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Abstract: Remote sensing super-resolution (RSSR) aims to improve remote sensing (RS) image
resolution while providing finer spatial details, which is of great significance for high-quality RS image
interpretation. The traditional RSSR is based on the optimization method, which pays insufficient
attention to small targets and lacks the ability of model understanding and detail supplement. To
alleviate the above problems, we propose the generative Diffusion Model with Detail Complement
(DMDC) for RS super-resolution. Firstly, unlike traditional optimization models with insufficient
image understanding, we introduce the diffusion model as a generation model into RSSR tasks and
regard low-resolution images as condition information to guide image generation. Next, considering
that generative models may not be able to accurately recover specific small objects and complex
scenes, we propose the detail supplement task to improve the recovery ability of DMDC. Finally, the
strong diversity of the diffusion model makes it possibly inappropriate in RSSR, for this purpose, we
come up with joint pixel constraint loss and denoise loss to optimize the direction of inverse diffusion.
The extensive qualitative and quantitative experiments demonstrate the superiority of our method in
RSSR with small and dense targets. Moreover, the results from direct transfer to different datasets
also prove the superior generalization ability of DMDC.

Keywords: remote sensing super-resolution; diffusion model; detail supplement; small targets; pixel
constraint loss

1. Introduction

Remote sensing (RS), as a scientific technique for rapid information monitoring and
observation, enables researchers to “sense” more than they can see on the ground. However,
high-quality and high-resolution (HR) images are difficult to obtain. Therefore, RSSR plays
a significant role by supplementing the original HR images [1]. Compared with natural
images, RS images suffer from a much more serious loss of details, which brings challenges
to the reconstruction of HR images. Hence, RSSR reconstruction technology has received
much attention as an uprising research hotspot.

Traditional super-resolution (SR) methods use interpolation solely based on pixel
information of the image [2,3], which may result in poor quality. With the development
of deep learning, SR reconstruction based on deep learning [4–6] has been proposed and
outperformed traditional methods, such as convolution network-based [7,8], flow-based
methods [9], GAN-driven [10,11], PSNR-oriented [12,13], and etc. A pioneering work
based on a CNN architecture is the Super-Resolution Convolutional Neural Network
(SRCNN) [14]. Subsequently, Kim et al. [15] proposed very deep super-resolution (VDSR)
a network with deeper layers. SRResNet [16] adopts residual block as the basic network
module, introduces local residual connection to alleviate the difficulty of deep network
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training, and obtains better performance. These methods establish the mapping between
low-resolution (LR) and HR images, which enhances the quality of reconstruction and
facilitates rapid inference. However, due to problems such as excessive smoothing, pattern
collapse, or excessive model footprints, when applied to remote sensing images with
diverse scenes, rich texture features, and fuzzy structure outline, they can’t completely
realize end-to-end LR reconstruction.

Recently, the Denoising Diffusion Probabilistic Model (DDPM) [17,18] has attracted
much research attention due to its superiority over methods such as GAN-driven methods.
DDPM can generate high-quality images which are more closely resemble the distribution
of training data and provide state-of-the-art (SOTA) generative performance in image
generation [19,20], super-resolution [21], deblurring [22] segmentation [23,24], repair [25],
and etc. A Markov chain is used to parameterize DDPM, progressively introducing noise
to the data until the signal is fully lost. DDPM learns to model the Markov transition from
simple distribution to data distribution and generates diverse samples through sequential
stochastic transitions [26]. However, due to the limitation of small and dense targets in RS
images, DDPM has not been used in the SR tasks of RS images. Therefore, it is urgent to
explore the application of the diffusion model in RSSR tasks.

Aiming at the RSSR task in complex scenes with small targets, we propose the diffusion
model with a detail complement mechanism (DMDC) for HR reconstruction of RS images.
Firstly, the LR images lack detailed texture, especially under large magnification, which
makes the fine textures of HR images difficult to reconstruct. We adopt a generative
diffusion model to improve the reconstruction ability of RS images. Secondly, to improve
the accurate SR ability of DMDC to small targets, we propose a detailed supplementary task
based on an optimized diffusion model. Finally, to alleviate the diversity and randomness
during DMDC generation, we come up with the pixel constraint loss to guide DMDC to
generate HR images that are closer to the source image. Experiments show that the DMDC
method outperforms the SOTA method. DMDC is expected to become an effective method
for the HR reconstruction of RS images and provides a new direction for exploring potential
applications of RSSR in the future.

The key contributions are summarized as:

1. To the best of our knowledge, we propose a diffusion model with detailed comple-
mentary mechanisms for the RSSR task. Different from traditional optimization-based
methods, DMDC adopts generation-based methods to enrich image semantics.

2. Aiming at the small and dense characteristics of objects in low-resolution RS images,
we propose a detail supplementation task for RSSR for the diffusion model, which
achieves accurate detail reconstruction for RSSR tasks.

