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Abstract: Point-cloud registration is a fundamental task in computer vision. However, most point
clouds are partially overlapping, corrupted by noise and comprised of indistinguishable surfaces,
especially for complexly distributed outdoor LiDAR point clouds, which makes registration chal-
lenging. In this paper, we propose a multi-scale features-based point cloud registration network
named MSPR-Net for large-scale outdoor LiDAR point cloud registration. The main motivation
of the proposed MSPR-Net is that the features of two keypoints from a true correspondence must
match in different scales. From this point of view, we first utilize a multi-scale backbone to extract the
multi-scale features of the keypoints. Next, we propose a bilateral outlier removal strategy to remove
the potential outliers in the keypoints based on the multi-scale features. Finally, a coarse-to-fine
registration way is applied to exploit the information both in feature and spatial space. Extensive
experiments conducted on two large-scale outdoor LiDAR point cloud datasets demonstrate that
MSPR-Net achieves state-of-the-art performance.

Keywords: multi-scale features; 3D point cloud; registration

1. Introduction

Point cloud registration is a fundamental task in computer vision, aiming to find a
transformation that can align two overlapping point clouds in a common frame. Point
cloud registration plays an important role in various downstream tasks, including scene
reconstruction [1–4], simultaneous localization and mapping (SLAM) [5,6], object pose
estimation [7], etc. However, point cloud registration remains challenging with real-world
scans due to partial overlap, noise, outliers, and so on.

In previous decades, many methods have been proposed to solve these problems.
Iterative Closest Point (ICP) [8] is the best known algorithm for solving rigid registration,
which alternates between finding point cloud correspondences and estimating transforma-
tion. However, ICP is affected by initialization transformation and often stalls in suboptimal
local minima. ICP variants [9–11] attempt to alleviate this problem by searching larger parts
of the transformation space or improving the correspondences. However, these algorithms
do not always provide satisfactory performance and are time-consuming.

Recently, deep learning has achieved great success in point cloud registration. We can
roughly categorize these methods into two categories. The first is the global feature-based
methods [12–16], which estimate the transformation by aggregating global information
without finding correspondences. Although these methods work well in the synthetic
dataset [17], they usually perform poorly in real-scan point clouds, which have a low
overlap region. The second is the correspondence-based methods [18–22], which focus on
learning discriminative point features and constructing correspondences for subsequent
Procrustes analysis. However, most of them rely on features extracted from local geometric
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structures. For repeat patterns or scale changes, they may get wrong correspondence esti-
mation.

In this paper, we solve the partial-to-partial registration from a new perspective by
incorporating with multi-scale keypoint features. To better understand the motivation of
our method, we analyze it from the process of establishing matching correspondence in
human vision. For example, when we try to match an ambiguous keypoint on a chair near
a table, we may look back and forth at both scenes. We usually first pay attention to all the
chairs in the scene, then compare their neighborhoods so we can sift the chairs that are near
the wall or sofa. The neighborhood size is important for registration. Even if two points
are matched on a low-level scale, they may have a bad correspondence (Figure 1 gives an
example). However, only a few works [23–25] have studied the effect of neighborhood size
for point cloud registration.

match match

dismatchmatch

Small

neighborhood

Big

neighborhood

Point cloud

Figure 1. A toy example for illustrating how the receptive field of a keypoint affects the corre-
spondence selection. For a keypoint in the source point cloud, there may exist more than one
corresponding point in the target in the low receptive field. As the receptive field expanding, we can
exclude ambiguous correspondences gradually. The true correspondence must match at all levels.

Based on the above analysis, we propose a multi-scale features-based point cloud
registration network (MSPR-Net) for outdoor LiDAR point cloud registration. Although it
can be easy to get the multi-scale features of points simply by increasing the layer of the
feature extraction network, there is still a problem. Generally, the multi-scale features are
constructed by progressively downsampling the point cloud in the network. However,
random sampling would increase the risk of a certain point losing its corresponding point
in the target point cloud. The outliers of natural existence and caused by random sampling
make it become more challenging to find the correct correspondence.

