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Abstract: The timely and accurate detection of wheat lodging at a large scale is necessary for loss
assessments in agricultural insurance claims. Most existing deep-learning-based methods of wheat
lodging detection use data from unmanned aerial vehicles, rendering monitoring wheat lodging at a
large scale difficult. Meanwhile, the edge feature is not accurately extracted. In this study, a semantic
segmentation network model called the pyramid transposed convolution network (PTCNet) was
proposed for large-scale wheat lodging extraction and detection using GaoFen-2 satellite images with
high spatial resolutions. Multi-scale high-level features were combined with low-level features to
improve the segmentation’s accuracy and to enhance the extraction sensitivity of wheat lodging areas
in the proposed model. In addition, four types of vegetation indices and three types of edge features
were added into the network and compared to the increment in the segmentation’s accuracy. The
F1 score and the intersection over union of wheat lodging extraction reached 85.31% and 74.38% by
PTCNet, respectively, outperforming other compared benchmarks, i.e., SegNet, PSPNet, FPN, and
DeepLabv3+ networks. PTCNet can achieve accurate and large-scale extraction of wheat lodging,
which is significant in the fields of loss assessment and agricultural insurance claims.

Keywords: wheat lodging; deep learning; semantic segmentation; GaoFen-2

1. Introduction

Wheat lodging is one of the main factors for wheat yield reductions [1], which is
usually presented in the form of obliquely and horizontally distributed crop stalks [2].
Lodging in wheat is often a result of the combined effects of the inadequate standing
power of the crop, mainly caused by nitrogen excess [3,4]. In addition to nitrogen excess,
conditions such as rain, wind, topography, and soil [5–7] also lead to wheat lodging.
Easson et al. [8] showed that as little as 4 mm of rainfall could cause a decrease in soil
strength and an increased risk of lodging. Strong winds and rainstorms are important
reasons for large-area wheat lodging [9]. Lodging makes mechanical harvesting difficult,
crops become vulnerable to diseases [10], and it blocks the photosynthesis of crops [11],
which reduces the grain’s quality and yield [12]. The timely and accurate extraction of
wheat lodging information is beneficial for yield prediction and essential for relevant
agricultural insurance claims. In this sense, it is necessary to detect and extract lodging
areas accurately and to quickly aid in decision-making processes for loss assessments in
agricultural insurance and post-agricultural risk management.

In traditional wheat lodging detection, field measurements are used for marking and
identifying lodging areas, which is time-consuming, laborious, even harmful to crops
during measuring processes [13–15]. With the development of remote sensing, extensive
studies have been conducted to detect and extract crop lodging information using various
sensors, such as visible light sensors [16], infrared sensors [17], and microwave sensors [18].
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Many useful features, including spectral characteristics [19,20], object height [21,22], ther-
mal infrared brightness temperature [23], and texture information [24–26] from different
remote sensing techniques, have been used to identify wheat lodging areas. Zhou et al. [21]
utilized a canopy height model to retrieve the height of the maize canopy based on light
detection and ranging (LiDAR) data from an unmanned aerial vehicle (UAV), which sug-
gested that plant heights can be used to access the lodging degree of maize with R2 =
0.964. Wang et al. [20] combined synthetic aperture radar (SAR) features with spectral
indices (SI) extracted from Sentinel-1 and Sentinel-2 observations to identify lodged rice
and constructed a model for an optimal sensitive parameters selection (OSPL) with respect
to lodging rice detection. The OSPL can distinguish lodged rice from healthy rice and
selects the best SI and SAR features for classification with an accuracy of 91.29%. Extracting
texture information from optical UAV data by gray-level co-occurrence matrix (GLCM)
is also beneficial for crop lodging extraction. Rajapaksa et al. [24] used GLCM, local bi-
nary patterns (LBP), and Gabor filters to extract texture features from UAV images and
trained a support vector machine (SVM). The prediction accuracy of lodged rape and wheat
reached 97.6% and 96.4%, respectively. Liu et al. [25] used the principal component analysis
transform, GLCM algorithm, and object-oriented method to extract image features. The
results showed that the user’s accuracy for wheat lodging area detection was 81.86%. In
addition, due to the temperature difference before and after the lodging event, Liu et al. [17]
constructed a rice lodging recognition model using particle swarm optimization and an
SVM algorithm with features of thermal-infrared information. The results showed that the
combination of visible and thermal-infrared image features can significantly improve the
recognition accuracy of rice lodging. Cao et al. [23] proposed a wheat lodging extraction
method based on a watershed algorithm (WA) and an adaptive threshold segmentation
algorithm (ATS), proving that the spectral reflectance and temperature of lodged wheat are
higher than those of non-lodged wheat. The classification accuracy of the hybrid algorithm
of WA and ATS is 93.58%. Traditional feature extraction methods mentioned above can
extract crop lodging information using remote sensing images effectively. However, studies
on the identification of crop lodging using the edge features generated by edge operators
have not been found. Due to clear boundaries between lodged and non-lodged crops,
extraction of edge feature is necessary for this research.