3. To reduce the diversity of DMDC, which may not be suitable for super-resolution
tasks, we propose a pixel constraint loss to constrain the inverse diffusion process of
the diffusion model.

Extensive comparative experiments demonstrate that our method can achieve superior
performance. The rest of the paper is organized as follows: Section 2 gives a brief overview
of the work related to DMDC. In Section 3, the Diffusion Model, the Detail Supplement
Task, and pixel constraint loss are introduced. Next, in Section 2, we provide detailed
information about DMDC and include a detailed experimental analysis of DMDC from
both qualitative and quantitative aspects. Finally, the discussion and conclusion are given
in Sections 5 and 6, respectively.

2. Related Work

In this section, we review and discuss RSSR technology and diffusion models which
relate to our research.

2.1. Remote Sensing Super Resolution

RSSR refers to the reconstruction of a corresponding HR image from an observed LR
image, which helps to improve the effect of high-level remote sensing visual tasks such



Remote Sens. 2022, 14, 4834 3 of 20

as segmentation [27–29], identification [30], and retrieval [31–33]. Most of the traditional
RSSR methods adopt an interpolation method, and only reconstruct according to the
pixel information of the image itself. However, the quality of the reconstructed image
cannot be guaranteed. Recently, deep learning methods have been widely adopted in RSSR
technology. Deep learning-based methods can be categorized into four types as mentioned
in Section 1: convolution network-based, flow-based, GAN-driven, and PSNR-oriented.

SRCNN [14] can learn linear mappings between images, and extract feature maps of
image patches through a simple convolutional network, which improves the reconstruction
quality and achieves a fast reasoning speed. However, this method enlarges the target size
by an interpolation method, which can’t properly realize end-to-end low-resolution recon-
struction. Using convolution structures such as convolution layers or residual networks to
extract features directly from LR images greatly improved the efficiency and quality of re-
constructions, including FSRCNN [34] and ESPCN [35]. To overcome the problem of fuzzy
reconstructed images brought on by the complex and varied RS sampling environment,
Tao et al. [36] suggested a deep residual network to optimize the RS image reconstruction
process. Although some achievements have been made in the above-mentioned CNN-
based high-resolution reconstruction work, due to the complex atmospheric environment,
limited spatial resolution, and spectral resolution, remote sensing images are more complex
than natural images, which require higher details [37,38]. Luo et al. [39] combined optical
flow and deformable convolution, and proposed a Pyramid Flow-Guided Deformable
ConvolutionNetwork (Pyramid FG-DCN), with Swin transformer [40] blocks and groups
as the main super-resolution backbone. By applying the attention technique to capture the
feature variations between channels, Dong et al. [41] overcame the loss of initial features in
RSSR reconstruction and enhanced the SR capability of RS images.

Compared with the above methods, the biggest difference and highlight of GAN-
driven is the discriminator, which can be trained to discriminate the input generated
images. First applying GANs to image SR reconstruction, Ledig et al. [16] proposed a single-
image SR reconstruction method using GANs (SRGAN), which optimizes perceptual loss.
ESRGAN [42] introduced Residual in Residual Dense Blocks (RRDB) based on SRGAN [16],
which further improves the recovered image texture. Subsequently, many ESRGAN-based
algorithms [43–45] have been improved. ESRGAN+ [43] replaced ESRGAN’s RRDB with
RRDRB; [45] used the U-net structure discriminator together to consider both the global and
local context of an input image and used GAN and LPIPS [46] loss together for perceptual
limit SR. This practice is superior to traditional perception. However, the previous models
are based on an optimized way, which relies too much on distorted low-resolution images
and is inaccurate in reconstruction. Notably, we manage to use the generation model,
which can generate more detailed semantic information of images.

2.2. Diffusion Model

In recent years, research on generative diffusion models has attracted extensive atten-
tion. The diffusion model is a generative model driven by non-equilibrium thermodynam-
ics, which can be divided into the forward process and reverse process. To increase the
generation effect, Google [17] developed DDPM in 2020, which adopted an autoencoder
with the U-Net structure to predict noise and adopted a separate branch network to learn
the Gaussian distribution. With a similar purpose, OpenAI [19] proposed a category-guided
diffusion model called Guided Diffusion to deepen the network structure of DDPM. The
cross-entropy loss between the target categories and the classification score is calculated to
determine the gradient. To accomplish the desired generation effect, it merely needs to add
guidance during the forward process rather than re-training the diffusion model. However,
even if the additional forward network might enhance the effect, the scale of models cannot
be further increased due to the huge calculation cost. To solve the issue, Ho et al. [18]
employed additional conditional input for the diffusion guidance method without the
additional classifiers. Yang et al. [47] integrated the ViT architecture into DDPM, estab-
lished a direct connection between DDPM and ViT, and introduced a new generative model
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(GenViT). PDDPM [48] can generate multi-scale images by generating high-resolution
images starting from coarser-resolution images using a single-score function trained with
positional embeddings. Nair et al. [49] proposed a single image atmospheric turbulence
measurement method based on learning, including CNN-based and GAN-based inversion
methods, trying to eliminate the distortion in the image. Rombach et al. [50] proposed
Latent Diffusion Models (LDMs). Transform diffusion models into powerful and flexible
generators for general conditional inputs such as text or bounding boxes, and achieve high
resolution in a convolutional fashion rate synthesis. DiffuseVAE [51] integrates VAE [52,53]
into the diffusion model framework and uses this framework to design new conditional
parameterizations for the diffusion model, effectively equipping the diffusion process with
a low-dimensional latent space.