To solve this, we propose a Siamese multi-scale backbone to hierarchically downsam-
ple and upsample the point cloud to acquire the multi-scale features of keypoints. At the
same time, a local similarity estimation module (LSEM) is employed to relocate keypoint.
It generates much more stable downsampled points in the local region depending on the
similarity between the features of points and the feature of the local region. In addition, to
overcome the issue brought about by the low-overlapping problem, we introduce a global
estimation module (GSEM) to make the downsampling more concentrated on the overlap
region. Then, a bilateral outlier removal mechanism is designed to find the candidate
correspondences based on the multi-scale features. Finally, a coarse-to-fine registration
strategy is for robust and accuracy registration.

We evaluate the proposed MSPR-Net on two large-scale outdoor datasets: KITTI
odometry dataset [26] and NuScenes dataset [27]. The results demonstrate that MSPR-Net
has achieved state-of-the-art performance.

In summary, our main contributions are as follows:



Remote Sens. 2022, 14, 4874 3 of 14

• We propose a novel point cloud registration network named MSPR-Net, which
achieves state-of-the-art performance in outdoor LiDAR datasets.

• We propose a local similarity estimation module and a global similarity estimation
module to eliminate the instability of random samples so that the matched keypoints
and their descriptors can have more consensus.

• We design a novel bilateral outlier removal strategy, which removes outliers from the
source point cloud and target point cloud, respectively.

The rest of this paper is organized as follows: Related work on point cloud registration
is reviewed in Section 2. A detailed description of the proposed registration framework
using multi-scale features is given in Section 3. Comparative experiments and analysis
are performed in Section 4. The research limitations are discussed in Section 5. Finally,
conclusions are drawn in Section 6.

2. Related Works

In this section, we briefly review the approaches to 3D point-cloud registration.

2.1. Correspondence-Based Methods

Correspondence-based approaches for point cloud registration first establish corre-
spondences between source and target point cloud and follow a robust estimation method
for the rigid transformation by solving the least square problem. ICP [8] is the early
correspondence matching-based method, which iteratively finds the closest point as corre-
spondence and updates the transformation until a desired stopping criteria is met. However,
ICP-style methods are sensitive to initial alignment and also easily fall into local minima.
To this end, Go-ICP [28] uses a Branch-and-Bound (BnB) method to search for a globally op-
timal solution. Ref. [29] attempts to identify global optima using Riemannian optimization.

Recent learning-based methods use Multi-Layer Perceptron (MLP) [30] based network
or GNN [31] to encode point cloud. RPM [20] develops a deep graph matching module to
compute a soft correspondence matrix, which considers the local geometry and structural
information on a larger scale in establishing correspondences. RIENet [32] calculates
feature-to-feature correspondences with neighborhood consensus. Lepard [33] proposes a
position-aware feature matching method.

2.2. Global Feature-Based Methods

PointNetLK [12] is a pioneering work of global feature-based point cloud registration,
which modifies the LK algorithm [34] and combines it with PointNet [30] into a single
trainable recurrent deep neural network. PCRNet [16] improves noise robustness by
replacing the LK algorithm with an MLP. FMR [13] enforces registration optimization by
minimizing a feature matrix projection error that is robust to noise, outliers, and density
differences. OMNet [14] converts the partial-to-partial point cloud registration to the
registration of the same shape by learning overlapping masks.

2.3. Multi-Scale Network

Multi-scale structures are of great importance to a number of vision tasks in both 2D
and 3D, including semantic segmentation [35–37], object detection [38,39], face
analysis [40,41], edge detection [42], feature matching [43], and boosting the model perfor-
mance of those fields. As witnessed in point cloud registration, MS-SVConv [25] acquires
multi-scale features by downsampling the point cloud at different voxel sizes and apply-
ing sparse convolution processing different density inputs. HRegNet [24] estimates the
transformation on a multi-scale feature map to combine reliable features in the deeper layer
and precise position information in the shallower layers. NgeNet [23] utilizes a KPconv-
based [44] multi-scale architecture with a geometric-guided module encoding point cloud
pair, then uses a voting mechanism to select proper features for transformation estimation
by RANSAC [45].
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3. Methods

The proposed method tackles point cloud registration in a two-stage manner. We first
learn multi-scale features of down-sampled sparse points (keypoints) for matching, and
afterward use a robust registration network for recovering the relative transformation.

