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Abstract: To validate the accuracy of snow depth products retrieved from passive microwave re-
mote sensing data with a high confidence level, the verification method based on points of ground
observation is subject to great uncertainty, due to the scale effect. Thus, it is necessary to use a
point-to-surface scale transformation method to obtain the relative ground truth at the remote sensing
pixel scale. In this study, by using the snow depth ground observations at different observation
scales, the upscaling methods are conducted based on simple average (SA), geostatistical, Bayes
maximum entropy (BME), and random forest (RF) algorithms. In addition, the cross-validation of the
leave-one-out method is employed to validate the upscaling results. The results show that the SA
algorithm is seriously inadequate for estimating snow depth variation in space, and is only suitable
for regions with relatively flat terrain and small variation of snow depth. The BME algorithm can
introduce prior knowledge and perform kernel smoothing on observed data, and the upscaling result
is superior to geostatistical and RF algorithms, especially when the observed data is insufficient,
and outliers appear. The results of the study are expected to provide a reference for developing a
point-to-surface upscaling method based on snow depth ground observations, and to further solve
the uncertainties caused by scale effects in snow depth and other land surface parameter inversion
and validation, by using remote sensing data.

Keywords: scale effect; snow depth observation; upscaling; cross-validation

1. Introduction

The scale effect is one of the important research features in geography and remote
sensing science [1,2]. Due to the spatial heterogeneity of the elements of the Earth’s
surface, the observed phenomena and summarized laws at one scale may be effective,
similar, or need to be corrected at another scale [3,4]. Snow is one of the major elements
of the cryosphere, and the spatial heterogeneity of snow is particularly strong, especially
in mountainous areas. The snow depth varies greatly in near space. There are large
errors and uncertainties in the construction and verification of the snow depth inversion
model from passive microwave remote sensing data based on point-based snow depth
ground observations. The main reason is that the ground observation points do not
match the spatial scale of remote sensing pixels, and the observation points have difficulty
representing the ground truth of pixel scale. Therefore, improving the accuracy and
authenticity of remote sensing quantitative inversion of snow parameters by developing
an upscaling method based on ground observation points, is of great significance.

The terrain is the main factor affecting the spatial differentiation of snow depth,
including slope, aspect, and elevation, which determine the spatial distribution of snow
depth in mountainous areas [5]. Terrain fluctuation, windblown snow, and other factors
also lead to large differences in the spatial distribution of snow depth, which directly affect
the accuracy of snow depth inversion by passive microwave remote sensing technology [6].
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Passive microwave is the main data source for snow depth inversion because of its strong
penetration ability [7]. However, due to the coarse resolution of the passive microwave
remote sensing data, the problem of mixed pixels caused by the high spatial heterogeneity
of snow cover is the main reason for the great uncertainties of passive microwave snow
depth inversion [8]. Due to the scale effect, it is usually difficult to obtain reasonable and
objective evaluation results when directly using ground ‘point’ measurement data instead
of ‘surface’ to verify the accuracy of remote sensing products in areas with a large spatial
heterogeneity of snow depth. Although increasing the number of observation points can
compensate for the uncertainty caused by heterogeneity to some extent [9], the problem of
spatial scale mismatch still exists. Therefore, the ground observation ‘point’ data upscaling
to ‘surface’ into the pixel scale is an operational way to improve the accuracy of snow depth
inversion as well as the authenticity of verification.

The point-to-surface upscaling transformation method can be divided into the simple
average method, empirical regression method, geostatistical method, Bayesian method,
etc. [10]. Based on the geography of Greenland, the simple averaging method was used to
upscale weather station data and compare it with Climate-SAF surface albedo products;
it concluded that the result was consistent with the in-situ observation, but there were
problems in areas where the terrain and environment changed dramatically [11]. The
Kriging method, which is a geostatistical method, is the most widely used in point-to-
surface upscaling [12–15]. The conclusion indicated that the co-kriging method is usually
superior to the ordinary kriging method, and that the greater the influence of the covariates
on the target parameters, the better the co-kriging results [15]. It has also been shown
that the reduced major axis (RMA) is the most practical upscaling method for modeling
regional net primary productivity by comparing RMA and Kriging methods [16]. In
addition, the machine learning algorithm has also been widely used in snow parameter
inversion [17,18], but the research on machine learning in scale transformation remains to
be further expanded.