DDPM has completed the task of SR reconstruction in natural scenes, but the related
research in RS scenes has not yet been carried out, which is limited by the characteristics of
the small targets and complex scenes in RS. We introduce the diffusion model into RSSR
for the first time and propose a detail-complementing task to optimize its SR defect for
small targets.

3. Methodology

In this section, we introduce the RSSR-based diffusion model in detail and describe the
optimization diffusion with a detail supplement. Finally, we further reduce the diversity of
DMDC to generate higher-quality images.

3.1. Super Resolution Based Diffusion Model

Image SR aims to recover corresponding HR images from LR images. Typically, an LR
image Ilr is modeled as the output of the following scaling:

Ilr = P(Ihr; φ) (1)

where P is the degradation mapping function and φ is a parameter of the degradation
process (such as noise distribution parameters or a scaling factor). The researcher needs to
recover the HR approximation Îhr of the real HR image Ihr from the LR image Ilr. Given
a dehazing model F, ω is the parameter representation of the model, and the dehazing
process can be expressed as follows:

Îhr = F(Ilr; ω) (2)

Image SR reconstruction involves restoring the lost details in the image, i.e., high-
frequency information. Traditional SR models usually adopt the end-to-end model archi-
tecture for image restoration, which fails to fully understand the information of the whole
image. However, reconstruction-based methods can enable the model to fully understand
the global characteristics of the image, and restore the entire image from noise. In the
past two years, DDPM has shown great potential in image generation and has become
an emerging alternative paradigm for generative models, especially when combined with
guidance to achieve high fidelity and diversity at the same time.

In this paper, we use the SR model based on diffusion as a general method. The
forward and reverse diffusion processes of the diffusion model are essentially the directed
graph models parameterized by Markov chains. Diffusion models learn the training data
distribution P(x0) by performing variational inference on a Markov process with time steps.

As shown in Figure 1, Given an initial data distribution x0 ∼ q(x), a forward diffusion
process can be defined. The diffusion process is a process from right to left X1, . . . , XT ,
in which we add spherical Gaussian noise to the clean image in steps of T, producing a
series of noisy samples. Xt is obtained by the sum of Xt−1 and noise, which is only affected
by Xt−1. The step size of each diffusion step is affected by the variable {βt ∈ (0, 1)}T

t=1. In
the process of adding noise from Xt−1 to Xt, the q(Xt | Xt−1) can be written in the following
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form, that is, given Xt−1, Xt obeys the normal distribution with the mean of
√

1− βtXt−1,
and variance of βt I:

q(Xt | Xt−1) = N
(

Xt;
√

1− βtXt−1, βt I
)

(3)

Figure 1. Overview of two stages in DMDC. Stage 1. is the detailed supplementary task process,
and stage 2. is the SR reconstruction task process. Starting from the spherical Gaussian noise of the
forward diffusion process, the reverse inference process f iteratively denoises the target image z and
x according to the source image (from right to left), where y is the condition.

The data sample X0 gradually loses its discernible features as the step size increases.
Finally, when T → ∞, Xt is equivalent to an isotropic Gaussian distribution. If the above
equation is used to calculate the prior probability distribution of Xt, then a total of T
sampling is required. We define αt = 1− βt, ᾱt = ∏T

i=1 αi, then according to the parameter
renormalization technique:

xt =
√

αtxt−1 +
√

1− αtzt−1

=
√

αtαt−1xt−2 +
√

1− αtαt−1zt−2

= · · ·

=
√

ᾱtx0 +
√

1− ᾱtz

(4)

where zt−1, zt−2, · · · ∼ N (0, I) and zt−2 merges two Gaussians. According to the nature of
the Gaussian distribution, we can directly sample q(xt | x0) to obtain the prior conditional
probability distribution of X0 at each time step.

q(xt | x0) = N
(

xt;
√

ᾱtx0, (1− ᾱt)I
)

=
√

ᾱtx0 + ε
√

1− ᾱt, ε ∼ N (0, I)
(5)

