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Abstract: Pavement disease detection is an important task for ensuring road safety. Manual visual
detection requires a significant amount of time and effort. Therefore, an automated road disease
identification technique is required to guarantee that city tasks are performed. However, due to the
irregular shape and large-scale differences in road diseases, as well as the imbalance between the
foreground and background, the task is challenging. Because of this, we created the deep convolution
neural network—DASNet, which can be used to identify road diseases automatically. The network
employs deformable convolution instead of regular convolution as the feature pyramid’s input, adds
the same supervision signal to the multi-scale features before feature fusion, decreases the semantic
difference, extracts context information by residual feature enhancement, and reduces the information
loss of the pyramid’s top-level feature map. Considering the unique shape of road diseases, imbalance
problems between the foreground and background are common, therefore, we introduce the sample
weighted loss function. In order to prove the superiority and effectiveness of this method, it is
compared to the latest method. A large number of experiments show that this method is superior
in accuracy to other methods, specifically, under the COCO evaluation metric, compared with the
Faster RCNN baseline, the proposed method obtains a 41.1 mAP and 3.4 AP improvement.

Keywords: pavement disease detection; deep learning; deformable convolution; supervision signal;
sample weighted loss function

1. Introduction

The road starts with a single step, allows for convenient transportation, and provides
an important guarantee for the operation of urban functions; however, each passage has
an influence on the road. The influence of such activites are common concrete road cracks,
potholes and rutting, looseness, subsidence, damage, and other issues, which, if not handled
in time, can cause roads to become susceptible to deformation under various load types,
such as vibration and shock [1], causing serious threats to road safety. This is due to the
effect of the load of the road itself, building materials, construction error characteristics,
and the external environment. The timely location and repair of pavement diseases is very
important to maintain a road’s good running state. Therefore, it is necessary to carry out
manual or automatic detection on a regular basis to detect the condition of the pavement.
The majority of detection systems used to detect pavement disease both domestically
and internationally are based on manual visual inspection, and have major drawbacks
such as high inspection costs, low efficiency, low accuracy, and difficulty maintaining staff
safety. Machine vision detection technology, a type of nondestructive testing technology
used in many industrial domains, effectively eliminates the drawbacks of manual visual
examination. It collects road images using a complementary metal oxide semiconductor
(CMOS) camera or a charge coupled device (CCD) camera, and then utilizes the model
to automatically identify faults [2–4]. The machine vision models used in such automatic
techniques are acknowledged to be critical in assuring the effectiveness and accuracy of
defect identification [5].
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The introduction of machine vision has raised the bar for detecting pavement defects.
Traditional machine vision methods can be divided into traditional image processing
methods and machine learning methods. For example, in a study of road crack detection,
Abdel Qader et al. [6] compared the performance of the fast Haar transform (FHT), the fast
Fourier transform (FTT), the Sobel transform, and the Canny transform. It was determined
that FHT was superior to other technologies based on the experimental results [5]. When
detecting defects, the model based on mathematical morphology will perform corrosion,
expansion, and other operations on the cracks in the road crack image [7,8], thereby
improving the contrast of defects. However, the traditional machine vision model can
not deal with defect detection against complex backgrounds because of the exposure,
shade, advertisement occlusion, and other phenomena in the road disease image. Among
the machine learning (ML) methods, various ML techniques based on shallow linear
regression models, such as support vector machines (SVM) [9] and random forest (RF) [10],
K-means [11], AdaBoost [12], regression analysis [13], grouping technique [14], restricted
Boltzmann machine (RBM) [15,16], and other technologies have been applied successfully
and satisfactorily in the defect identification processes of civil engineering projects [5]. The
machine learning methods offer adaptable strategies for processing various road fracture
patterns. However, the shallow linear regression model’s simplicity and real processing
capability may limit the accuracy of the prediction. Deep convolutional neural networks
(DNN), a set of probabilistic learning frameworks with low processing times, on the other
hand, are appealing for real-time applications, and deep learning-based approaches have
proven to be useful in numerous visual tasks.

Existing surface defects detection approaches based on DNN are essentially classified
into two frameworks: single-stage and two-stage. The SSD (single shot multibox detec-
tor) [17] series and YOLO series [18] are examples of single-stage networks that employ
only one network to identify areas of interest and output categories at the same time. This
type of network is difficult to train and has low accuracy. Faster RCNN [19] is an example of
a two-stage network, and its detection speed has substantially increased over the previous
two generations. A two-stage network employs two subnetworks for location and classi-
fication, is simpler to train, and has higher overall accuracy than a single-stage network.
However, due to the the intricacy of defects, when a two-stage network is employed for
automatic road disease detection, there are two challenges: (1) Unlike in other applications,
the shapes of the road diseases developed during usage are irregular, with substantial scale
variances, as shown in Figure 1a–h, the eight diseases in the green box have different sizes
and shapes; (2) Road diseases are typically irregular cracks. For some diseases with a big
curvature, the detector’s determined region will contain too much background information,
which might easily produce foreground–background imbalance and impact accuracy, as
shown in Figure 1f–h. Here, the three types of diseases, patch-crack, patch-net, and pot-
hole, contain too much background information in the green box, thereby increasing the
likelihood of the foreground–background imbalance problem. The regular convolution
layer is used in a conventional two-stage network. By extracting defect features with a
fixed convolution kernel, it is easy to extract too much background information. Because
the defect scales of road diseases are extremely varied, the regular convolution layer cannot
adapt to these characteristics well. Furthermore, when adopting the conventional region
proposal for foreground–background imbalance problems, the network is prone to focusing
on “hard” samples, yet “hard” examples are not always significant. Therefore, it becomes
critical to use a module with sample weighting and its related loss function in training to
balance the link between classification and regression tasks.
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module includes an offset layer parallel to the convolution layer. This allows the deform-
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derutilized multi-scale features in feature pyramid network (FPN) [22], first by con-
sistency supervision to close the semantic gap before the fusion of features at various sizes. 
To limit information loss in the pyramid’s top-level feature map, feature fusion extracts 
proportionately invariant contextual information via residual feature augmentation. This 
phase can be intended to address the situation in which the detection accuracy of small-
size defects has been diminished as a result of the introduction of deformable convolution. 