It is important to obtain the true values of snow depth ground observations at the
pixel scale for the construction and verification of snow depth remote sensing inversion
models. In this paper, we compare the point-to-surface upscaling methods based on simple
averaging, geostatistics, Bayesian maximum entropy, and random forest with the observed
snow depth plots from three major snow areas in China, Northern Xinjiang, the Tibetan
Plateau, and the northeast. The study is expected to provide a reference for developing a
point-to-surface upscaling scheme for snow depth ground observation into the pixel scale,
and further, to solve the uncertainties in the construction and evaluation of the snow depth
inversion model based on passive microwave remote sensing data.

2. Data
2.1. Ground Observation Data of Snow Depth

The snow depth ground plots dataset is derived from the National Cryosphere Desert
Data Center (http://www.ncdc.ac.cn, accessed on 15 February 2022), which includes 25 km2

and 500 m2 snow plot datasets in typical snow areas in China [19,20]. The dataset contains
31 snow plots and 1440 snow observation points in total. There are 15 plots of 25 km2

and 16 plots of 500 m2 (Table 1). The observation parameters include snow depth, air
temperature, snow pressure, snow density, altitude, latitude, and longitude. Each 25 km2

plot contains 20–82 observation points, with an average of 43 observation points. Each
500 m2 snow plot contains 13 to 66 observation points, with an average of 41 observation
points.

http://www.ncdc.ac.cn
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Table 1. Ground observation statistics for snow plots.

Area Observe
Scale Elevation/m Snow

Depth/cm
Number of

Plots Year

Northern
Xinjiang

500 m2 643–2531 4–23 10 2018–2019
25 km2 593–2454 4–22 12 2018–2019

Northeast
500 m2 186 5–7 4 2018
25 km2 169–179 2–5 3 2017–2018

Tibetan Plateau 500 m2 4249–4420 10–20 2 2018–2019

2.2. Digital Elevation Model (DEM)

The Shuttle Radar Topography Mission (SRTM), launched by NASA on 11 February
2000, acquired approximately 9.8 trillion bytes of radar image data from the ‘Endeavour’
spacecraft carrying the SRTM system. After more than two years of data processing, SRTM
1 and SRTM 3, two categories of DEM, were produced, corresponding to 30 m and 90 m
spatial resolution, respectively [21]. In this paper, 90 m resolution SRTM 3 DEM data are
used as auxiliary data in the point-to-surface upscaling process.

3. Method

The core element of point-to-surface upscaling is to convert the data of ground obser-
vation points to the satellite pixel scale through the functional relationship of Formula (1),
so that the scale between ground observation and remote sensing pixel can be matched.

Z= f (Z(xi)) (1)

where Z is the pixel scale value, that is, the upscaling result; Z(xi) is the observation data;
xi is the ith field observation point.

3.1. Simple Average

The simple average (SA) method is an upscaling method that directly averages the
true values of all observed data for each snow plot within a pixel scale. This process is
conducted in the R language using the ‘base’ package.

Z= ∑n
i=1 Z(xi)

n
(2)

where Z is the true value of the pixel scale; Z(xi) is the observed value of field observation
point i; n is the total number of field observation points.

The SA method has high requirements for spatial heterogeneity and spatial distribution
of observation points. The results of upscaling are representative in the surface with less
vegetation, and are relatively homogeneous, while large errors usually occur in the areas
with complex terrain.

3.2. Geostatistical Method

The geostatistical method is based on the theory of regionalized variables, and uses
the variogram function as the basic tool, which can model natural phenomena that have
a certain randomness and a certain structure in spatial distribution [22–24]. The kriging
method uses the measured values for weighting to estimate the predicted values of the
unmeasured locations, and the general formula of the kriging method can be expressed as:

Z(x0) =
N

∑
i=1

λi ∗ Z(xi) (3)

where Z(x0) is the value of the predicted position, λi is the weight at position i, and Z(xi)
is the measured value at position i.
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In this study, Ordinary Kriging (OK) and Simple Kriging (SK) functions provided by
ArcGIS (Version 10.5) software are used to upscale the ground observation data of snow
depth. In the OK process, the ‘Measure Error’ is set at 100% to ensure the nugget constant
is entirely composed of measurement error, and there is no random variation caused by the
microstructure of the variables.

3.3. Bayesian Maximum Entropy

Bayesian Maximum Entropy (BME) was first proposed by Christakos in 1990. It is a
method to predict the distribution of time and space based on the Bayesian framework,
combined with the concept of entropy in information theory [25,26]. The basic process of
BME mainly includes the prior stage, intermediate stage, and posterior stage. In the prior
stage, the prior probability density function is calculated by the generalized knowledge
base and the maximum entropy principle. The expression is:

fG
(
xmap

)
= C−1 exp

[
NC

∑
α=1

µαgα

(
xmap

)]
(4)

fG
(

xmap
)
= C−1 where fG

(
xmap

)
represents the prior probability density function of

random variables
(

xmap
)

based on the generalized knowledge base (KG);
(
xmap

)
represents

random variables; C is the constant that plays the role of normalization; NC is the number
of conditions; µα is the Lagrange multiplier; gα is used for the known function relation of
random variables.

