
Citation: Zheng, Z.; Hu, Y.; Qiao, Y.;

Hu, X.; Huang, Y. Real-Time

Detection of Winter Jujubes Based on

Improved YOLOX-Nano Network.

Remote Sens. 2022, 14, 4833.

https://doi.org/10.3390/rs14194833

Academic Editors: Anup Basu,

Chengcai Leng and

Hemanth Venkateswara

Received: 19 August 2022

Accepted: 23 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Real-Time Detection of Winter Jujubes Based on Improved
YOLOX-Nano Network
Zhouzhou Zheng 1 , Yaohua Hu 2, Yichen Qiao 1, Xing Hu 1 and Yuxiang Huang 1,*

1 College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
2 College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
* Correspondence: hyx@nwsuaf.edu.cn; Tel.: +86-029-87091111

Abstract: Achieving rapid and accurate localization of winter jujubes in trees is an indispensable step
for the development of automated harvesting equipment. Unlike larger fruits such as apples, winter
jujube is smaller with a higher density and serious occlusion, which obliges higher requirements for
the identification and positioning. To address the issues, an accurate winter jujube localization method
using improved YOLOX-Nano network was proposed. First, a winter jujube dataset containing a
variety of complex scenes, such as backlit, occluded, and different fields of view, was established
to train our model. Then, to improve its feature learning ability, an attention feature enhancement
module was designed to strengthen useful features and weaken irrelevant features. Moreover, DIoU
loss was used to optimize training and obtain a more robust model. A 3D positioning error experiment
and a comparative experiment were conducted to validate the effectiveness of our method. The
comparative experiment results showed that our method outperforms the state-of-the-art object
detection networks and the lightweight networks. Specifically, the precision, recall, and AP of our
method reached 93.08%, 87.83%, and 95.56%, respectively. The positioning error experiment results
showed that the average positioning errors of the X, Y, Z coordinate axis were 5.8 mm, 5.4 mm, and
3.8 mm, respectively. The model size is only 4.47 MB and can meet the requirements of winter jujube
picking for detection accuracy, positioning errors, and the deployment of embedded systems.

Keywords: winter jujubes; YOLOX-Nano; attention feature enhancement; 3D positioning; DIoU loss

1. Introduction

Winter jujubes (Ziziphus mauritiana) are planted on a large scale in China due to
its good taste and rich nutritional value. Owing to the complex environment and the
randomness of fruit on unstructured jujube orchards, winter jujube harvesting relies heavily
on manual picking, which is time consuming and high intensity. Therefore, it is urgent to
develop an intelligent winter jujube harvesting device.

Intelligent fruit harvesting devices rely heavily on intelligent fruit recognition and
positioning algorithms. Many works based on machine vision have been reported covering
apples [1,2], kiwifruits [3], tomatoes [4], etc., which can be divided into two categories,
including traditional image-processing methods and deep learning-based methods. For in-
stance, Wang et al. [5] described an apple recognition method using the K-means clustering
algorithm which achieved the extraction of occluded apple candidate regions in natural
scenes. Further, an apple recognition system using a vector median filter and mathematical
morphology operation was built. The method reached a recognition accuracy of 89% with
an average recognition time of 0.352 s per image [1]. Tian et al. [6] proposed a graph-based
segmentation algorithm combined with the depth information of test images to obtain the
apples’ location information, which reached the recognition rate of 96.61%. Traditional
image-processing methods have difficulties in obtaining the optimal parameters to adapt
to complex orchard environments. To solve this issue, deep convolution neural networks
(DCNN) have made remarkable progress in parameter optimization and feature learning
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and have been widely used in fruit classification and recognition [7]. Existing DCNN
approaches can be roughly divided into three categories: image classification [8], object
detection [9], and image segmentation [10], in which object detection-based methods are
widely applied to locate fruits for intelligent picking.