Finally, a sample weighted loss function is employed during training to alleviate the 
foreground–background imbalance problem and increase detection accuracy. It predicts 
sample weight using the uncertainty distribution of samples in classification loss, regres-
sion loss, IOU, and probability score while avoiding some human parameter adjustments. 

In summary, the contributions of this paper are as follows: 
(1) Deformable convolution and new feature pyramids are used to address irregular var-

iations in defect shape and scale respectively. 
(2) Improved loss functions can improve detection accuracy. 
(3) Compared with benchmarks and other popular detectors (e.g., Cascade RCNN [23], 

RetinaNet [24], FCOS [25], ATSS [26], Libra RCNN [27], YOLOv3 [28], etc.), our 
model achieves state-of-the-art (SOTA) results on the COCO [29] mean Average Pre-
cision (mAP) metric. 

Figure 1. Example of road diseases. (a–h) is the shape of road diseases in the green box is irregular
and the scale varies greatly. (f–h) is the green box contains more background information.

To solve the aforementioned challenge, a high-quality defect detection framework
termed DASNet is developed in this research. Our framework is based on Faster RCNN
and is comprised of three well-designed modules: a deformable convolution-based feature
extraction module, a new pyramid module, and a sample weighted loss function module.
Figure 2 depicts the whole transmission path as well as the connectivity of the three
modules. The following issues will be addressed mostly by cascading these three modules.
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Figure 2. The flow of DASNet proposed in this paper includes feature extraction module, feature
pyramid module and sample weighted loss module.

First, the deformable convolution module [20,21] is introduced to diverse shapes of
road diseases. In comparison to the regular convolution grid, the deformed convolution
module includes an offset layer parallel to the convolution layer. This allows the deformable
convolution module to learn irregular shape offsets without further supervision. The
feature extraction module may autonomously change the feature sample region throughout
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the inference process based on the shape information of distinct defects so that the features
of the area of the defects include as little background information as possible.

Second, in the feature pyramid, enhancements are made to address the issue of under-
utilized multi-scale features in feature pyramid network (FPN) [22], first by consistency
supervision to close the semantic gap before the fusion of features at various sizes. To limit
information loss in the pyramid’s top-level feature map, feature fusion extracts proportion-
ately invariant contextual information via residual feature augmentation. This phase can
be intended to address the situation in which the detection accuracy of small-size defects
has been diminished as a result of the introduction of deformable convolution.

Finally, a sample weighted loss function is employed during training to alleviate the
foreground–background imbalance problem and increase detection accuracy. It predicts
sample weight using the uncertainty distribution of samples in classification loss, regression
loss, IOU, and probability score while avoiding some human parameter adjustments.

In summary, the contributions of this paper are as follows:

(1) Deformable convolution and new feature pyramids are used to address irregular
variations in defect shape and scale respectively.

(2) Improved loss functions can improve detection accuracy.
(3) Compared with benchmarks and other popular detectors (e.g., Cascade RCNN [23],

RetinaNet [24], FCOS [25], ATSS [26], Libra RCNN [27], YOLOv3 [28], etc.), our model
achieves state-of-the-art (SOTA) results on the COCO [29] mean Average Precision
(mAP) metric.

2. Materials
2.1. Traditional Detection Methods

Both image processing-based and conventional machine learning methods are consid-
ered standard approaches in this field. The three types of image processing-based methods
are threshold-based, edge detection, and feature-based.

Threshold-Based methods: In [30], scale space Gaussian blurring is used to preprocess
the image of concrete cracks, and the Otsu threshold is calculated with differential image.
A method to divide pavement crack image into two parts based on the Otsu threshold
is proposed in [31]. In [32], Otsu image threshold segmentation technology was used to
extract the characteristics of wormhole on concrete surface.

Edge detection algorithms: A threshold function is introduced into the Canny edge
detection algorithm for pavement crack detection in [33]. A crack detection method,
including a crack detection framework, is proposed in [34].