Combining the above two formulas, the joint posterior distribution of Xt−1 about Xt
and X0 can be obtained. If we want to sample a X0, we can first iterate gradually from
the noise-saturated XT until back to X0. Assume that we can construct a sequence with
q(xt | x0), then the random noise can be reversed to the image distribution through the
reverse Markov process. Therefore, the aim of the diffusion model is to find a distribution
similar to q(xt−1 | xt, x0).
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The denoising process is the opposite of the noise addition process. A noise sample is
sampled from the standard normal distribution, and then gradually denoised to obtain a
sample in the data distribution. We model this denoising process with a neural network to
predict the parameters of the Gaussian distribution µθ(xt, t) and Σθ(xt, t):

pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) (6)

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1 | xt) (7)

Although pθ(xt−1 | xt) cannot be expressed explicitly, pθ(xt−1 | xt, x0) can expressed
in formula:

q(xt−1 | xt, x0) = N
(
xt−1; µ̄(xt, x0), β̄t I

)
(8)

β̄t =
1

αt
βt
+ 1

1−ᾱt−1

=
1− ᾱt−1

1− ᾱt
βt (9)

µθ(xt, t) =
1√
αt

(
xt −

βt√
1− ᾱt

zt

)
(10)

For two single-variable Gaussian distributions p and q, their KL divergence satisfies:

KL(p, q) = log
σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1
2

(11)

q is a known partial Gaussian distribution, and p is the distribution to be fitted. Since it is
assumed that p variance σt is constant, we only need to approximate the mean of p and q.
Equivalent to the minimization formula:

Loss = Eq

(
1

2σ2
t
‖µ̄t(xt, x0)− µθ(xt, t)‖2

)
+ C (12)

xt is a variable determined by x0 and noise ε. Ho et al. [18] found during training that
removing the coefficients before Loss can stabilize the training. The simplified loss is:

Loss = Ex0,ε

(∥∥∥ε− εθ
(√

ᾱtx0 +
√

1− ᾱtε, t
)∥∥∥2

)
(13)

The mean µθ(yt, x, t) is estimated according to,

µθ(yt, x, t) =
1√

(1− βt)

(
yt −

βt√
1− ᾱt

εθ(x, yt, t)
)

(14)

3.2. Optimizing Diffusion with Detail Complement

The diffusion model has achieved great success in natural scenes, but some problems
have emerged when applied to RS scenes. SR needs to acquire the texture of the target
domain while retaining the structure of the input images. SR targets in natural scenes tend
to be of a single type and have large granularity. For example, face image SR often has
only one face in a picture, which has a single distribution and is easy to recover. Different
from traditional scenes, the granularity of targets in RS images is complex, which makes
the diffusion models unable to recover target details with more information. The small
granularity of the object makes it difficult for the model to capture the high-frequency
information in the object at LR. To make the diffusion model obtain sufficient reconstruction
ability of complex scenes, we set up a detail supplementation task to make it have a
powerful feature repair ability.

The diffusion model with detail complement can obtain the sensing of RS images by
recovering most of the occluded areas, which can pay more attention to LR small targets
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in RS images. Specifically, we randomly mask most of the information in the image and
only provide some areas for model reconstruction. As shown in Figure 2, the mask part
consists of r randomly distributed patches with the size of m× n, which is similar to small
and dense objects in RS images. By recovering these obscured patches, the model improves
the perception and reconstruction of small objects. We define the diffusion model as f ,
θ is the parameter representation of the model, Maskr,m×n(Z) is the masked RS image.
By minimizing the loss through gradient descent, the detail completion process can be
expressed as:

Lossdc = ∇θ

∥∥∥ fθ

(
Maskr,m×n(Z),

√
ηy0 +

√
1− ηε, η

)
− ε
∥∥∥p

p
(15)

Figure 2. Randomly mask the presentation of r number of m× n small rectangles on the FAIR dataset.
(a–c) are visualizations of the FAIR dataset after random masking rectangles.

The masked patches have the characteristics of small size and high density, which is
also in line with the characteristics of small object granularity in RS images. The model
learns more small-grained information about the RS image through these mask squares. The
diffusion model with detail complement is then used as our optimization super-resolution
model. Under the training weight of detail complement task, DMDC can pay more attention
to the details in LR images and improve the reconstruction ability of small targets.

3.3. Pixel Constraint Loss

The reverse diffusion process of the model is random and varied. Combined with sub-
tle targets in remote sensing scenes, pixel-level constraints can guide the diffusion process
to achieve a more refined SR reconstruction. Therefore, we propose the pixel constraint loss
to further reduce the gap with HR images. The pixel constraint loss component improves
the overall accuracy of the constructed image, i.e., the pixel values are directly consistent
with the original image while maintaining the same lighting and contrast as the original
HR image. Specific to each training example, Y is the original HR image. X is reconstructed
from the LR image, which has a height of H and a width of W. The pixel constraint loss
specific calculation formula is as follows:

Losspixels =
∑W

x=1 ∑H
y=1
(∣∣Yi,j − Xi,j

∣∣)
WH

(16)

Notably, the pixel constraint loss is used in the DMDC training process. The pixel
constraint loss method achieves accurate generation by limiting the inverse diffusion
process of the diffusion model, thereby further optimizing the RSSR. The complete inference
procedure of DMDC is given in Algorithms 1 and 2.
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Algorithm 1 Training a DMDC model fθ