The posterior probability function equation of the point to be estimated is:

fK(X0) =

∫ β
α fG

(
X0, Xhard, Xso f t

)
dXso f t∫ β

α fG

(
Xhard, Xso f t

)
dXso f t

(5)

where fK(X0) is the posterior probability density function of the point to be estimated;
Xso f t is the interval from soft data, and the value range is [α, β].

If the soft data is given in the form of the probability density function, the posterior
probability function equation of the estimated point is:

fK(X0) =

∫
fG

(
X0, Xhard, Xso f t

)
fS

(
Xso f t

)
dXso f t∫

fG

(
Xhard, Xso f t

)
fS

(
Xso f t

)
dXso f t

(6)

where fK(X0) is the posterior probability density function of the point to be estimated;
fS

(
Xso f t

)
is soft data in the form of the probability density function.

In the prior stage, the probability density function was calculated based on latitude,
elevation, slope, and aspect, for the snow depth at each observation point. The soft data
were then set to a normal distribution with “Gaussian” type in the intermediate stage.
Combining with the “Gaussian“ and “Holecos“ covariance, the “nest number” was set to 2
or 3 in the posterior stage. Finally, the theoretical model was automatically fitted literately
until the optimal upscaling model was fitted. The process was conducted in the STAR-BME
package in the QGIS (version 2.18.28) software.

3.4. Random Forest

Random Forest (RF) is a machine learning algorithm based on a decision tree and
bagging (bootstrap aggregation) proposed by Breiman [27]. Among the trees, the decision
tree is divided into classification decision trees and regression decision trees, namely CART
(Classification and Regression Trees) [28]. The RF algorithm in this paper combined random
feature selection and the bagging method with CART as a weak learner to upscale for each
snow plot. The snow depth of the field observation point was selected as the dependent
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variable of the model, and the longitude, latitude, elevation, slope, aspect, and observation
time of the point selected as the covariates. The RF model predictions can be expressed as:

Z(x0) = f (y1(x0), y2(x0), . . . , yn(x0)) (7)

where n is the number of covariates and yi(x0) is the covariate at position x0 (i = 1, 2, . . . , n).
The package ‘randomForest’ in R language was used for building RF upscaling model

in each snow plot. The number of trees “ntree” was started from 1000 to 2500, and the
number of variables ‘mtry’ were set from 1 to 6.

3.5. Validation

The Leave-One-Out Cross Validation (LOOCV) and Mean Absolute Error (MAE) are
used as indicators to test the accuracy of the above upscaling methods. The root means
square error (RMSE) of prediction results was calculated to evaluate the upscaling method.

RMSE =

√√√√ 1
N

N

∑
i=1

(V(xi)−V′(xi))
2 (8)

where V(xi) is the observed value at position xi, V′(xi) is the predicted value at position xi,
and N is the number of observation points.

The MAE describes the error between the observed value and the predicted value: the
formula is

MAE =
1
N

N

∑
i=1

∣∣(V(xi)−V′(xi)
)∣∣ (9)

where V(xi) is the observed value at position xi, V′(xi) is the predicted value at position xi,
and N is the number of observation points.

4. Results and Discussion
4.1. Upscaling Results Comparison

The snow depth observed points within the 25 km2 plots were upscaled to 500 m and
25 km resolution, respectively, and the 500 m2 plots were upscaled to 500 m resolution.
Taking a 500 m resolution upscaling result of a 25 km2 snow plot as an example, the
upscaling results of the four methods except the SA method are shown in Figure 1. The
results of OK, SK, and BME are consistent in space, and seriously affected by the spatial
distribution of observed snow depth points. The maximum snow depth area and the
minimum snow area are near the corresponding maximum and minimum snow depth
observation points, showing an obvious ‘island’ characteristic. The upscaling results of RF
are consistent with the other three methods in the high and low snow depth areas. Due to
the introduction of elevation, slope, aspect, and other covariates, the influence of the spatial
distribution of observation points on snow depth is reduced, and the lack of observation
points may also reflect the characteristics of snow depth change in RF.
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Figure 1. Upscaling results comparison of (c) ordinary Kriging, (d) simple Kriging, (e) random forest,
and (f) Bayesian maximum entropy, for a 25 km2 plot; the satellite image and DEM for the snow plot
are shown in (a,b), respectively.