Deep learning-based methods have been widely applied in many detection fields,
including industrial defect detection [11,12], medical lesion detection [13,14] and quality
inspection [15,16]. In recent years, object detection network-based deep learning has had
tremendous developments and a series of representative networks including R-CNN [17],
Fast R-CNN [18], YOLO [19,20], and SSD [21] have been reported, which can be divided into
one-stage and two-stage networks. Two-stage object detection networks, such as R-CNN,
Fast R-CNN, and Faster R-CNN, mainly include two steps in which region recommendation
is utilized to generate regions that may contain targets, and then CNN is applied to classify
these regions and provide a confidence. Many works about two-stage object detection
networks are reported on fruit-picking fields. For instance, Fu et al. [7] achieved an average
precision of 89.3% and recognition speed of 0.181 s per image in detecting apples using
the Faster R-CNN-based architectures of VGG16. In addition, Faster R-CNN was utilized
to estimate the locations for automated apple harvesting by identifying branches, apples,
and trunks in the natural environment [22]. The aforementioned two-stage networks can
accurately detect the locations of apples, but the recognition efficiency cannot meet the
requirement of real-time localization due to its cumbersome region recommendation. To
remedy the issue, one-stage networks abandoned regional recommendations and extract
features of input image to predict the locations of objects. Among them, YOLO series and
SSD are the most typical architectures, and a series of applications were also reported.
For instance, Sozzi et al. [23] applied YOLOv3, YOLOv4, and YOLOv5 object-detection
algorithms to achieve bunch detection in white grape varieties. An improved YOLOX-S
with a new multi-scale feature integration structure was proposed to detect kiwifruit for
automated harvesting [24]. A winter-jujube grading robot combined with the YOLOv3
algorithm was applied to sort winter jujube, which reported a mAP of 94.78% with a
computational time of 0.042 s per image [25]. Moreover, Li et al. [26] introduced Efficient
Channel Attention (ECA) and Coordinate Attention (CA) mechanisms on YOLOv5 to
improve the accuracy of the model for jujube detection. At present, less research about the
object detection of winter jujubes are reported, but apple target detection based on deep
learning is relatively complete compared with other fruits’ object detection. For example,
Wu et al. [27] applied an improved YOLOv4 network to accomplish apple detection in
complex scenes, and the study reached a detection accuracy of 95.52% with a computational
time of 0.339 s per image of 416 × 416 pixels. Yan et al. [28] improved YOLOv5 with an
SE module for apple detection in different environments and obtained a mAP of 86.75%
with a computational time of 0.015 s per image. To further simplify the model and improve
detection efficiency, a channel pruned YOLOv5s model was proposed to detect apple
fruitlets accurately, which achieved satisfactory results under both backlight and direct
sunlight conditions [29]. The one-stage networks, such as YOLOv4 and YOLOv5, perform
well in apple recognition. However, few research studies based on deep learning have
been studied in winter jujube detection. Different from apples, as shown in Figure 1, the
challenge of winter jujubes detection includes its smaller fruit size, lower contrast between
the fruit and the background, and higher density between fruits.

To improve the detection accuracy, the above research mainly applied various attention
mechanisms to bring out useful features and weaken irrelevant features. In recent years, a
range of original studies on attention mechanisms were conducted to strengthen feature
learning ability [30]. For instance, Hu et al. [31] considered the importance of different
channels and introduced channel weights to reflect the importance between channels in the
Squeeze-and-Excitation Network (SENet). Furthermore, the Efficient Channel Attention
network (ECANet) [32] established the relationship between channels more efficiently
and without reducing the dimension. However, these methods can only focus on the
importance of different channels and cannot build the relationship between channels and
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spatial features. To address this issue, a Convolution Block Attention Module (CBAM) was
proposed to take into account channel and spatial features for feature enhancement [33].
CBAM achieved feature enhancement by concatenating the spatial attention mechanism
and the channel attention mechanism. However, this concatenation method reduces the
computational efficiency. In recent years, some self-attention methods were proposed that
integrated channel and spatial attention using a parallel manner, such as the Dual Attention
Network (DANet) [34], which achieved satisfactory results on Cityscapes, PASCAL VOC,
and COCO Stuff datasets. However, the method has higher computational complexity and
larger parameter amounts.
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Figure 1. Challenges faced by winter jujube detection compared with apples. Yellow and blue
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It is equally important for smart harvesting to ensure the recognition speed. To
accomplish this goal, two directions of research were carried out: one was to choose a
lightweight model, and the other was to prune existing models to achieve a light weight.
Zhang et al. [35] proposed a lightweight RTSD-Net deep neural network to embed in Jetson
Nano for real-time strawberry detection, which achieved satisfactory results. A channel
pruning-based YOLOv4 model was used to detect apple flowers in natural environments,
and the experimental results showed that the model size was reduced by 231.51 MB and
the new model size is only 12.46 MB [36]. Similarly, Fu et al. reduced the model weight
from 244 to 137 MB by pruning for detection of banana bunches and stalks [37]. Reducing
model size has become a prerequisite for embedded systems.