1: Input:(x, y0) ∼ p(x, y),
η ∼ p(η),
ε ∼ N (0, I)

2: repeat;
3: Train diffusion model for detail supplement
∇θ

∥∥ fθ

(
Maskr,m×n(Z),

√
ηy0 +

√
1− ηε, η

)
− ε

∥∥p
p

4: Take a gradient descent step on ∇θ

∥∥ fθ

(
x,
√

ηy0 +
√

1− ηε, η
)
− ε
∥∥p

p

+
∑W

x=1 ∑H
y=1

(∣∣∣y0i,j− fθ(x,
√

ηy0+
√

1−ηε,η)
∣∣∣)

WH
5: until converged
6: return: fθ

Algorithm 2 Inference in T iterative refinement steps

1: Input:yT ∼ N (0, I)
fθ

2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: ε ∼ N (0, I)

5: yt−1 = 1√
αt

(
yt −

1−αt√
1−ηt

fθ(x, yt, ηt)

)
+
√

1− αtz

6: end for
7: return y0

4. Results and Analysis

In this section, we first introduce the dataset, evaluation metrics, and experimental
details. Then, we exhibit the generation effect of DMDC. Furthermore, we conduct extensive
ablation experiments to systematically compare the performance of the DMDC models.
Finally, the visual experiments and evaluation metrics are compared.

4.1. Data Set and Evaluation Metrics
4.1.1. Data Set

We choose the extremely challenging Potsdam (Germany) dataset and Vaihingen
(Germany) dataset proposed by the International Society for Photogrammetry and Remote
Sensing (ISPRS). 38 RS images with a spatial resolution of 5 cm are collected in Potsdam,
a historic city. Each image with 6000 × 6000 pixels is composed of three channels: red (R),
green (G), and blue (B). This dataset includes the six most common types of land cover
(impermeable surface, buildings, low vegetation, trees, cars, and clutter). In this paper,
we follow the train-test split scheme in most existing works [54], and select 14 images
as the test set, and 5 images as the verification set. The remaining images are utilized to
train our models. As shown in Figure 3, after cutting and sampling, each sample in the
above dataset contains images with different resolutions: 64 × 64, 128 × 128, 256 × 256, and
512 × 512. Furthermore, when performing the detailed supplement task, we choose the
FAIR dataset [55] to enhance the small target SR ability of the model. Finally, we test the
DMDC directly on the Vaihingen dataset without any fine-tuning operation to demonstrate
the generalization ability of our DMDC model.



Remote Sens. 2022, 14, 4834 9 of 20

Figure 3. Visualized (×8, ×4, ×2) SR reconstructions of the ISPRS-Potsdam dataset. (a–c) are some
samples from the ISPRS-Potsdam dataset. From left to right are 512 × 512, 64 × 64, 128 × 128 and
256 × 256. Among them, the 512 × 512 HR remote sensing images are obtained by cropping, and the
remaining LR images are obtained by downsampling. Zoom-in for better details.

4.1.2. Evaluation Metrics

We adopt the Image Quality Assessment (IQA) method with reference and IQA
no-reference as evaluation metrics to evaluate the model more comprehensively and accu-
rately, i.e., Peak Signal-to-Noise Ratio (PSNR) [11], Structural Similarity (SSIM) [56] and
BRISQUE [57]. PSNR represents the ratio between the maximum possible power of a signal
and the power of corrupting noise that affects the fidelity of its representation. SSIM [56]
focuses on measuring the correlation of adjacent pixels in digital images, reflecting the
structural information of objects in real scenes, closer to human vision. SSIM [56] mainly
considers three key characteristics of the image: luminance, contrast, and structure, which
are mathematically defined as follows:

luminance(x, y) =
2ξxξy + α1

ξ2
x + ξ2

y + α1
(17)

contrast(x, y) =
2ζxy + α2

σ2
x + σ2

y + α2
(18)

structure(x, y) =
σxy + α3

σxσy + α3
(19)

where ξx and ξy represent the mean of x, y respectively, σx and σy represent the standard
deviation of x, y respectively. σxy represents the covariance of x and y. And α1, α2, α3 are
constants, respectively. In actual engineering calculations, we generally set α = β = γ = 1 ,
and α3 = α2/2 , SSIM can be simplified as follows:

SSIM(x, y) =

(
2ξxξy + α1

)(
σxy + α2

)(
ξ2

x + ξ2
y + α1

)(
σ2

x + σ2
y + α2

) (20)

BRISQUE [57] is a reference-free spatial domain IQA algorithm. The overall principle
of the algorithm is to extract mean subtracted contrast normalized (MSCN) coefficients from
the image, fit the MSCN coefficients to an asymmetric generalized Gaussian distribution
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(AGGD), extract the features of the fitted Gaussian distribution, and input them into the
support vector machine (SVM), thereby obtaining an IQA result. The MSCN coefficient
Î(i, j) is defined as:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
(21)