Features-Based methods: Using a Gabor filter to divide the pavement crack image
into 128 × 128 sub-images in [35], and crack features are generated through a Gabor filter.
Similarly, in [36], the Gabor filter is applied to a 30 × 40 non-overlapping window to
generate bridge crack characteristics, which are then classified by SVM. The local binary
pattern (LBP) is used to characterize the crack image features of pavement in [37]. In [38],
the combination of symlet decomposition filter (SDF) and stationary wavelet transform
(SWT) is used to preprocess pavement crack images, to reduce unnecessary texture in
non-crack areas, and to enhance crack detection.

Machine learning methods: In [12], a supervised learning method based on AdaBoost
is used to detect road cracks. Hierarchical clustering, K-means, and GMM (Gaussian Mixed
Mode) clustering algorithms are used to cluster each block of pavement crack image in [39].
RF is improved in [40] to get a CrackForest method that includes integral channels to better
represent the features of road cracks. K-nearest neighbor (KNN), SVM, RF, and neural
network are used to identify pavement cracks and potholes in [41]. A fast classification
method based on SVM is proposed in [42] for automatically detecting and quantifying
defective patches of pavement. In [43], pavement potholes and cracks in aerial photography
are classified in combination with SVM, artificial neural network (ANN) and RF. In [44], a
probabilistic generation model (PGM) is combined with SVM to develop a pavement crack
detection model based on a fused probability map. In [45], a feature extraction method
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based on image texture and the random gradient descent logistic regression method are
used to automatically detect pavement diseases of asphalt pavement.

2.2. Deep Learning Methods

This section reviews the detection methods of pavement and concrete surface damage
based on in-depth learning, which has achieved outstanding results in computer vision-
related fields thanks to strong feature representation.

Classification: In [46], Applies a deep convolutional neural network (CNN) frame to
road damage image classification. In [47], VGG-16 DCNN [48] is used to classify pavement
image as “crack” or “no crack”. In [49], DCNN is used to classify pavement cracks on
three-dimensional images and to mark these cracks in five different categories.

Location: In addition, YOLO v2, Faster RCNN and RetinaNet are often used to locate
pavement lesions [50]. In [51], depth-based learning is used to locate crack areas.

Detection: A concrete crack detection model based on deep learning is presented
in [52]. A CNN framework named NB-CNN is proposed in [53], in which naive Bayes data
fusion technology is added to detect cracks from video frames. A five-layer CNN CrackNet
architecture is suggested in [54] for the automatic detection of cracks in asphalt pavement.
In [55], Faster-RCNN is used for crack detection.

Segmentation: In [56], a full convolution network (FCN) method is proposed for mul-
tiple damage types (cracks, peeling, holes, and weathering). In [57], semantic segmentation
is introduced into a convolution network. A full convolution neural network (FCNN) is
proposed for concrete crack detection based on expanding convolution to solve the problem
of missing information during downsampling in concrete crack detection. The performance
of CNN and FCN for pavement crack detection is compared in [58]. In [59], the top-down
multi-level features are combined to segment pavement cracks. In [60], the depth of the
convolution neural network and an improved image thinning algorithm to detect the crack
in the dam slope protection is used.

2.3. Modern Object Detectors

There are three types of modern object detectors: two-stage detectors, one-stage
detectors, and anchor-free detectors. The two-stage detectors originate from RCNN [61].
The region of interest (ROI) is produced from the original image in the first stage. The
ROI feature is extracted using the backbone network in the second stage. The ROI is then
selected using Fast RCNN [62] and SPP-Net [63] from the feature extracted by the backbone
network. Faster RCNN now generates ROI with a region proposal network (RPN). Because
of the advent of Faster RCNN, the accuracy and speed of the two-stage detectors have
substantially increased. As a result, these are now the most often used two-stage detectors,
and are additionally used for milestone finding in object detection. Two-stage detectors
have variations such as Cascade RCNN, Grid RCNN [64], and Libra RCNN. The one-stage
detectors’ RPN can be fused with the classifier to immediately classify and regress the
bounding box through the neural network. This works faster but is less accurate than
two-stage detectors such as YOLO and RetinaNet. Anchor-free detectors, represented by
FCOS and ATSS, have developed significantly over the last two years, require no bounding
boxes, and are simple to calculate.

2.4. Faster RCNN

The RCNN family of object detection algorithms works by first generating certain
region proposals, which are subsequently classified and positioned using regression. Faster
RCNN achieves end-to-end training [65] and significantly increases speed by replacing
previous RCNN algorithms that produce region proposals using Selective Search (SS)
techniques with neural networks. Thanks to these advantages, DASNet is expanded on the
basis of the three components of Faster RCNN. As shown in Figure 3, Faster RCNN mainly
consists of three modules: feature extraction module, area RPN, and RCNN module (that
is, Roi Align and classification network).
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(1) Module for feature extraction. The feature map of the image is first extracted using
a set of basic conv + relu + pooling layers. This feature map is then shared for
subsequent RPN layers and fully connected layers.

(2) The RPN network is actually divided into two lines, one is used to obtain the positive
and negative classification by softmax classification anchors, and the other is used to
calculate the bounding box regression offset relative to anchors to obtain the accurate
proposal. It is equivalent to completing the function of target positioning.