To overcome the challenges of winter jujube detection, an improved YOLOX-Nano
network was proposed to improve detection accuracy and reduce the model size. The main
contributions were as follows:

(1) An attention feature enhancement (AFE) module was proposed to establish connec-
tions between channels and spatial features for maximizing feature utilization.

(2) DIoU loss was used to replace IoU loss to optimize training and obtain a more robust model.
(3) A positioning error evaluation method was proposed to measure positioning error.
(4) Model size was only 4.47 MB and can meet the requirement of embedded systems

deployment.
(5) An improved lightweight YOLOX-Nano network combined with an RGB-D camera

was applied to provide 3D coordinates.
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2. Materials and Methods
2.1. Image Acquisition

The images used in the experiment were obtained in a winter jujube orchard of Yan-
gling District, Shaanxi Province in China from 1 September to 15 September 2021. An
iPhone 11 with a resolution of 3024 × 3024 pixels was used to capture test images, as
shown in Figure 2. To adapt for training the network and to save training memory, all
the images were resized to 640× 640 pixels for training and testing. The dataset contains
632 images and the corresponding 3659 winter jujubes were labeled in different environ-
ments including 39% front light, 32% backlight, and 29% occluded scene. The high-quality
labels were marked using LabelImg for network training learning.
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2.2. Localization System

To test the proposed algorithm and achieve 3D positioning, as shown in Figure 3, a win-
ter jujube localization system was built, including an RGB-D camera, a high-performance
PC, a rangefinder, a tripod, a USB3.0 data cable, a calibration cardboard, and some winter
jujubes. The RGB-D camera (Real sense D435i camera, Intel Corporation, Hillsboro, OR,
USA) was used to obtain the localization information of winter jujubes. The tripod was
utilized to carry the RGB-D camera and adjust the camera pose. The distance between the
camera and winter jujubes was controlled by rangefinder. To evaluate the accuracy of posi-
tioning, a calibration cardboard with 30 × 30 mm cells was applied to control the relative
position of winter jujubes. The USB3.0 data cable performed the transfer of information
between the PC and RGB-D camera.
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2.3. Methodologies

With the development of high-performance GPUs [38], deep learning models have
had great success due to their powerful parameters of self-optimization and feature self-
learning capabilities. Object detection networks, as one of the most important branches in
deep learning methods, are widely used in many different fields, which can be divided into
two categories including anchor-based and anchor-free deep learning approaches. Anchor-
based methods are domain-specific and less generalized that optimal anchor box need
to be found using the K-means clustering algorithm for different datasets [39]. Thus, the
state-of-the-art anchor-free deep learning architecture, namely, the YOLOX network, was
chosen as the secondary development framework in our work. It combines the advantages
of YOLOv3, v4, and v5 and proposes some new strategies, such as the anchor-free strategy,
decoupled head, and SimOTA, which outperformed many existing one-stage and two-
stage detectors on public datasets. The YOLOX network can be divided into 6 versions,
including YOLOX-Nano, Tiny, S, M, L, and X according to the size of the model. To adapt
to the deployment of embedded equipment, our work chose lightweight YOLOX-Nano for
improvement.