µ(i, j) =
K

∑
k=−K

L

∑
l=−L

wk,l Ik,l(i, j) (22)

σ(i, j) =

√√√√ K

∑
k=−K

L

∑
l=−L

wk,l(Ik,l(i, j)− µ(i, j))2 (23)

where u(x, y) is the result after Gaussian filtering, and σ(x, y) is the standard deviation.
MSCN has no strong dependence on texture. Therefore, the extracted features are more
applicable. The definition of generalized Gaussian distribution GGD:

f
(

x; α, σ2
)
=

α

2βΓ(1/α)
exp

(
−
(
|x|
β

)α)
(24)

β = σ

√
Γ(1/α)

Γ(3/α)
(25)

and Γ(·) is the Gamma function:

Γ(a) =
∫ ∞

0
ta−1e−tdt a > 0 (26)

By observing that the local normalized luminance coefficients (MSCN) of natural
images strongly tend to be unit normal Gaussians, we assume that distortion will change
the distribution of MSCN, and extract features based on this.

4.2. Implementation Details

We perform all experiments on three NVIDIA RTX 3090 GPUs. We crop the images to
512 × 512 and convert them to LR images of 64 × 64, 128 × 128, 256 × 256 for the ×8, ×4,
×2 SR task. A series of operations for data augmentation (such as rotation, flip, etc.) are
carried out simultaneously to improve the robustness of the model. We followed [21] model
structure for SR reconstruction in natural scenes. First, supplement the details with the
FAIR dataset, and train 200,000 iterations. We performed 1M training steps for all DMDC
and regression models with a batch size of 8. 2000 denoising steps are used in DMDC,
where βt is set from 2× 104 to 1× 102. Consistent with [21], we use a fixed learning rate of
1× 104 for the DMDC model and 1× 105 for the regression model, followed by a linear
warm-up schedule with Adam optimizer and over 1,000,000 training steps. For each set
of experiments, we perform the same training and validation five times, and obtain an
average result to make the experiments more convincing.

4.3. Generate Visualization
4.3.1. Detail Supplement Visualization

Figure 4 shows the visualization of our DMDC optimization process for small targets
in RS images. We can observe that even after most of the image details are covered, DMDC
can still generate RS HR images with rich semantic information from very little context
information. As can be seen from Figure 4a,b, our model can reconstruct the semantic
information in the source image, which is masked by a large area. In Figure 4c, the model
also has a strong generation ability in the dense scene of small targets.
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Figure 4. (a–c) are the visualizations of the detail complementation process of the FAIR dataset,
respectively. Reference (Column 1) shows the source images. The masked input (Column 2) is the
result of random mask X with small squares, and Columns 3–5 are the HR image generation process.
The procedure is conditioned on masked input. It starts with random Gaussian noise samples
(Column 3) and iteratively denoises until a high-quality output (Column 5) is produced. Zoom-in
for better details.

4.3.2. Visualization on Potsdam

Figure 5 shows our process of generating a 512 × 512 HR image from a 64 × 64
LR image, where the input Figure 5a is our initial LR image, and under its guidance,
DMDC gradually restores a 512 × 512 high-definition image Figure 5k from the randomly
generated noise Figure 5b. By comparing with our label results Figure 5l, it can be seen that
the model has a high restoration similarity to the image with very little noise. In particular,
the contrasting roads, cars, and grasslands in the picture can be reproduced clearly. At the
same time, our network takes contextual information in the image into consideration, so
it can distinguish roads from similar targets, such as dirt roads and parking spaces. The
fly in the ointment is that the clarity of the lower right corner of the picture is not restored
enough. This is mainly because the definition of the reference image is insufficient, which
leads to the degradation of image quality.

4.3.3. Visualization on Vaihingen

Unlike Potsdam, Vaihingen was shot in the center of the city, featuring dense and
complex historical buildings, roads, and trees, which made SR reconstruction more chal-
lenging. In addition, the color distribution of the two datasets is also very different. Figure 6
shows the visual SR generation results of our model directly migrated to the Vaihingen
dataset. Without any fine-tuning for this dataset, our DMDC can still achieve a high-quality
super-resolution reconstruction of Vaihingen, and can recover most of the details in the
image (including roof details and dense trees). The test on the Vaihingen dataset proves
that the detail supplement task can improve the super-resolution reconstruction ability
of DMDC for small targets. At the same time, the method of direct migration shows that
DMDC has strong generalization ability.
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Figure 5. On ISPRS-Potsdam test dataset, 64 × 64 input resolution to visually compare the image
reconstruction results. (a: input) the input image. (b–j) the results of the image reconstruction process.
(k: output) image reconstruction results. (l: reference) tag. Zoom-in for better details.
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Figure 6. On ISPRS-Vaihingen test dataset, 64 × 64 input resolution to visually compare the image
reconstruction results. The test was transferred directly without any fine-tuning. (a: input) the input
image. (b–j) the results of the image reconstruction process. (k: output) image reconstruction results.
(l: reference) tag. Zoom-in for better details.