In addition, UAV data were used in most current research studies on crop lodging
detection and extraction based on remote sensing technology. Tian et al. [27] constructed a
rice lodging detection model based on the characteristics of spectral reflectance, vegetation
indices (VIs), texture, and color features of UAV images, which indicated that the spectral
reflectance of green- and red-edge bands and the green normalized difference vegetation
index (GNDVI) was sensitive to rice lodging, and the accuracy of lodged wheat in the
proposed lodging detection model was 98.74%. Wang et al. [28] employed a UAV carrying
an RGB camera to compare various color features and found that the texture feature of
the mean G/B was the optimum indicator. An unsupervised classification method based
on the indicator was used to distinguish lodged wheat from non-lodged wheat, with an
accuracy of 86.15% in the lodged wheat category. Chauhan et al. [29] used multispectral
UAV data in nine bands to compare different grades of lodging severity and explored the
variation in spectral reflectance in each band. The results showed that the more severe the
lodging, the greater the spectral reflectance, particularly in the green-edge, red-edge, and
near-infrared (NIR) bands. The overall accuracy of the nearest-neighbor classification was
90%. Because various features derived from UAV data can be taken as input into various
machine learning algorithms, Zhang et al. [30] introduced five different features (i.e., gray
level co-occurrence matrix, local binary pattern, Gabor, intensity, and Hu-moment) into
three machine learning classifiers and compared the three algorithms. It showed that
the accuracy of wheat lodging detection by combining the RGB images of UAV with a
deep learning algorithm (i.e., GoogLeNet) is as large as 93% and can be considered as
a simple and reliable tool for wheat lodging detection. The spatial resolution of UAV
data is much higher than that of satellite data. In that case, more detailed information
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can be extracted, so the accuracy of crop lodging detection is highly based on UAV data.
However, due to the limitations of their altitude and endurance, UAVs cannot be used for
large-scale lodging detection. In addition, the data preprocessing of UAV data (especially
radiance calibration) varies in different UAV categories because of various sensors and
calibration plates. Satellite images are much wider than UAV images, which is up to tens
of kilometers. Low-orbiting satellites can achieve sub-meter resolutions and short revisit
periods. Thus, satellites can perform crop lodging detections over large areas and serve as
tools for large-scale lodging area mapping. However, studies on crop lodging detection
using optical satellite imagery are limited. A maize lodging monitoring model [31] was
proposed by random forest (RF) and partial least squares (PLS), realizing the large-scale
monitoring of maize lodging levels with GaoFen-1 satellite images. The results showed
that the accuracy of lodging samples reached 79% with the method of RF, outperforming
PLS. Researchers combined SAR images from Sentinel-1 with multi-spectral images from
Sentinel-2 to assess the loss caused by crop lodging. For example, Abhishek et al. [32]
utilized Sentinel-2 data to draw a map of jute distribution and Sentinel-1 data to assist in
distinguishing the vitality categories of jute. Findings suggested that 12.46% of the total
jute area over the study area was affected by a super cyclonic storm. Chauhan et al. [33]
used Sentinel-1 and Sentinel-2 data to detect lodging incidences in wheat using time-series
analysis. They demonstrated that dense time-series SAR and optical data can be used to
detect wheat lodging and recognize lodging severity. Nevertheless, in these studies, the
results of crop lodging monitoring are relatively rough. One reason is that the used satellite
data possess lower spatial resolution than sub-meter-resolution satellite imagery. On the
other hand, these traditional methods rely on the number and selection of samples.