3.1. Network Architecture

MSPR-Net is an encoder-decoder network, as shown in Figure 2. The input of MSPR-
Net is a pair of point clouds PS, PT ∈ RN×3, where N is the number of points. Firstly,
a Siamese multi-scale backbone is utilized to process the input data, and outputs the
keypoints (XS, XT ∈ RM×3) and their corresponding low-level, middle-level, high-level
descriptors (FL

S , FM
S , FH

S and FL
T , FM

T , FH
T ). Subsequently, a bilateral outlier removal strategy

is proposed to remove the ambiguous keypoints based on the multi-scale features. Finally,
a coarse-to-fine registration way is applied to exploit the information both in feature and
spatial space.

3.1.1. Siamese Multi-Scale Backbone

Inspired by the idea of the Siamese network [46], we detect the keypoints and extract
their descriptors using the same backbone with shared weights. Without loss of generality,
we utilize PS as an example to explain the detailed implementation of the backbone.
Shared Encoder To expand the receptive field of keypoints, we utilize the classical
method [47], which processes a set of points sampled in a metric space in a hierarchi-
cal fashion. We follow the processes of downsampling keypoints, grouping, extracting
features, and progressively abstracting larger and larger neighborhood sizes along the
hierarchy. For the input point cloud, we totally downsample it four times. The first time
is to select the keypoints for registration, and latter three are used to generate multi-scale
features for the keypoint selected before. We save the feature map (denoted as F1

S , F2
S , F3

S , F4
S ,

which consists of keypoints XS, descriptors DS and overlap scores ΣS) of each layer for
later decoding. The keypoint detector network and the descriptor network, which are key
components of our encoder, will be described later (Section 3.1.2).
Parallel Decoder We use the point feature propagation (FP) method [47] to propagate
features from subsampled points to the original points. The decoder takes F1

S , F2
S , F3

S , F4
S as

input and outputs the low-level, middle-level, high-level features of the keypoints XS. The
FP operation is defined as

FP(F1, F2) = MLP(cat(Up(F2), F1)), (1)

where F1 and F2 are the input different layer features. MLP is Multi-Layer Perceptron.
cat[·, ·] is the concatenation operation and Up(·) is the nearest upsampling. Then, the
FL

S , FM
S , FH

S are calculated as follows:

FL
S = FP1(F1

S , F2
S),

FM
S = FP1(F1

S , FP2(F2
S , F3

S)),

FH
S = FP1(F1

S , FP2(F2
S , FP3(F3

S , F4
S))).

(2)
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Figure 2. The architecture of MSPR-Net. Taking the source and target point clouds as input, MSPR-
Net outputs the transformations that can align them.

3.1.2. Detector and Descriptor

The Fast Point Sampling (FPS) is widely utilized during the feature extraction process
in the PointNet-like network. However, FPS is a random sample algorithm, which means
FPS may downsample the different points in the same region. This would increase the
risk of a certain point losing its corresponding point in the other frame. To this end, we
introduce a local similarity estimation module (LSEM) to refine the downsample results.
In addition, the knowledge about potential overlap regions is important for point cloud
registration. We proposed a global similarity estimation module (GSEM) to let the network
be prone to downsample the overlap points.

The inputs of the detector in layer l + 1 are the keypoints XS
l ∈ R

Nl×3, descriptors
DS

l ∈ R
Nl×Cl , and overlap scores ΣS

l ∈ R
Nl , where Nl denotes the sample points in layer

l, Cl is the output dimension of descriptor. For the first layer (l = 1), the input keypoints
are the original point cloud. The overlap scores are initialized to 1. For the input of each
layer, we first sample Nl candidate points using weighted FPS (WFPS [48]). Then, k nearest
neighbor (kNN) algorithm is performed to group Nl clusters center on the candidate
points. The features of the cluster (denoted as Fcluster

S ) includes the coordinates of the center,
neighboring points, and their descriptors. In addition, the relative coordinates and relative
distances are also calculated as a part of it.
LSEM As shown in Figure 3, the input of LSEM is the cluster features. To simplify the
formulation, the subscripts l are omitted. Firstly, Fcluster

S is inputted into a 3-layer of Shared
MLP to generate a feature map F̃S ∈ RN×K×C. After that, a max pooling operation is
followed to get the global feature Fr ∈ RN×C of the neighboring region. Finally, we
compute the similarity of each point’s feature with the region feature, followed by a
softmax function for normalization. For a local region center on XS

i , the local saliency can
be calculated as

wi = exp〈 fi, Fr〉 ·
[

k

∑
j=1

exp〈 fi, Fr〉
]