2.3.1. Improved YOLOX-Nano

As shown in Figure 4, YOLOX mainly consists of three parts, including the backbone,
neck, and YOLO head, respectively. The backbone feature extraction network of YOLOX is
CSPDarkNet53, in which two novel modules called Focus and SPP are utilized to downsam-
ple feature maps and expand the receptive field, respectively. The Focus module can retain
the feature map information to the maximum extent while performing downsampling
operations. The SPP module implements feature extraction at different scales using 5 × 5,
9 × 9, and 13 × 13 pooling kernel sizes and obtains larger receptive fields. Multiple stacked
CBS modules (Convolution, Batch Normalization, and SiLU layer) and CSP layers (CBS
and Res_block modules) are used to transfer and extract features. In the neck stage, the
structure of PA-FPN (FPN: feature pyramid network, PAN: path aggregation network) is
used to efficiently fuse feature maps at different levels. Path aggregation greatly reduces the
number of network layers by building bridges between different features. In the head stage,
the YOLO head adapts the decoupled head strategy to perform classification and regression
tasks separately, which is beneficial for accelerating the convergence of the network and
obtaining a more robust model [39]. In our work, to enhance the learning ability of small
objects, as shown in Figure 5, a novel attention feature enhancement (AFE) module was
designed to strengthen feature extraction in the YOLOX-Nano network.
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2.3.2. Attention Feature Enhancement Module

To remedy the problem of attention mechanisms described in the introduction, we
rethought self-attention, aiming at reducing the number of parameters and performing
channel and spatial attention in parallel. As shown in Figure 5, in our work, inspired by
DANet [34] and ECANet [32], a novel AFE module was proposed to integrate channel
and spatial information with smaller parameters, and strengthen insignificant feature
map that can reflect object information. AFE speeds up feature transfer through parallel
message transfer between the channel and spatial attention. Given the input feature
F ∈ RW×H×C, where W, H, and C are width, height, and channels, respectively. For the
channel attention branch, first, global average pooling (GAP) is used to obtain channel
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weights S ∈ R1×1×C, then the dimension of channel weights is adjusted by squeeze(sq),
transpose(tr) and unsqueeze(usq) operations to fit 1D convolutions (Conv1D), which are
utilized to build the relationship between channels. The new channel weights S1 ∈ R1×1×C

can be defined as
S1 = Conv1D(GAP(F)× sq× tr)× tr× usq (1)

Accordingly, the new feature maps after channel attention can be expressed as

F1 = S1 ⊗ F (2)

where ⊗ is multiplication operation.
In the spatial attention module, first, three Conv1D are used to obtain three feature maps

{ f1, f2, f3} ∈ RW×H×C, then, they are reshaped to { f11, f21, f31} ∈ RC×N(N = W × H), to
obtain spatial attention map S2 ∈ RN×N . The operations are performed as:

S2 = σ(tr( f11)⊗ f21) (3)

where σ is softmax activation function.
Finally, the spatial attention mechanism assigns spatial weight to the original feature

map for getting new spatial feature maps F2 ∈ RW×H×C. It can be defined as

F2 = Re(α(tr(S2)⊗ f31))⊕ F (4)

where α and Re are scale parameters and reshape the operation, α is initialized as 0 and
gradually learns to assign more weight [40], and ⊕ is an added operation.

After acquiring the channel and spatial feature maps, the resulting feature map F3 can
be obtain as follows:

F3 = F1 ⊕ F2 (5)

2.3.3. Loss Function

The goal of network training is to reduce the loss function and make the prediction
box close to the ground truth box to obtain a more robust model. The loss function of
object detection always consists of three parts, which are bounding box location loss
(Lbou), confidence loss (LConf), and classification loss (LCls), respectively. LConf is used
to determine whether there is an object in the predicted box, which is in fact a binary
classification problem. The closer the confidence is to 1, the greater the probability of the
existence of the target. LCls is applied to reflect error in object classification, Cross-Entropy
(CE) and Binary Cross-Entropy (BCE) loss [41], as these two most common classifications
of loss functions are widely used in multi-class and binary classification tasks, respectively.
In YOLOX, LCls and LConf both use the BCE loss function.

In object detection tasks, IoU loss (LIoU) [42] is the most common bounding box
location loss and is used in many object detection models, such as Faster R-CNN, YOLOv3,
YOLOX, etc. However, when the prediction box and ground truth box do not intersect and
LIoU = 0, the network cannot be trained. Furthermore, GIoU loss (LGIoU) [43] introduced
the C detection box (the smallest rectangular box that contains the ground truth and
predicted box [18]) and considered the loss to be when the two boxes do not intersect based
on LIoU. However, when two boxes contained each other, the relative position of the boxes
cannot be reflected by LGIoU. As shown in Figure 6, to address the problem, DIoU loss
(LDIoU) [44] was proposed to consider the Euclidean distance between the prediction box
and ground truth box. It can be defined as