4.4. Effective of Pixel Constraint Loss

To evaluate the effectiveness of our proposed pixel constraint loss, we conduct ablation
studies using DMDC models with and without pixel constraints. Figure 7 visualizes
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the whole process of DMDC super-resolution reconstruction for two sets of different
configurations on the Potsdam dataset. On the one hand, the reconstruction of DMDC
is more efficient and purposeful after using pixel constraint loss to generate constraints
on DMDC. Starting from Figure 7h, the DMDC model using the pixel constraint has
preliminarily reconstructed the color and texture information of the HR image, while the
one without the pixel constraint is blurry. On the other hand, from the final reconstruction
result Figure 7k, adding the pixel constraint enables DMDC to generate HR images with
balanced tones and more detailed textures. This ablation study demonstrates the important
contribution of pixel constraint.

Figure 7. RSSR reconstruction visualization results of DMDC images with and without pixel con-
straint loss, with no pixel constraint loss (left) and pixel constraint loss (right). (a: input) the input
image. (b–j) the results of the image reconstruction process. (k: output) image reconstruction results.
(l: reference) tag. Zoom-in for better details.

4.5. Comparison with State-of-the-Art

We conduct extensive experiments on SR of RS images, compare them with SOTA
solutions, and perform ablation analysis. We compare DMDC with MSRN [58], DDBPN [59],
RCAN [60], DDPM [18]. Figure 8 shows the qualitative results of each model on the ISPRS-
Potsdam dataset. It can be seen that the images generated by the baseline regression model
are faithful to the input, but fuzzy and lacking in details. In contrast, for remote sensing
images with multiple targets, the images generated by DMDC have rich details and sharp
edges, well-balanced naturalness and sharpness, and produce strong consistency with LR
images. Specifically, the red box in Figure 8 shows the SR reconstruction ability in details of
DMDC for the edge of the house, with the smallest gap with the reference image.
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Figure 8. ISPRS-Potsdam dataset ×8 magnification SR qualitative results. From left to right: (a) LR
image, (b) MSRN [58], (c) DDBPN [59], (d) RCAN [60], (e) DDPM [18], (f) DMDC (ours), and (g) Ref-
erence. For detailed comparison, the red rectangle is cropped and its enlarged version is placed in the
lower row. Compared to MSRN [58] and RCAN [60], DMDC produces more detailed and contrasting
images, avoiding the artifacts encountered by DDBPN [59] and DDPM [18] (e.g., within the red boxes
in row 2 and row 3, the detail recovery at the edge of the house), and maintain consistency with the
ground-truth. Zoom-in for better details.

As shown in Table 1, we provide quantitative results on (×8, ×4, ×2 scale) SR tasks,
which outperform other methods by 1 to 3 points. We utilize the Structural Similarity
Index (SSIM) to compare methods. Furthermore, we report no-reference image quality
assessments in the spatial domain for all methods. DMDC achieves the best evaluation
scores among the {64 × 64, 128 × 128, 256 × 256 → 512 × 512 resolution} models, implying
the best super-resolution reconstruction performance among the considered SR methods. In
particular, we directly transfer the model trained on the Potsdam dataset to the Vaihingen
dataset for (×8, ×4, ×2 scale) testing, without any fine-tuning. Quantitative results on
the Vaihingen dataset demonstrate that DMDC can still maintain superior performance
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when the data distribution changes. Overall, our proposed DMDC achieves the highest
fidelity and naturalness among all these methods. Meanwhile, the DMDC model with
pixel constraint loss has stronger generalization than other models. Meanwhile, the PSNR
evaluation metric is discussed in the last part of the experiment.

Table 1. Super-resolution results of ×8, ×4, ×2 magnification on ISPRS Potsdam and Vaihingen
datasets. We report quantitative results for the SSIM and BRISQUE metrics. Note that we trained
and tested on Potsdam. Then it is directly transferred to Vaihingen for testing, without any training
or fine-tuning.

Dataset
×8 (Scale) ×4 (Scale) ×2 (Scale)

PSNR↑ SSIM↑ BRISQUE↓ PSNR↑ SSIMred↑ BRISQUE↓ PSNR↑ SSIM↑ BRISQUE↓

Bicubic

Potsdam
Testset

25.68 0.6953 32.1548 28.21 0.7625 30.1589 32.31 0.8746 28.6751
EDSR [61] 25.85 0.6987 27.1245 28.32 0.7649 26.6271 32.58 0.8789 25.3897
MSRN [58] 25.48 0.7023 26.7856 28.29 0.7713 26.6857 32.21 0.8803 25.8921
DDBPN [59] 25.52 0.7049 24.3217 27.32 0.7725 23.8912 32.02 0.8934 24.3259
RCAN [60] 25.92 0.7056 25.6812 28.02 0.7756 24.8934 33.14 0.9012 22.3487
DDPM [18] 25.98 0.7173 23.3415 27.86 0.7832 22.1258 32.12 0.9074 20.3274
DMDC(ours) 25.34 0.7329 22.9012 28.12 0.7869 20.1645 32.87 0.9123 19.5632