, (3)

where < ·, · > denotes the dot product. Fr is the region feature and fi is the ith neighboring
point’s feature. The sampled point XS

i will be relocated by the saliency weight as

XS
i =

k

∑
j=1

wj · xj, (4)

where xj is the coordinate of the neighborhood. We also update Fr by the weighted sum of
neighboring features to F̃r .
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GSEM LSEM only can refine the coordinate of the downsampled keypoints in a local region,
no matter whether the point is in the overlapping area or not. To enhance the overlap
awareness, we propose that GSEM make the network gradually pay attention to the overlap
region as hierarchically downsampled. Different from PREDATOR, [49] which predicts
overlap scores by a linear function, we use a more intuitive method to express the overlap
scores of the keypoints. As every keypoint has aggregated the local region information, we
calculate the similarity of each keypoint’s feature in the source point cloud with the global
feature of the target point cloud. Intuitively, the features of the overlap region keypoints
would be more similar to the corresponding global features than other points.

The structure of GSEM is similar to LSEM. The overlap scores of the source point
cloud can be calculated as

σi = Sigmoid
〈

F̃r
S, Fg

T

〉
, (5)

where F̃r
S is the feature of keypoints in the source point cloud. Fg

T is the global feature of
the target point cloud. Sigmoid represents the sigmoid operation. Moreover, we use the
overlap scores as the weight for WFPS, increasing the sample probability for the overlap
point. As the layer goes deeper, we can get more common information in the two-point
cloud. Eventually, this information would propagate to the keypoints of the first layer by
the decoder to make registration more robust.
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Figure 3. The network architecture of the detector. The input is the kNN clusters centered on the
downsampled keypoints. The cluster features are fed into LSEM to refine the coordinates of the
keypoints, then a GSEM is applied to obtain the overlap scores of the keypoints.

Descriptor First, we reconstruct the clusters based on the coordinates of the relocated
keypoints. Then, the cluster features are fed into another 3-layer MLP with a max pooling
layer to generate descriptors.

3.2. Bilateral Outlier Removal

Once we get the keypoints with the multi-scale features in the source and target point
cloud, the key problem then is how to find correct correspondences between them. We
propose a simple but effective method to solve it. As shown in Figure 4, we apply a bilateral
outlier removal strategy to remove the outliers in two directions. We first compute the
similarity matrix Si = Fi

S · Fi
X, i = L, M, H. Here, each entry Sij in the obtained matrix

represents the matching confidence between the keypoint i and keypoint j from PS and
PT respectively, and the value is less than 1. Obviously, a true correspondence would
match in any level of feature matching. We simply sum the three matrices, and ideally, the
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right correspondences’ confidence scores would be 3. In forward, we remove the outliers
in the target point cloud. We select the maximum confidence score in every row as the
candidate correspondence. After this, we assign every keypoint in PS a corresponding
point in PT . However, there may exist points in PS without a corresponding point in PT but
still form a correspondence. To this end, we remove the outliers in PS whose descriptors
have low similarity with the points in PT in backward. We classify the correspondences by
confidence scores and only retain the top confidence scores in the probability proportion
of θ.

After using the bilateral outlier removal strategy, we can filter the most outliers. How-
ever, we find that there always exist some points in PS that have the same corresponding
point in PT (as shown in c in Figure 4) due to the sparse sample. So we construct a
correspondence net to decouple this ambiguous situation.

overlapoverlap

(b) forward remove

source target

overlapoverlap

(c) backward remove

source target

overlapoverlap

(a) correspondences

source target

Figure 4. Illustration of the bilateral outlier removal. (a) We select the maximum confidence scores in
every row of the similarity matrix as the candidate correspondences. (b) We remove the points in the
target point cloud which have no corresponding point in the source point cloud. (c) We remove the
points with low confidence scores in the source point cloud.

3.3. Coarse-to-Fine Registration

Inspired by HRegNet [24], we construct a correspondence network based on the LSEM.
It consists of an LSEM module and a 3-layer MLP with a Sigmoid function. The keypoint in
PT and its ambiguous corresponding points in PS form a cluster. The feature of the cluster
is obtained in the same way as before. We fed the cluster feature into LSEM to generate
a new corresponding point, and the weighted sum of corresponding features is further
fed into the MLP to predict a confidence score c̃. Given the corresponding keypoints and
confidence scores, the optimal transformation can be solved by using the weighted Kabsch
algorithm [50].