LDIoU = 1− LIoU +
d2

C2 (6)

LIoU =

∣∣b ∩ bgt
∣∣

|b ∪ bgt|
(7)
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where b and bgt represent the predicted box and ground truth box, c is the diagonal length
of the C detection box, and d is the distance between the center points of the predicted box
and ground truth box.
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In our work, we chose LDIoU to replace LIoU to obtain a more robust detection model.
Thus, our loss function can be defined as

Loss = λLDIoU + LConf + LCls (8)

where λ is regression weight (λ = 5).

2.4. Network Training

The experiment environment was Pytorch 1.2.0, GeForce GTX 1080 (with 8 G memory)
and CUDA10.0. All experiments were conducted using the same parameter settings. To
accelerate network convergence, in the first 50 epochs, the batch size and learning rate were
set to 16 and 0.001, respectively. After 50 epochs, we set the batch size and learning rate
set to 8 and 0.0001 to obtain a robust detection model [45]. Our datasets were randomly
divided into a training set (80%), testing set (10%), and validation set (10%). All comparative
experiments were performed with the same hyper-parameters as our method.

2.5. Evaluation Indexes

In order to evaluate the performance of the models, the average precision (AP), recall,
precision, and PR curve were used as model evaluation indicators, which can be defined
as follows:

Precision = TP/(TP + FP)× 100% (9)

Recall = TP/(TP + FN)× 100% (10)

AP =
∫ 1

0
PRdr (11)

where TP (True Positive) and TN (True Negative) are the number of actual positive and
negative samples predicted as positive and negative samples, respectively. FP (False
Positive) and FN (False Negative) are the number of negative samples predicted as positive
and positive samples predicted as negative, respectively.

3. Results

In this section, to verify the effectiveness of our method, our method is compared
with two classes of state-of-the-art models including object detection algorithms and their
lightweight models. The relevant details are introduced in Sections 3.1 and 3.2. Additionally,
we demonstrate the accuracy of our algorithm in real-world localization in Section 3.3.
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3.1. Comparison of Different Object Detection Algorithms

To evaluate the performance of the proposed method, we compare our method with
six state-of-the-art object detection networks including SSD [21], Faster R-CNN [46], Cen-
terNet [47], Efficientdet [48], YOLOv3 [19], and YOLOv4 [49]. PR curves are applied to
evaluate the performance of different models; the higher the curve, the better the model
performance.

Consequently, as shown in Figure 7, our model outperforms other state-of-the-art
object detection networks and has the best performance. Specifically, as shown in Table 1,
our method reaches the highest AP (AP = 95.56%) and has the smallest model size
(4.47 MB). It is worth noting that model size is critical for the deployment of embed-
ded devices, and AP value is a comprehensive evaluation indicator which can reflect the
comprehensive levels of precision and recall. The AP value of our method was 14.62%,
9.98%, 4.35%, 9.94%, 2.80%, and 1.37% higher than those of SSD, Faster R-CNN, CenterNet,
Efficientdet, YOLOv3, and YOLOv4, respectively. Thus, in terms of accuracy and model
size, our method has great advantages compared to other state-of-the-art object detection
networks.
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To further qualitatively evaluate the detection results of our model, the detection
results of different methods under two complex scenes including occluded and backlit
are shown in Figures 8 and 9, respectively. It can be seen that some areas without jujubes
(yellow box) were wrongly predicted as jujubes by Faster R-CNN. The main reason for
these errors is that the region-proposed network of Faster R-CNN recommended too many
prediction boxes in which duplicate target boxes were not suppressed by non-maximum
suppression (NMS). In addition, it is clearly seen that the one-stage models including
SSD, YOLOv3, YOLOv4, and YOLOv5-S all lost real objects (blue box) which contained
occluded jujubes. The reason for this phenomenon is that these occluded jujubes had
more complex features than non-occluded jujubes due to their lower feature scale and
contrast. By contrast, our method and Efficientdet had satisfactory recognition results on
the occluded scenes. However, as shown in Figure 9, Efficientdet had a false alarm under
the backlit scene (yellow box) and our method still detected the winter jujubes correctly.
Additionally, Faster R-CNN, Efficientdet, SSD, and YOLOv5-S also had false alarms on the
backlit scene. It can be concluded that our method has strong generalization ability and
good universality under backlit and occluded scenes.
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Table 1. Detection results with different object detection networks.