(3) The RCNN module (i.e., Roi Align and classification network. In order to avoid the
mis-alignment problem caused by the two quantizations in the Roi Pooling operation,
Roi Align is used instead of the original Roi Pooling) is used to classify the candidate
detection boxes. And after the RPN, the coordinates of the candidate box are fine-
tuned again to output the detection results.

2.5. FPN

In object detection, convolutional networks often have some technical drawbacks:
although high-level networks can contain semantic features, they do not have much ge-
ometric information, which is not conducive to object detection. Although the shallow
network contains more geometric information, there are not many semantic features of the
image, which is not conducive to image classification. This problem is more prominent in
small object detection. A common scheme is to build a pyramid [66]. Pyramids need to
distinguish simple objects by using shallow features, and complex objects by using deep
features [67]. However, in practical applications, the pyramid is often directly obtained
from the shallow layer of the network, which leads to the loss of some semantic infor-
mation. FPN [22] uses the pyramid form of CNN hierarchical features [68] to generate
feature pyramids with strong semantic information at all scales. FPN uses bottom-up path,
top-down path, and lateral connection mode. In this way, feature gold characters of each
scale with strong semantic information can be quickly constructed from the input image of
a single scale.
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3. Methods

The DASNet defects detection framework is proposed by deformable convolution
module, feature pyramid module, and loss function module, as shown in Figure 2. There
are a few important differences between Faster RCNN and this version. To obtain feature
maps, deformable convolutions were originally introduced to replace regular convolutions.
Then, using an upgraded pyramid module, feature enhancement is achieved by combining
all feature maps of various resolutions. Finally, the sample weighted loss function module is
used to modify the predicted bounding box to solve the foreground–background imbalance
problem in Faster RCNN processing of pavement diseases.

3.1. Deformable Convolution

When convolution is performed using conventional convolutional computation rules,
it cannot change adaptively with object scaling, rotation, or irregular shape, but by ob-
serving deformable convolution, which can effectively march and deform according to the
target geometry when facing irregular targets. As inspired by the literature [20,21], we
apply deformable convolution to replace the original regular convolution in the feature
extraction module. As features are learned, the shape of the sampled region can be changed
adaptively, as can be seen in Figure 4. As part of the deformable convolution operation on
the feature map, a new 3 × 3 convolution layer (i.e., the upper part of the figure) is defined
after the input feature map to learn the position offsets with the same output dimension
as the original feature map and several channels of 2N, representing the offsets in the x, y
direction. Following this, the learned offsets are inserted into the input feature mapping by
bilinear interpolation before the result is passed to the deformable convolution layer.
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With DCNv2, convolution is a two-dimensional operation, and the input feature map
is sampled by using 3 × 3 grids R (that is, convolution kernels) that differ from the grids
found in regular convolution by adding position offsets to the traditional grids, as shown
in Figure 5. Thus, for each position p0 on the resulting feature map, the matrix obtained
from the deformable convolution kernel can be expressed as follows:

y(p0) = ∑
pn∈R

w(pn)·x(p0 + pn + ∆pn) (1)

where pn lists the positions in R, ∆pn({∆pn|n = 1, 2, . . . , N}, N = |R|) is the position offset,
and R is the augmentation of ∆pn.
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3.2. Aug Feature Pyramid Module

The FPN [22], which contains a top-down pipeline and some lateral connections, is
used to fuse neighboring feature maps to generate a multi-scale feature map, as shown in
Figure 6a. When road diseases at different scales enter the network, they are divided into
different pyramid layers, with the bottom feature scale being large and containing only
some information such as edges and corner points, and the top feature scale being small
and containing more semantic information. The FPN has design flaws: it directly fuses
features at different scales, ignoring the large semantic gap between them; the top-down
feature fusion approach causes the top layer features to be lost. All these flaws result in sub-
optimal pyramids. A heuristic idea is, therefore, elicited to add the same supervised signal
to multi-scale features before feature fusion to reduce the semantic gap, and a Residual
Feature enhancement (RFE) method is proposed to improve the feature representation
of M5 by injecting different spatial contextual information into the original branch using
residual branches.
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In this paper, AugFPN [69] is used to further enhance the feature and improve the de-
tection accuracy by using the consistent supervision and residual feature enhancement mod-
ule. The specific workflow is shown in Figure 6, which mainly includes the following steps:

(1) First, a feature pyramid {P2, P3, P4, P5} is constructed based on the multi-scale features
{C2, C3, C4, C5} obtained from the backbone, and detectors and classifiers, i.e., RPN
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Head and RCNN, are added to each feature before it enters the feature pyramid fusion,
as shown in the middle part of Figure 6a, which maps the ROIs generated by RPN
onto {M2, M3, M4, M5} and obtains the corresponding feature maps to classify and
regress these features. The parameters of these classification and regression heads are
shared at different levels, facilitating the supervision of features at different scales.

(2) Using residual branches to inject different spatial contextual information into the
original branches to improve the feature representation of M5. Assuming that the
size of C5 is S = h × w, we downsample C5 into 3 copies, respectively. Specifically,
as shown in Figure 6a. Firstly, sample C5 as α1 × s, α2 × s, and α3 × s respec-
tively by adaptive pooling. Secondly, convolve the results of adaptive pooling into
1 × 1 respectively to bring the feature channel down to 256. Thirdly, upsample the
3 different downsampled results again (scale with C5 to remain consistent at 256) as
adaptive spatial fusion input.