After applying the coarse registration in the feature space, we obtain the coarse
transformation R1, t1, the fine registration is applied to further reduce the registration error.
We firstly transform the source keypoints using the coarse transformation R1, t1. Then,
for a keypoint in PS, we perform a kNN search in its spatial neighborhoods to construct a
cluster. Finally, a similar correspondence network is applied to get the corresponding point.

3.4. Loss Function

The training of MSPR-Net can be divided into two stages. We first train the detector
network of the backbone using the probabilistic chamfer loss in USIP [51].

Lc =
M

∑
i=1

(
ln

1
σij

+ σij · dij

)
+

M

∑
j=1

(
ln

1
σji

+ σji · dji

)
, (6)

where σij = σi + σ′j . dji = min
xi∈XS

∥∥∥xi − y′j
∥∥∥

2
. y′j is the nearest neighbor of xi in XT . σ is the

corresponding overlap source.
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Then, we utilize the pre-trained detector network to train MSPR-Net using the match-
ing loss in RSKDD-Net [52], translation loss, and rotation loss.

Lm =
M

∑
i=1

σS
i

∥∥∥R̂xS
i + t̂− x̂S

i

∥∥∥
2
+

M

∑
i=1

σT
i

∥∥∥R̂xT
i + t̂− x̂T

i

∥∥∥
2
, (7)

Lt =
∥∥t− t̂

∥∥
2, (8)

Lr =
∥∥∥R̂T R− I

∥∥∥
2
, (9)

where x̂S
i is a weighted sum of all target keypoints based on the descriptor distance (more

details in RSKDD-Net [52]). R̂, t̂ and R, t are ground truth transformation and estimated
transformation respectively. I denotes the identity matrix. The final loss L = αLm + βLr + Lt.

4. Results

MSPR-Net is evaluated on two large-scale outdoor LiDAR point cloud datasets, in-
cluding the KITTI odometry dataset [26] and the NuScenes dataset [27].

4.1. Implementation Details

Following the data pre-processing method in HRegNet [24], we firstly voxelized the
input point cloud and the voxel size is set to 0.3 m. After that, we randomly sample
16,384 points from the point clouds in the KITTI dataset and 8192 points in the NuScenes
dataset. MSPRNet is implemented in pytorch [53] and all experiments are run on a single
RTX3090GPU. Adam optimizer is used for network training. The initial learning rate is set
to 0.001 and decreases by 50% every 10 epochs. The hyperparameter θ is set to 0.6, the α
and β are, respectively, 0.0125 and 1.8 for the KITTI dataset, 0.025 and 2.0 for the NuScenes
dataset. For batch training, we select the source keypoint and its 8 ambiguous points in the
target point cloud to form a cluster in the correspondence network. For the KITTI dataset,
we train 100 epochs and 50 epochs for the NuScenes dataset.

4.2. Evaluation Metrics

We evaluate the estimated transformation matrices by two metrics: relative translation
error (RTE) and relative rotation error (RRE). RTE and RRE can be calculated as

RTE(t) =
∥∥t− t̂

∥∥, (10)

RRE(R) = arccos
Tr
(

R̂TR− 1
)

2
, (11)

where t, R are estimated values, and t̂, R̂ are ground truth values and Tr(·) indicates the
trace of a matrix. The registration is considered accurate if the RTE is below the thresholds
σtrans = 2 m and RRE is below σrot = 5 deg. We report the registration recall, which
is defined as the ratio of successful registration. Since the RRE and RTE are primarily
affected by failed registrations, we compute the average RRE and RTE only on successful
registrations for better numerical reliability.