Methods Backbone Precision
(%)

Recall
(%)

AP
(%)

Model
Size (MB)

Detection
Time (s)

SSD VGG16 94.83 74.32 83.37 99.76 0.041
Faster R-CNN VGG16 66.46 86.76 86.89 522.91 0.054

CenterNet ResNet50 97.93 76.76 91.58 124.61 0.031
Efficientdet EfficientNet-D0 93.93 79.46 86.92 14.90 0.044

YOLOv3 DarkNet53 92.40 85.41 92.94 236.32 0.047
YOLOv4 CSPDarkNet53 91.36 88.65 94.27 245.53 0.060

Ours CSPDarkNet53 93.08 87.83 95.56 4.47 0.022
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Furthermore, as shown in Table 2, quantitative evaluation results using our proposed
model were counted for the different scenes in our test set. It can be found that our method
achieved the highest AP value under front light conditions compared to the backlit and
occluded scenes. However, there were no significant differences of AP in terms of the
different scenes, which proved that the model has strong adaptability to different scenes.

Table 2. The performance of our method under different scenes.

Scene Precision (%) Recall (%) AP (%)

Front light 93.64 88.21 96.02
Backlight 93.01 87.92 95.63

Occluded scene 92.42 87.02 95.09
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3.2. Comparison of Different Lightweight Models

In this section, to validate the performance of the proposed model, different lightweight
models including YOLOv4-Tiny, YOLOv4-MobileNetv3, YOLOv5-S, YOLOX-S, and
YOLOX-Tiny are compared with our method on the winter jujubes dataset. As shown in
Figure 10, YOLOX-S, YOLOX-Tiny, and our method had the best, second-best, and third-best
performances on our dataset. However, as shown in Table 3, the model sizes of YOLOX-
S (34.21 MB) and YOLOX-Tiny (19.29 MB) are nearly 8 and 4 times that of our method
(4.47 MB), respectively. Therefore, our method is more advantageous compared to YOLOX-S
and YOLOX-Tiny. In addition, it can be also seen that the PR curves of our method are
higher than those of YOLOX-Nano, which demonstrates the effectiveness of our modi-
fications. Although the model size of our method is 0.99 MB larger than that of Nano,
our method has higher detection accuracy than Nano, as shown in Table 4. As shown in
Figure 11, it can be clearly seen that the lightweight version of YOLOX outperforms YOLOv4
and YOLOv5-S on model size and accuracy. Considering deployment of embedded models
and detection accuracy, our method has better universality and robustness compared with
other state-of-the-art object detectors. As shown in Table 4, ablation experiments have
shown that as DIoU and AFE increase, the detection accuracy gradually improves while
maintaining detection efficiency and the small model size, which further demonstrated
the effectiveness of our modifications. In our work, our model size is only 4.47 MB, which
provides the possibility for the deployment of our embedded systems (Jetson Nano) in
winter jujube harvesting. Moreover, the recognition speed is 0.022 s (Fps = 45.45) for the size
of 640× 640 pixel images, outperforming the efficiency of manual picking.
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Table 3. Detection results with different lightweight networks.

Methods Precision
(%)

Recall
(%) AP (%) Model Size

(MB)
Detection
Time (s)

YOLOv4-Tiny 93.55 78.38 85.52 23.10 0.010
YOLOv4-MobileNetv3 96.00 77.84 88.95 44.74 0.024

YOLOv5-S 92.49 86.49 94.41 27.76 0.016
YOLOX-S 91.42 92.16 96.66 34.21 0.018

YOLOX-Tiny 91.11 91.35 96.09 19.29 0.017
Ours 93.08 87.83 95.56 4.47 0.022
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Table 4. The impact of each module on model performance.