4.2. Accuracy Assessment

Table 2 shows the MAE of different upscaling methods. The results show that the
MAE of BME is the smallest, and the MAE after 25 km2 and 500 m2 upscaling is 0.32 cm and
0.97 cm, respectively, with an average of 0.65 cm. The SA method has the largest MAE, with
an average MAE of 2.67 cm. OK is slightly better than SK, and the MAE of RF is slightly
worse than the two Kriging methods. In addition, the observation scale (plot size) has little
effect on the MAE of the point-to-surface upscaling, and the results of different observation
scales cannot explain which observation scale can achieve the optimal upscaling results.
Table 3 shows the RMSE of different upscaling methods. The statistical results also show
that the BME upscaling results are the best, with an average RMSE of 2.95 cm, followed by
the SK, OK, RF, and SA methods. The RMSE of the SA method is 3.54 cm, and the error is
the largest. The RMSE statistical results also show that the observation scale will affect the
accuracy of the upscaling results. The upscaling results of 500 m2 plots are significantly
better than those of 25 km2 plots. Different upscaling methods exhibit a decrease in RMSE
with decreasing observed plot size. Combined with the MAE statistical results, it is shown
that the SA method has difficulty obtaining the ideal upscaling results in complex areas
with high spatial heterogeneity. In the authenticity test of snow depth remote sensing
products, even if more snow depth observations in a remote sensing pixel are obtained, the
use of the SA method to obtain the average snow depth observations to directly verify the
snow depth products produces greater uncertainty.

Table 2. MAE of five upscaling results for two ground observation scales (unit: cm).

Snow Plot OK SK BME RF SA

25 km2 1.50 1.87 0.32 2.01 3.08
500 m2 1.81 2.13 0.97 2.11 2.25

Average 1.66 2.00 0.65 2.08 2.67

Table 3. RMSE of five upscaling results for two ground observation scales (unit: cm).

Snow Plot OK SK BME RF SA

25 km2 3.48 3.42 3.48 3.70 4.10
500 m2 2.95 2.68 2.41 2.91 2.98

Average 3.22 3.05 2.95 3.31 3.54
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It is considered that the use of the average error (RSME) may be affected by extreme
values, and cannot reflect the stability and overall level of the various upscaling methods.
Therefore, based on the cross-validation results of different snow plots, the RMSE boxplot is
drawn to verify further the results of different point-to-surface upscaling methods (Figure 2).
The median in the box diagram represents the overall level of each upscaling method, and
the box height (the difference between the 25th percentile and 75th percentile) can indicate
whether the RMSE is discrete, which corresponds to the stability of the different methods.
The black dots in the box line diagram indicate outliers. In the 500 m2 snow plots, the
overall level gap between the five upscaling methods is small, among which the BME is
the best, and the median RMSE is 1.91 cm, followed by SK, OK, SA, and RF. The BME
method is the most stable, with a box height of only 1.87 cm, followed by SA, OK, RF and
SK. The BME method is the best upscaling method for 500 m2 observation plots. SK has
the smallest RMSE median (RMSE = 3.4 cm) and the best stability (2.83 cm) in the 25 km2

snow plot, indicating that the SK method is the best for 25 km snow plots. The observation
scale has a great influence on the overall level and stability of the upscaling results, and
the results show that the overall level and stability of different upscaling results at the
500 m2 observation scale are better than those at the 25 km2 observation scale. The 500 m2

snow plot has a smaller observation extent and a relatively lower spatial heterogeneity,
and the observation points are more representative in the upscaling process; therefore, the
upscaling results show a better overall level and stability compared with the 25 km2 plots
when the number of observation points is basically the same.
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Figure 2. Boxplot of RMSE for two types of snow plots in upscaling.

4.3. Error Analysis

Figure 3 compares the RMSE of upscaling results in two different observation scales
for each plot. The cross-validation results of 25 km2 snow plots show that the RMSE
differences of different upscaling methods are small, but the differences in 10th and 12th
plots are larger. This is because the No.10 and No.12 snow plots were observed twice, at
different times for the same location, and the terrain in this area is complex and of larger
relief. The elevation span of the observation point in the snow area is between 800 and
1273 m. The large elevation difference has a great influence on the different upscaling
algorithms. The cross-validation results of 500 m2 snow plots show that there are large
differences of RMSE in No.2, and the RMSE of the BME method is the smallest. The area
where the plot is located is bare and the terrain is relatively flat and relatively uniform in
space. However, there is an obvious maximum snow depth in the observation point of
the plot, and the snow depth is much larger at than other observation points, which leads
to the poor results of other upscaling methods. The BME method can smooth the data in
the upscaling process, eliminate the influence of the deviation of the sampling data on the
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upscaling results, and achieve the effect of detrending, which is the possible reason for
BME performing better in upscaling.
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are from northern Xinjiang, Nos. 11–14 are from the Qinghai Tibet Plateau, and Nos. 15–16 are from
the northeast).