(3) The next step is adaptive spatial fusion and the final generation of a spatial weight
for each feature. This is shown in Figure 6b, where the α1 × s, α2 × s and α3 × s are
concat, and finally, the contextual features are fused into M6 using the weights. After
generating M6, it is summed with M5 and fused with other lower-level features in
turn by propagation. After fusion, 3 × 3 convolution is performed on each feature
vector to build the feature pyramid {P2, P3, P4, P5}.

3.3. Sample Weighted Loss Function Module

Pavement images usually contain a variety of diseases. When detecting based on re-
gions, some common diseases (such as cracks) have a large curvature, which can easily lead
to too much background information in the bounding box, causing foreground–background
imbalance. To further improve the detection accuracy, a sample weighted module is pro-
posed to calculate the loss, and the original loss function in Faster RCNN is improved.
According to [70], this sample weighted module jointly learns the sample weights for
classification and regression tasks, which can achieve good performance gains without
affecting the inference time of the Faster RCNN. The sample weighted module is built
based on the multilayer perceptron (MLP), as shown in Figure 7. It combines classification
loss, regression loss, IOU, and classification score, exploiting the relationship between these
four in terms of uncertainty in response prediction and avoiding the corresponding loss of
true values due to the direct use of visual features.

Specifically, for the ith sample, the regression task is modeled as a Gaussian likelihood,
so the mean and standard deviation σi

reg of the offset between the ground truth and the
predicted position has the following relationship:

p(gti|a∗i ) = N
(

a∗i , σ
reg2

i

)
(2)

where the vector gti represents the ground truth of boundary box coordinates, and a*
represents the predicted value of bounding box coordinates. Maximize the logarithmic
probability of likelihood to optimize the regression network:

logp(gti|a∗i ) ∝ − 1

σ
reg2

i

||gti − a∗i ||22 − logσ
reg
i (3)

A further, defining Lreg∗

i = ||gti − a∗i ||22, Equation (2) can be arranged as follows:

Lreg∗

i =
1

σ
reg2

i

Lreg
i + λ2logσ

reg
i (4)

where λ2 is a constant used to balance weights. It can be seen from Equation (4) that with
the increase of offset, the weight on Li

reg decreases. Therefore, this strategy places more
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weight on confident samples and imposes more penalties on the mistakes made by these
samples in the training process.
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Classification loss is consistent with regression loss, then:

Lcls
i = −log so f tmax(yi, p(a∗i )) (5)

The classification loss is approximated by:

Lcls∗
i =

1

σcls2

i

Lcls
i + λ1logσcls

i (6)

The overall weighted loss is:

Li = Lcls∗
i + Lreg∗

i =
1

σcls2

i

Lcls
i +

1

σ
reg2

i

Lreg
i + λ1logσcls

i + λ2logσ
reg
i (7)

Let m·i = log
(
σ·i
)
, the overall weighted loss after optimization is:

Li = exp
(
−2mcls

i

)
Lcls

i + λ1mcls
i + exp

(
−2mreg

i

)
Lreg

i + λ2mreg
i (8)

where m·i can be obtained by learning feature di, as shown in Equation (9), and di is defined
by Equation (10):

mcls
i = Wcls(di)

mreg
i = Wreg(di)

(9)

di = concat
(

F
(

Lcls
i

)
; G

(
Lreg

i

)
; H(IoUi); K(Probi)

)
(10)
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Wcls and Wreg respectively represent different MLP, indicating that feature di is learned from
two independent MLP to obtain the corresponding m·i. The di is obtained by combining
classification loss, regression loss, IoU, and scoring probability by using the correlation
between offset and ground truth.

4. Experiments and Results

We have conducted in-depth experiments on the challenging pavement dataset and
evaluated our approach.

4.1. Dataset

The pavement dataset used in this paper is derived from the “Global Open Data
Innovation Competition”. It contains 8 disease types and 14,000 road disease images of
different scales and resolutions. The training set allocates 6000 pictures; test set A allocates
2000 pictures and test set B allocates 6000 pictures. Figure 8 shows some examples of
the dataset.
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4.2. Evaluation Metrics

A confusion matrix is frequently utilized in the evaluation of object detection models
as an essential indication. Table 1 depicts the association between TP (true positive), FN
(false negative), FP (false positive), and TN (true negative). Using the confusion matrix
indications as a starting point, new assessment indicators appropriate for diverse purposes
may be generated through combination. Table 2 displays the key indicators. Table 3 lists
some definitions of accuracy, and all the experimental results in this paper are measured
using COCO. In this experiment, we assessed the mean accuracy at various IoU thresholds,
with a range of 0.5 to 0.95 and a 0.05 interval. This reflects the performance of detection
under various criteria and has a high level of local detection result accuracy.

Table 1. Confusion matrix.

Actual Category
Predicted Category

Defect Non-Defect

Defect TP FN
Non-defect FP TN
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Table 2. The evaluation indicators of the model detection performance.