YOLOX-
Nano@640 IoU DIoU AFE AP (%) Model

Size (MB)
Detection
Time (s)

√ √
94.66 3.48 0.020√ √ √
95.48 4.47 0.022√ √ √
95.56 4.47 0.022

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 20 
 

 

method are higher than those of YOLOX-Nano, which demonstrates the effectiveness of 
our modifications. Although the model size of our method is 0.99 MB larger than that of 
Nano, our method has higher detection accuracy than Nano, as shown in Table 4. As 
shown in Figure 11, it can be clearly seen that the lightweight version of YOLOX outper-
forms YOLOv4 and YOLOv5-S on model size and accuracy. Considering deployment of 
embedded models and detection accuracy, our method has better universality and robust-
ness compared with other state-of-the-art object detectors. As shown in Table 4, ablation 
experiments have shown that as DIoU and AFE increase, the detection accuracy gradually 
improves while maintaining detection efficiency and the small model size, which further 
demonstrated the effectiveness of our modifications. In our work, our model size is only 
4.47 MB, which provides the possibility for the deployment of our embedded systems 
(Jetson Nano) in winter jujube harvesting. Moreover, the recognition speed is 0.022 s (Fps 
= 45.45) for the size of 640 × 640 pixel images, outperforming the efficiency of manual 
picking. 

 
Figure 10. PR curves for the six lightweight detection models. 

 
Figure 11. Size-accuracy curve for our method and other state-of-the-art object detectors. Figure 11. Size-accuracy curve for our method and other state-of-the-art object detectors.

3.3. Positioning Error Evaluation

To verify the 3D positioning accuracy, our method was used to obtain the X, Y, Z
coordinates of winter jujubes. As shown in Figure 3, 13 winter jujubes were randomly
arranged at the grid position of the calibration cardboard to reflect the relative positions
of the jujubes (the grid size was 30 × 30 mm). We randomly selected 12 winter jujubes
and divided them into six groups to calculate the relative positioning error. The predicted
jujube coordinates (XPi , YPi , ZPi ) using our method are shown in Table 5. Since it is difficult
to obtain real coordinates of the jujubes relative to the optical center of the camera, we
proposed a positioning error evaluation method in which two winter jujubes at a fixed
distance in the calibration cardboard were used to evaluate the localization error of the
algorithm. We tried to control the RGB-D camera to be parallel to the calibration board
as much as possible in Figure 3, so we think that the real Z-direction distance of the
13 points in the Z-direction is 0 mm (Z2 = 0 mm). The corresponding real distance in the X,
Y direction (X2, Y2) of the two targets can be obtained through the calibration board. The
average positioning errors (APE) can be computed as

X1 = XPi − XPi−1 i = 2, 4, 6, 8, 10, 12 (12)

X2 = 30× N (13)

∆X = |X1 − X2| (14)

XAPE =
∑ ∆X

6
(15)

where N is the number of cells in the X direction of two targets. ∆X is the deviation of
X direction. XAPE is the average positioning errors of X-direction. YAPE and ZAPE are
calculated the same as XAPE. As shown in Table 5, it is found that the XAPE, YAPE, ZAPE
are 5.8 mm, 5.4 mm, and 3.8 mm, respectively, which meet the accuracy requirements for
locating winter jujubes.
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Table 5. Error statistics between predicted and true positions.

Samples XPi YPi ZPi X1 X2 ∆X Y1 Y2 ∆Y Z1 Z2 ∆Z

P1 −453.2 −275.3 1076.0
337.9 330.0 7.9 23.1 30.0 6.9 3.0 0.0 3.0P2 −115.3 −252.2 1073.0

P3 244.3 −254.1 1081.0
56.9 60.0 3.1 151.7 150.0 1.7 1.0 0.0 1.0P4 187.4 −102.4 1080.0

P5 −230.4 −155.1 1068.0
172.5 180.0 7.5 127.7 120.0 7.7 7.0 0.0 7.0P6 −402.9 −27.4 1061.0

P7 −375.3 182.9 1075.0
189.3 180.0 9.3 116.6 120.0 3.4 0.0 0.0 0.0P8 −186.0 299.5 1075.0

P9 −189.3 86.8 1080.0
173.7 180.0 6.3 94.6 90.0 4.6 8.0 0.0 8.0P10 −15.6 −7.8 1072.0

P11 169.0 224.3 1076.0
119.2 120.0 0.8 81.9 90.0 8.1 4.0 0.0 4.0P12 288.2 306.2 1082.0

Average positioning errors 5.8 5.4 3.8

4. Discussion
4.1. Effect of the Illumination on the Winter Jujube Detection

During the operation of the jujube harvesting robot, it will face different light intensi-
ties in different operation periods. Some image enhancement methods, such as brightness
transformation, color transformation, and contrast transformation [50,51], can be used to
simulate different complex orchard environments. To explore the effect of different light
intensities on our proposed model, in our work, the clip function in NumPy was used to
adjust the brightness of the image. The images after brightness transformation is shown in
Figure 12, the specific transformation process is as follows