4.4. Sensitivity Analysis

The results indicate that terrain, snow depth, upscaling method, and other factors
have a certain impact on the upscaling results, and it is particularly important to select
the appropriate upscaling method in a specific environment. Figures 4 and 5 analyze the
influence of snow depth, elevation, number of observation points, and surface curvature
on the upscaling of different observation scales. Under different observation scales, RMSE
increased with the increase of snow depth and elevation. The effect of the number of
observation points in the 25 km2 plot scale shows that the RMSE decreases first, then
increases, and then decreases with the increase of the number of observation points, which
may be affected by the spatial differentiation of snow depth. The RMSE of the 500 m2 plot
scale gradually decreases with the increase of observation points. Therefore, increasing
the number of observation points in the plot can effectively improve the accuracy of the
upscaling results.

The profile curvature also affects the upscaling algorithm. When the profile curvature
is equal to 0, it represents the flat terrain, the negative value represents the descent, and
the positive value represents the ascent. When the terrain is flat, the RMSE of different
observation scales is small. With the ascent or descent of the terrain, the RMSE increases.
This trend is most pronounced in the 25 km2 plot, but the RMSE of the depression surface
is greater than that of the uplift surface, because the depression surface can accumulate
more snow and the snow depth is usually thicker than on the uplift surface.
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The effects of snow depth, terrain, and observation scale on the different upscaling
methods were compared. We can conclude that when the snow depth is shallow, the RMSEs
of different upscaling methods are small, but with the increase of snow depth the BME
algorithm is the best, and the errors are small under different observation scales. Under
different observation scales, the errors of different upscaling methods are small at low
altitudes. However, with the increase in altitude, the upscaling result of BME is best in the
25 km2 plots. In the 500 m2 snow plots, the RMSE of RF is small at high altitudes. The
influence of surface curvature on BME is the smallest, and the errors at different observation
scales are small, regardless of the flat, rough surface. In addition, when the observation
scale is large (25 km2), the difference between the SA method and other methods is clear,
and the error is large. However, at a small observation scale (500 m2), the error between
different upscaling methods is close. In summary, the Bayesian maximum entropy method
has the best adaptability to areas with large snow depth changes and complex terrain,
especially in the range of large observation scales.

5. Conclusions

To obtain the relative true values of ground snow depth observations at the remote
sensing pixel scale, this paper uses five methods: SA, SK, OK, BME, and RF, to study
the upscaling of ground snow depth observations, and evaluates the accuracy of the
five upscaling methods using the leave-one-out cross-validation method, obtaining the
following main conclusions:

1. The SA method is easy to calculate and consumes less time. It can obtain a better
upscaling result in the spatial distribution area of snow depth with homogenization,
but it is not applicable in areas with large spatial heterogeneity or outliers of snow
depth.

2. Geostatistical and BME methods can obtain better upscaling results than the RF
algorithm, and the overall accuracy is better than RF. However, the RF algorithm
can produce more consistent results with the spatial distribution characteristics of
snow depth in areas lacking observation points under the background of introducing
elevation, slope, aspect, and other covariates.

3. When the amount of observation data is small and outliers appear, different upscaling
methods will be greatly affected. The BME algorithm can smooth the data in the
process of upscaling, achieve the effect of data detrending, and obtain a relatively
better upscaling result.

4. The observation scale, number of points, and terrain have great influences on the
different upscaling methods. Therefore, to obtain more accurate pixel-scale ground
observation true values, when the authenticity test of snow depth remote sensing
products is carried out, the homogeneous surface with relatively flat terrain should
be selected as much as possible, and the number of observation points should be
increased, which can effectively improve the accuracy of upscaling results.

So far, passive microwave remote sensing is still the main data source for acquiring
snow depth information on a regional and global scale. The traditional development and
validation of the passive microwave snow depth inversion model, based on site observation,
is subject to great uncertainty, because large errors may occur through the mismatch of
observation scales from ground and from space. The point-to-surface upscaling method
can obtain ground observation data at pixel scale and solve the uncertainty caused by the
scale effect. This study is expected to provide a reference for developing a point-to-surface
snow depth upscaling scheme, and to further solve the uncertainty problem caused by
scale effects in passive microwave snow depth inversion and validation.
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