Evaluation Indicators Significance Calculation

Recall (R) Identify positive samples Recall(TPR) = TP
TP+FN

Precision (P) Identify the correct
positive sample Precision(PPV) = TP

TP+FP

Average Precision (AP) Judge a category AP = ∑ PPV
n

Mean Average Precision (mAP) Average score of AP across
all categories mAP = ∑ AP

2

Table 3. Summary of common evaluation metrics for AP (%).

Type Definition and Description

PASCAL-VOC [71] AP at IoU = 0.5

MS-COCO

AP at IoU = 0.5:0.05:0.95
AP at IoU = 0.75

APS: AP for small objects: area < 322
APm: AP for medium objects: 322 < area < 962

APl: AP for large objects: area > 962

4.3. Experimental Details

All experiments were implemented based on MMdetection [72]. The operating system
is ubuntu20.04 (Canonical, London, UK) and the graphics card is NVIDIA GeForce RTX
3090 (Santa Clara, CA, USA). By default, we trained the model with 1 GPU (3090) for
24 epochs, which is commonly referred to as 2× training schedule. Initialization parameters
for feature extraction networks such as ResNet-50 [73], ResNet-50-FPN, and ResNet-50-
DCNv2 (only those with a depth of 50 are provided below, with reference values for
other network parameters in depth) are translated from the ImageNet dataset training
model. Other advanced methods utilized to compare detection performance in this research
make advantage of the pre-training weights given by MMdetection. To train the detection
network, all approaches in this research employed the stochastic gradient descent method
(SGD). The initial learning rate was set to 0.0025 and declined at a rate of 0.1 after the 8th
and 11th iterations. A weight decay of 0.0001 was used for optimizers. In addition, λ1 and
λ2 were all taken as 0.5, and all other hyperparameters in this paper follow MMdetection.

4.4. Experimental Results

To verify the effectiveness of the proposed performance enhancement methods, Faster
RCNN and the proposed models were comprehensively evaluated on ResNet-50 and
ResNeXt-101-32×4d [74]. Because the DASNet has a pyramid module, the Faster RCNN
is equipped with a FPN for fairness. Table 4 shows the test results for average accuracy
(AP) on the road dataset. It can be seen that DASNet, with Resnet-50 as the backbone, has
40.1% mAP and 2.4% higher mAP than Faster RCNN due to its well-designed modules.
DASNet can still improve the performance of Faster RCNN by 5.0% when using stronger
backbone networks such as ResNeXt-101-32×4d. In contrast, DASNet shows better classifi-
cation and positioning performance for targets of different scales. The inference time of
each image processed by Faster RCNN and DASNet is also compared in Table 4. Despite
the fact that adding the intended module to the baseline will lengthen the inference time,
DASNet (0.3 s/image) can still complete real-time detection tasks in the required time.
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Table 4. Detection mAP (%) for Faster RCNN and DASNet in Different Backbones.

Method Backbone Inference
Time(s) mAP AP50 AP75 APs APm APl

Faster RCNN Resnet-50-FPN 0.152 38.7 67.9 39.7 33.1 38.3 37.9
Faster RCNN ResneXt-101-FPN 0.179 64.8 90.4 69.5 56.3 65.2 63.1

DASNet Resnet-50-DCNv2 0.301 41.1 63.8 45.3 34.3 44.1 52.3
DASNet ResneXt-101-DCNv2 0.361 79.5 95.1 77.7 52.1 66.9 66.3

Figure 9 shows different road disease samples, each of which can be correctly detected.
Figure 10 shows our method and the performance of some SOTA object detection detectors
on each disease category. To be fair, the SOTA methods shown in Figure 10 are all ResNet-50
with FPN except Darknet-53, which is the backbone network of YOLOv3. Specifically, in
Figure 10a, the detection accuracy of our method for each disease type is shown. It can
be seen that the detection accuracy of most diseases is very high, but there are also some
differences between different disease types, such as “other” type and “manhole” type. In
multitask detection, the network will concentrate its attention on some samples with large
classification loss (i.e., ‘hard’ samples), which will easily sacrifice the positioning ability
of the network for accuracy, resulting in a reduction in accuracy. When the IoU is larger
than 0.5, improper positioning has a bigger impact on average accuracy. The detection
accuracy of other SOTA approaches varies by illness category, as illustrated in Figure 10e.
The distinction is larger than that of our technique. DASNet contains a sample weighting
module, which enables the sample weights to be consistent between different tasks. It
prevents some networks from paying too much attention to “hard” samples and reduces
some weights of “easy” samples, which affects the overall detection accuracy. At an IoU
of 0.75, the accuracy decreases less than Faster RCNN. At the same time, the fusion of
semantic information by the pyramid module in DASNet makes the extracted features
contain more detailed information, and also contributes to the accuracy of disease detection
for each category. From Figure 10b–d, we can see that our method is based on Faster
RCNN, but the detection accuracy of each disease category has been improved. Overall,
the detection performance of DASNet is better than other networks.
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4.5. Ablation Experiments

Overall ablation studies. A series of ablation studies were implemented in order to
analyze the importance of these proposed components. As shown in Table 5, the feature
extraction network uses Resnet-50, with deformable convolution, AugFPN, and sample
weighted loss function (SWLF) progressively added on top of Faster RCNN, ‘

√
’ means

adding the corresponding module. Three useful conclusions can be drawn from the results
in Table 5. First, with the addition of DCN, mAP, AP50, AP70, and APl all increase,
but the detection performance of medium and small defects decreases; AugFPN better
integrates the characteristic maps of different scales, so that each index was improved. It
can be seen that adding AugFPN to the existing DCN network significantly improved the
detection accuracy of small and medium-sized targets, and the network performance was
significantly improved. Second, SWLF also improves the network accuracy and is friendlier
to larger targets. Third, by adding these three modules in turn, the evaluation criteria, such
as mAP, were improved.
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Table 5. The Contribution of Each Component in DASNet.