4.3. KITTI Dataset

KITTI odometry dataset comprises 11 sequences (00-10) of outdoor driving scenarios
for point cloud registration. We use sequences 00 to 05 for training, 06 to 07 for validation,
and 08 to 10 for testing. In addition, the current frame with the 10th frame after that was
selected to form a pair point cloud. The ground truth transformations are provided by GPS.
To reduce the noise in the ground truth, we use the iterative closest point (ICP) [8] method
to refine the alignment.
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4.3.1. Performance

We report the registration results evaluated in the test sequences of the KITTI dataset.
We compare our methods with both classical methods and learning-based methods, includ-
ing the current state-of-the-art methods.
Comparison with the traditional methods. MSPR-Net is compared with point-to-point
and point-to-plane ICP, RANSAC, and FGR. According to the results in Table 1, the ICP
algorithm achieves the best RRE and RTE on the KITTI dataset. However, they are both in
a very low recall due to the imprecise initial transformation between point cloud pairs in
most cases. FGR performs slightly better than ICP, but the result is still not good. Taking
advantage of the multiple iterations and outlier rejection strategy, RANSAC obtains rea-
sonable results. Our method achieves significantly higher recall, RTE, and RRE compared
to RANSAC.
Comparison with the learning-based methods. We compare our approach with learning-
based point cloud registration methods, including IDAM, DGR, CoFiNet, and PREDATOR.
As shown in Table 1, the recall of IDAM is about 70% and the average RTE and RRE
are more than 1.0, which indicates the poor applicability of the object-level point cloud
registration methods to complex, large-scale LiDAR point clouds. DGR performs much
better than IDAM thanks to the powerful outlier rejection mechanism based on the 6D
convolutional network. However, the voxel-based representation of point clouds limits
the precision of registration. CoFiNet achieves the highest recall by using a coarse-to-
fine registration strategy, but it gets a relatively larger RRE and RTE due to the position
error caused by the sparsity of keypoints in the deep layer. PREDATOR achieves the best
registration performance among all the learning-based baseline methods. We show that
our approach achieves the best RRE (0.24◦). For RTE and recall, our method only has a
slight margin with PREDATOR. Moreover, our method achieves almost 2× faster speed
than PREDATOR.

Table 1. Registration performance on the KITTI dataset.

Method RTE (m) RRE (deg) Recall Time (ms)

ICP (P2Point) [8] 0.04 ± 0.05 0.11 ± 0.05 14.3% 477.3
ICP (P2Pane) [8] 0.04 ± 0.04 0.14 ± 0.15 33.5% 465.1

FGR [54] 0.93 ± 0.59 0.96 ± 0.81 39.4% 508.9
RANSAC [45] 0.13 ± 0.07 0.54 ± 0.40 91.9% 552.9

IDAM [55] 0.66 ± 0.48 1.06 ± 0.94 70.9% 40.4
DGR [21] 0.32 ± 0.32 0.37 ± 0.30 98.7% 1357.6

CoFiNet [56] 0.08 ± 0.06 0.36 ± 0.33 99.8% 574.1
PREDATOR [49] 0.06 ± 0.06 0.28 ± 0.25 99.8% 450.4

MSPR-Net 0.07 ± 0.12 0.24 ± 0.34 99.6% 226.0

4.3.2. Qualitative Visualization

We present several qualitative samples of point cloud registration in Figure 5. Cor-
responding keypoints with confidence scores c̃ > 0.001 and c̃ > 0.0001 are shown in the
first and second row respectively. Two corresponding keypoints are considered as an inlier
if the relative position error (after applying the ground truth relative transformation) is
less than a distance threshold σd = 1 m. The green and red lines represent inlier and
outlier correspondences, respectively. According to the results, the correspondences with a
higher confidence score (c̃ > 0.001) are basically all inliers and several mismatches begin
to appear when reducing the threshold of c̃ to 0.0001. The third row of Figure 5 shows
the two aligned point clouds, which demonstrates that the network can precisely predict
the transformation.
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Figure 5. Registration results of our method on the KITTI dataset. The first row shows the correspon-
dences between source and target keypoints with confidence score c̃ > 0.001 and the second row
shows the correspondences with confidence score c̃ > 0.0001, where the green lines represent inlier
correspondences and red lines represent outlier correspondences. The bottom row shows the aligned
two-point clouds.

4.4. NuScenes Dataset

NuScenes dataset includes 1000 scenes acquired by 3D LiDAR scanners. We split into
700 scenes for training, 150 scenes for validation, and the other 150 scenes for testing. The
ground truth transformations are annotated between neighborhood frames, and the time
interval is about 0.5 s. We use the current point cloud sample with the second sample after
it as a pair of point clouds.

