small as pos-
sible in order to be suitable for the signal processor of existing automotive millimeter wave
radar chips. Therefore, interference-contaminated region detection-based methods have
advantages in terms of computing complexity. Zero-based detection methods simply set
the interference-contaminated regions to zero, and thus have the least complexity. However,
the focused target obtained with such methods loses information and has many sidelobes.

Except for the zeroing method, the wavelet-based method [19], the MCA-based
method [23], and the proposed technique are all transform-based approaches, meaning
that the computational complexity depends mainly on forward and inverse transformation.
In general, the wavelet-based method has the lowest complexity, followed by the proposed
method. The MCA method has the highest computational complexity due to the use of
both STFT and DFT [23].

5.3. What Is the Percentage of Samples Affected by Interference for Which the Proposed Technique
Remains Valid?

In the proposed technique, a greater proportion of interfering samples produce fewer
effective received samples, thereby reducing range resolution and signal-to-noise ratio.
Therefore, we conducted experiments to investigate the performance of the proposed
technique with respect to the differing percentage of interfering samples. According to
Figures 12 and 13, when the percentage of interfering samples is below 50%, the perfor-
mance of the proposed method is satisfactory. The interference signal is generally in the
shape of a burst in the time domain, and rarely occupies most of the received signal,
allowing the proposed method to cope with the interference in most cases.
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Figure 12. The performance of the proposed technique with respect to different percentages of
interfering samples.
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Figure 13. Comparison of range and Doppler profiles in terms of different percentages of interfer-
ing samples.



Remote Sens. 2022, 14, 4817 22 of 23

6. Conclusions

In this paper, an effective and feasible interference suppression technique is proposed
for the currently important and challenging issue of incoherent interference between auto-
motive FMCW radars. A detailed derivation of the processing of incoherent interference
signals is presented. A precise interference envelope detection method is proposed based
on a well-designed low-pass filter. This method can avoid interference suppression in cases
where the signal is received without interference, thereby reducing the required amount
of computation. This work considered the interference problem as a missing radar data
problem; the radar target signal is superimposed in complex sinusoidal waves with good
sparse characteristics in the DFT domain. Thus, the radar target signal polluted by the
incoherent interference can be successfully recovered based on the L1 norm least squares
method. Using the proposed method, the radar target can be perfectly focused even in
cases of strong interference. Moreover, two current state-of-the-art methods, namely, the
wavelet-based and MCA-based methods, are improved when using the proposed inter-
ference envelope detection method. Extensive experiments demonstrate the promising
performance of the proposed techniques.

This work shows the effectiveness of suppressing interference in the range and Doppler
domains. However, this work does have limitations; in particular, it does not investigate
interference in spatial multi-channel data. Our future work will focus on interference
reduction for spatial multi-channel radar data.
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