I_out = δI_in + beta (16)

where I_out and I_in are images after adjusting the brightness and raw image, respectively.
δ is the brightness factor; when δ < 1, the image will be darkened, otherwise, the image
will be brightened. beta is 10.
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As shown in Figure 13, it can be found that the increase or decrease of light intensity
affects the accuracy evaluation index (AP and Precision) of the model to a certain extent,
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but it does not fluctuate greatly, reflecting the strong generalization ability of the model
under different illuminations. The fact also should be accepted that different illuminations
have a greater impact on recall due to having few samples under low-light and strong-light
in our small sample dataset.
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4.2. Failure Samples Analysis

Typical failure samples that cannot be detected under backlit and occlusion scenes
(yellow box) are shown in Figure 14. The reason for these phenomena is that the coexistence
of conditions such as occlusion of branches, the environment of backlight, and the occlusion
between multiple fruits increased the difficulty of feature extraction and led to the loss of
targets in object detection. Moreover, some winter jujubes that fell on the ground (white
box) were also detected under a large field of view. This phenomenon largely resulted
from the fact that a large field of view introduced irrelevant data, such as the fallen jujube,
which had a great imbalance with the data we carried out in the target task and led to
misidentification of irrelevant data.

4.3. Data Reliability Analysis

At present, small sample-based learning research is booming in deep learning fields.
For instance, Hu et al. [52] achieved disease detection of tea leaf blight (TLB) images using
Fast R-CNN based on a small sample dataset of 398 images, which obtained satisfactory
detection results. Similarly, 546 wheat mite images were selected as a dataset to train Fast
R-CNN for the recognition and counting of wheat mites, and the highest AP of 96.4%
was achieved with VGG16 backbone [53]. Moreover, some image classification researches
were conducted using small samples, e.g., Chen et al. [54] proposed a deep residual
learning method for pest identification and classification (550 images). Zhang et al. [55]
accomplished the recognition of cucumber leaf diseases with CNN and a small sample
dataset (600 images).

To verify the reliability of our small sample dataset, as shown in Figure 15, existing
data was augmented by lighting transformation with light factors δ = 1.5, 0.5 and mir-
roring operations along the X and Y axis. The corresponding expanded dataset reached
3160 images. The expanded dataset was trained using the same dataset division principles
and training parameters as the unexpanded dataset. As shown in Figure 16, the detection
result AP only improved 0.75% when the dataset was expanded by 4 times, which shows
that the small sample data set can meet the requirements of our task.
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5. Conclusions

In this work, we proposed an object detection method based on YOLOX-Nano for
detecting winter jujubes to address the problem of low recognition rate of winter jujubes
in complex scenes, including backlit and occluded scenes. Firstly, an attention feature
enhancement module was designed to strengthen the learning ability of features for iden-
tifying winter jujubes in complex scenes. Then, a DIoU loss was used to replace IoU loss
to optimize the training process. Finally, ablation and comparative experimental results
verified the effectiveness of our modifications and that our method can outperform other
state-of-the-art object detectors on our datasets. In addition, combined with an RGB-D
camera, our method can obtain the X, Y, Z real-time coordinates of winter jujubes, which can
provide a reference for the precise harvesting of the robotic arm. In the study, a positioning
error evaluation method was proposed to measure positioning error. The validation results
showed that our method can meet the accuracy requirements for locating winter jujubes.
Moreover, the reliability of small sample dataset, failure cases, and lighting effects were
analyzed to more objectively evaluate the performance of the model.

In future work, we will carry our model to the embedded system to guide the harvest
of winter jujubes. Additionally, we will also work toward the maturity identification of
winter jujubes.
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