DCNv2 AugFPN SWLF mAP AP50 AP75 APs APm APl Inference Time(s)

37.7 65.9 38.7 30.5 37.2 37.2 0.152
√

39.1 67.0 40.1 12.3 34.4 39.9 0.183√
39.8 68.1 42.7 33.7 42.1 51.0 0.191√
38.5 58.6 42.2 31.9 41.9 48.9 0.168

√ √
39.2 69.1 43.2 28.6 43.3 51.3 0.251√ √
38.9 67.5 43.6 30.8 42.8 51.8 0.246√ √
39.8 68.4 44.4 34.4 42.9 50.8 0.233

√ √ √
41.1 73.8 46.3 34.3 44.1 52.3 0.301

Deformable convolutional ablation study. Using the Faster RCNN with a backbone of
ResNet50 as a benchmark, it can be seen from Table 5 that the deformable convolutional
network (DCN) is 0.7 points higher than the benchmark AP. To demonstrate the advantage
in deformable convolutional performance, we configured DCNs to feature extraction
networks of different depths for comparison, and the results are shown in Table 6 compared
with Resnet-50, Resnet-101, and ResneXt-101 have a deeper network hierarchy, larger
model prediction capacity, and higher performance. In addition, it should be noted that
deformable convolution greatly improves performance both on efficient models like Resnet-
50 and on complex networks like ResneXt-101. Additionally, it should be noted that
the DCN configuration on Resnet-50 was improved according to most indicators, but its
accuracy in detecting small defects is not high. Gradually, APs starts to converge with the
benchmark as the feature extraction network gets deeper.

Table 6. Ablation Studies of Deformable Convolutional.

Method Backbone mAP AP50 AP75 APs APm APl

Faster RCNN Resnet-50 37.7 65.9 38.7 30.5 37.2 37.2
Faster RCNN Resnet-50-DCNv2 39.1 67.0 40.1 12.3 34.4 39.9

Faster RCNN Resnet-101 41.8 69.9 44.8 30.4 41.6 40.8
Faster RCNN Resnet-101-DCNv2 53.9 84.2 60.1 35.4 56.5 52.9

Faster RCNN ResneXt-101 67.1 89.4 65.5 52.1 63.4 59.9
Faster RCNN ResneXt-101-DCNv2 76.5 95.1 87.7 51.1 76.9 76.3

AugFPN ablation study. For comparison, we re-implemented the corresponding
FPN-based benchmark method. The results are shown in Table 7, where the Faster RCNN
incorporating AugFPN and using ResNet-50 as the backbone (denoted ResNet-50-AugFPN)
obtained 39.8 mAP, which is 1.1 points higher than the mAP of ResNet-50-FPN, Aps and
APm also increased by 0.9 and 3.8 points, respectively. Furthermore, even when the Faster
RCNN is selected over a more robust backbone, the AugFPN consistently delivers non-
negligible performance. For example, when using ResNeXt-101 as a feature extraction
network, AugFPN still improved performance by 2.7 points over FPN’s mAP.
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Table 7. Ablation Studies of AugFPN.

Method Backbone mAP AP50 AP75 APs APm APl

Faster RCNN Resnet-50-FPN 38.7 67.9 39.7 33.0 38.3 37.9
Faster RCNN Resnet-50-AugFPN 39.8 68.1 42.7 33.9 42.1 51.0

Faster RCNN Resnet-101-FPN 41.8 69.9 44.8 30.4 41.6 40.8
Faster RCNN Resnet-101-AugFPN 43.2 76.9 48.3 35.5 44.1 52.8

Faster RCNN ResneXt-101-FPN 71.8 90.4 69.5 56.3 65.2 63.1
Faster RCNN ResneXt-101-AugFPN 74.5 91.1 79.9 62.0 75.3 77.3

Sample Weighted Loss Function ablation study. Using Faster RCNN + ResNet-50 as a
benchmark. The results are shown in Table 8, where it is shown that the performance of
each network has been steadily improved with the addition of the SWLF module. Among
them, mAP, APs and APm increased by 0.8, 1.4, and 4.7, respectively.

Table 8. Ablation Studies of Sample Weighted Loss Function.