Performance

We evaluate our method on the NuScenes dataset. MSPR-Net is compared to the
classical methods ICP, FGR, RANSAC, and the learning-based registration methods DCP,
IDAM, FMR, and DGR. Table 2 summarizes the results. Our method outperforms all
the other methods. MSPR-Net achieved 0.28◦ on RRE and 0.12 m on RTE, exceeding
DGR (0.48◦ on RRE and 0.21 m on RTE) by 0.20◦ and 0.09 m. Moreover, our method
achieves almost 2.5× faster speed than DGR. Moreover, MSPR-Net performs the best recall
on the NuScenes dataset. To analyze the proposed method in more detail, we present
the registration recall by using different thresholds. As shown in Figure 6, our method
achieves the highest registration recall among all the settings, which further demonstrates
the robustness of our method.
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Table 2. Registration performance in the NuScenes dataset.

Method RTE (m) RRE (deg) Recall Time (ms)

ICP (P2Point) [8] 0.25 ± 0.51 0.25 ± 0.50 18.8% 83.0
ICP (P2Pane) [8] 0.15 ± 0.30 0.21 ± 0.31 36.8% 46.7
FGR [54] 0.71 ± 0.62 1.01 ± 0.92 32.2% 288.4
RANSAC [45] 0.21 ± 0.19 0.74 ± 0.70 60.9% 270.1

DCP [18] 1.09 ± 0.49 2.07 ± 0.14 58.6% 46.3
IDAM [55] 0.47 ± 0.41 0.79 ± 0.78 88.0% 36.6
FMR [13] 0.60 ± 0.39 1.61 ± 0.97 92.1% 65.2
DGR [21] 0.21 ± 0.18 0.48 ± 0.43 98.4% 518.4

MSPR-Net 0.12 ± 0.13 0.28 ± 0.24 99.9% 208.7

Figure 6. Registration recall with different RTE and RRE thresholds on the NuScenes dataset.

4.5. Ablation Study

We perform abundant ablation studies on the NuScenes dataset to demonstrate the
effectiveness of the components for MSPR-Net. We validate the effectiveness of the multi-
scale structure (MS), bilateral outlier removal strategy (BOR), and coarse-to-fine registration
pipeline. Table 3 illustrates the results of the ablation studies, where the base model (Base)
is only the high-level feature with the coarse registration. According to the results, the
average RTE and RRE are much reduced by the use of multi-scale structure and coarse-to-
fine registration mechanism, which promotes RTE and RRE by 0.03 m and 0.11◦ and 0.03 m
and 0.14◦, respectively. In addition, the bilateral outliers removal strategy also reduces RTE
and RRE by 0.01 m, 0.05◦, and increases the recall by 0.01%.

Table 3. Ablation study on NuScenes dataset.

Base MS BOR Coarse-to-Fine RTE (m) RRE (deg) Recall

! 0.18 0.56 99.7%
! ! 0.15 0.45 99.8%
! ! ! 0.14 0.40 99.9%
! ! ! ! 0.12 0.28 99.9%

5. Discussion

The success of our network mainly stems from the application of multi-scale features
based on human vision. Although all current networks are able to extract multi-scale
features, most of them only utilize fusion features with multi-scale information. Our method
performs point cloud registration depending on finding correspondences in different feature
scales. It makes full use of the consistency of correspondences in different scale features.
Moreover, there are some limitations to our work. For example, our method would reject
correspondences at the edges of overlapping regions. Usually, these correspondences only
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match in low neighborhood sizes. Our network would not perform well when the center of
overlapping regions is comprised of indistinguishable surfaces.

6. Conclusions

In this paper, we propose MSPR-Net, an outdoor LiDAR point cloud registration
network by incorporating multi-scale keypoint features. We present LSEM and GSEM
modules to increase the stability of keypoints sample. To construct reliable correspondences
between keypoints with different features, we propose a bilateral outlier removal strategy
to reject outliers. Moreover, a coarse-to-fine registration strategy is adopted for robust and
accurate registration. MSPR-Net achieves 0.24◦ in RRE and 0.07 m in RTE in the KITTI
dataset and 0.28◦ in RRE and 0.12 m in RTE in the NuScenes dataset, demonstrating the
high precision and effectiveness of MSPR-Net.
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