Driectly Transfer

Bicubic

Vaihingen
Testset

20.36 0.5632 28.1567 23.21 0.7089 26.3489 27.73 0.8324 24.8948
EDSR [61] 22.24 0.5806 26.3179 24.31 0.7205 23.4986 27.96 0.8315 22.3472
MSRN [58] 21.25 0.5749 25.5741 23.98 0.7194 22.5914 27.48 0.8417 21.8798
DDBPN [59] 21.29 0.5864 25.3287 25.12 0.721 22.5324 28.07 0.8397 21.5714
RCAN [60] 22.34 0.5876 23.5786 24.32 0.7231 21.8649 28.13 0.8423 20.6819
DDPM [18] 22.17 0.6427 17.8547 25.02 0.7596 17.2684 27.63 0.8869 16.6817
DMDC(ours) 23.46 0.6696 16.6959 25.79 0.7627 15.9487 28.24 0.8975 15.3271

4.6. Discussion of DMDC on PSNR Indicator

As shown in Figure 9, we perform the super-resolution task of ×8, ×4, ×2 magnifi-
cations on the Potsdam and Vaihingen test datasets and report their PSNR quantitative
results. We observe that on the Potsdam dataset, DMDC is basically on par with other
methods. This is because PSNR is a strict metric that only measures the reference value
of image quality between maximum signal and background noise, which has limitations.
On the Potsdam test set, the CNN-based end-to-end method has a stronger fitting ability,
and this overfitting ability recovers the image from the pixel level. Therefore CNN-based
methods strictly follow the correspondence of the PSNR evaluation metric, resulting in
higher scores on the test set with the same distribution.

While our method is based on a generative model, it does not strictly follow the
correspondence of PSNR evaluations. This results in an unremarkable PSNR of DMDC
on the Potsdam test set. However, our method outperforms other methods on the PSNR
metric when they are both transferred to the Vaihingen test set. This demonstrates the
shortcomings of pixel-level fitting of CNN-based methods and also demonstrates that our
method has a strong generalization ability. When the magnification is 8 or 4, the generaliza-
tion of the model transfer is more significant, and when the magnification is 2, the gap of
the model in the transfer performance gradually narrows. In addition, DMDC pays more
attention to the higher perceived quality of vision and its relevance to human perception.
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Figure 9. Super-resolution histograms of ×8, ×4, ×2 magnification ratios on the ISPRS Potsdam (first
row) and Vaihingen (second row) datasets. Where the abscissa is the baseline, the state-of-the-art
method, and DMDC, and the ordinate reports the quantitative results of the PSNR metric. Note that
we trained and tested in Potsdam. Then we transferred directly to Vaihingen for testing without any
training or fine-tuning. The PSNR indicator histograms in Figure 9 are: (a) Postdam Testset (×8),
(b) Postdam Testset (×4), (c) Postdam Testset (×2), (d) Vaihingen Testset (×8), (e) Vaihingen Testset
(×4), and (f) Vaihingen Testset (×2).

5. Discussion

DMDC achieves super-resolution reconstruction through iterative thinning, which
can generate clear, highly detailed, and semantic images. Compared with other methods,
DMDC only imitates the reverse process corresponding to a simple forward process, thus
avoiding the over-smoothing problem caused by multiple convolutions in the CNN-based
method and the mode collapse problem caused by unstable training in the GAN-based
method. Furthermore, pixel constraint loss can guide the generation process of DMDC to
generate more stable and high-quality images. In the future, we will further develop our
work in two areas. On the one hand, we will work on speeding up the DDPM optimization
process to make it more suitable for real-time applications. On the other hand, we will
design state embeddings that are more in line with remote sensing properties to further
improve RSSR capabilities.

6. Conclusions

This paper presents a diffusion model with a detailed complementary mechanism.
Within the scope of our knowledge, we take the lead in implementing the remote sensing
super-resolution task based on the diffusion model, which may become a new paradigm for
generative models in the field of remote sensing super-resolution. Aiming at the difficulty of
super-resolution reconstruction of small objects and dense objects in remote sensing images,
we propose an optimized detail supplementation mechanism to enable the model to have
the capability of detail super-resolution reconstruction. Furthermore, considering that the
randomness in the diffusion model generation process is not conducive to super-resolution
reconstruction, we introduce a pixel constraint loss to guide the reconstruction of DMDC,
which can speed up the convergence and stabilize the training. Extensive experiments
verify the superior performance and strong generalization ability of our method on the task
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of remote sensing image super-resolution. DMDC is also a strong candidate for improving
performance on high-level visual tasks.
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