Method Backbone mAP AP50 AP75 APs APm APl

Faster RCNN Resnet-50 37.7 65.9 38.7 30.5 37.2 37.2
Faster RCNN-SWLF Resnet-50 38.5 58.6 42.2 31.9 41.9 48.9

Faster RCNN Resnet-101 41.8 69.9 44.8 30.4 41.6 40.8
Faster RCNN-SWLF Resnet-101 49.1 72.1 43.6 33.1 42.9 51.4

Faster RCNN ResneXt-101 67.1 89.4 65.5 52.1 63.4 59.9
Faster RCNN-SWLF ResneXt-101 71.5 91.9 72.7 54.3 63.7 62.2

4.6. Comparison with Other Object Detection Algorithms

On the road dataset, we compare the proposed approach to other SOTA object de-
tection detectors. All SOTA detector re-implementations are subject to the published
studies, and only the hyperparameters are fine-tuned using the road dataset. The exper-
imental results are shown in Table 9. The following conclusions can be drawn from the
experimental results:

(1) In the first group, compared with some advanced algorithms, including one-stage and
two-stage detectors, our method map reaches 41.1%, which is better than the above
methods by 3.4–7.6%.

(2) In the second group, the FPN is added to the detectors to create a multi-level detector,
which is extensively employed in object detection and has the potential to consider-
ably increase the detectors’ performance. Our technique incorporates an enhanced
FPN, which improves detector performance by 2.4–8% mAP over the method with
FPN (Remove FCOS and Libra RCNN with poor results). Moreover, our method is
higher in AP50 and improved in AP75, showing good classification and positioning
performance, and improving target detection performance in different sizes.

(3) In the third group, our method’s robustness is demonstrated. Several FPN-adding
technologies have been chosen to upgrade their backbone to the stronger ResNet-101.
Our method’s mAP was elevated by 17.8%, which is 5.4–27.4% mAP greater than the
SOTA detector. The discrepancy between our solution and the other SOTA solutions
is the same as prior to the backbone update.
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Table 9. Performance Comparison Between DASNet and SOTA.

Method FPN Backbone mAP AP50 AP75 APS APM APL

YOLOv3 Darknet-53 35.1 74.4 28.3 12.4 29.2 36.5
Faster RCNN ResNet-50 37.7 65.9 38.7 30.5 37.2 37.2

Cascade RCNN ResNet-50 33.5 60.0 34.1 12.2 31.7 33.8
Grid RCNN Plus ResNet-50 33.6 53.1 34.3 21.9 30.0 31.3

Ours ResNet-50 41.1 73.8 46.3 34.3 44.1 52.3

RetinaNet
√

ResNet-50 38.6 63.3 41.9 11.2 36.2 38.3
FCOS

√
ResNet-50 7.6 15.2 6.8 - 6.1 8.3

ATSS
√

ResNet-50 33.1 56.4 34.2 9.5 29.6 33.8
Faster RCNN

√
ResNet-50 38.7 67.9 39.7 33.1 38.3 37.9

Cascade RCNN
√

ResNet-50 35.5 62.1 36.3 10.1 34.6 35.1
Libra RCNN

√
ResNet-50 27.1 49.8 26.7 20.0 24.4 27.4

Grid RCNN Plus
√

ResNet-50 33.9 55.2 37.3 24.0 32.3 34.4
Ours ResNet-50 41.1 73.8 46.3 34.3 44.1 52.3

RetinaNet
√

ResNet-101 53.5 82.3 60.5 8.8 55.7 60.1
Faster RCNN

√
ResNet-101 41.8 69.9 44.8 30.4 41.6 40.8

Cascade RCNN
√

ResNet-101 52.1 79.2 60.4 31.0 51.0 52.2
Libra RCNN

√
ResNet-101 31.8 55.3 32.6 11.4 30.6 31.0

Grid RCNN Plus
√

ResNet-101 35.4 56.3 39.0 22.3 33.3 35.0
Ours ResNet-101 58.9 84.2 68.5 35.2 58.5 59.9

5. Conclusions

To address the challenge of quality identification in road applications, the DASNet
surface defect detection method is introduced. The technique, which is based on Faster
RCNN, employs a two-stage detector, meticulously develops three components. In addition,
deformable convolution modules, AugFPN modules, and sample weighted loss functions
that may learn task weights are used in our system to address the issues of road surface
disease identification. This approach may be used to assess irregular form pavement
diseases, particular types of defects, and accurate placement, giving detailed and useful
indications for the quality control process, such as number of defects, category, area, and
location. Experiments reveal that this method’s mAP value is 41.1 percent on the public
road diseases dataset, and it outperforms other object identification approaches in terms
of accuracy.

Our current work has shortcomings in accuracy and generalization, and has the
problem of weak transferability in practical applications. At the same time, only urban
pavement diseases were deeply studied. In addition to urban pavement disease, there
are concrete diseases such as bridge surface and tunnel surface. In our future work,
we will employ the following methods. First, we will use an unmanned aerial vehicle
(UAV) to collect more kinds of defect images to expand our research objects and improve
the generalization of our work. Second, we will collect more datasets with complex
backgrounds to improve the accuracy and robustness of the model. Thirds, we will
adjust the model, apply transfer learning to detect more types of diseases with the help of
better performance models, and also consider constructing an effective and lightweight
feature extraction network in the case of unsupervised learning. Fourth, we will conduct
segmentation research on the disease contours to help researchers understand the damage
degree of the diseases.
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