With the rapid development of deep learning, semantic segmentation neural networks
have shown powerful feature extraction abilities in recent years. This technology can be
used to create effective schemes for detecting crop lodging. Yang et al. [34] established
semantic segmentation network models to identify rice lodging using VIs, achieving an
accuracy of 94.43% using FCN-AlexNet. A method [35] that combines transfer learning
and DeepLabv3+ network proposed by Zhang et al. was used to extract lodging areas of
wheat at multiple growth stages. It can be used to predict wheat lodging and has improved
prediction effects compared to the U-Net. Song et al. [36] proposed an image fusion-based
method for sunflower lodging recognition. Low-resolution multispectral images were
fused with high-resolution visible images to obtain high-resolution multispectral images.
Skip connection, deep separate convolution, and conditional random field technology
were used to improve SegNet and segmentation accuracy reached 89.8%. Su et al. [37]
improved U-Net by combining dense blocks, DenseNet, and skip connections. The accuracy
of the model for rice lodging images was 97.30%. Unfortunately, these improved neural
networks are all based on UAV data, whereas, compared with UAV data, the interclass
homogeneity and intraclass heterogeneity of satellite data are high due to relatively low
spatial resolutions. To the best of our knowledge, no semantic segmentation neural network
is proposed based on satellite images.

Large-scale detection of wheat lodging is challenging due to the small coverage of
UAV images used in previous studies. Classical semantic segmentation networks do not
pay attention to the characteristics of wheat lodging so the boundaries of wheat lodging
areas cannot be clearly extracted. The main objective of this study is to propose a semantic
segmentation neural network that can extract wheat lodging areas using satellite images
with sub-meter spatial resolution. Datasets for wheat lodging from a satellite and a UAV
were first constructed. Subsequently, the network in this study incorporated VIs and
combined low-level features with high-level features at multiple scales. Edge features were
generated by three edge operators and then concatenated with upsampled feature maps to
enhance the boundary extraction for lodged wheat. Finally, the proposed network achieved
accurate and large-scale detections of wheat lodging, which are significant in the areas of
loss assessment and agricultural insurance claims.
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2. Materials
2.1. Study Area and UAV Data Collection

The study area is Zhangji Town, southeast of Xuzhou, Jiangsu Province, China, cov-
ering 117◦18′0′′~117◦27′0′′E and 34◦1′0′′~34◦15′45′′N (Figure 1). The northern part of the
town is a wheat-planting demonstration base in Jiangsu Province and is mainly planted
with wheat and garlic, whereas in the southern of the town is planted with wheat, mulberry,
and greenhouse vegetables. Because most wheats in the north include high-quality varieties
and wheat stalks are short, wheat lodging events rarely occur. In contrast, wheat in the
southern villages of the town is densely planted with tall stalks and more severe lodging.
Therefore, our ground survey was conducted mainly in the southern part of the town.
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Figure 1. Illustration of the study area: (a) administrative regions of Jiangsu Province and Xuzhou
City; (b) administrative regions of Zhangji Town and the distribution of wheat cultivation; (c) typical
wheat lodging areas.

Strong winds and showers occurred from 15 to 17 May 2021, resulting in wheat
lodging. Wheat was in the milky stage. A ground survey was conducted following the
lodging event. A DJI Phantom 4 drone was used to determine whether a collapse occurred
on the far side of wheat fields. Five typical wheat lodging areas were captured by the UAV,
and five UAV images were obtained. GPS real-time kinematic (RTK) positioning was used
to acquire the precise position of the lodging areas to confirm the location of lodging areas
in the satellite image during the follow-up study.

2.2. Satellite Image Preprocessing

In this study, a GaoFen-2 (GF-2) satellite image, which was generated one week
after the occurrence of wheat lodging, was used to construct a wheat lodging dataset.
The attributes of GF-2 are listed in Table 1. The satellite image was preprocessed using
ENVI software (version 5.3.1, Harris Corporation, the USA). The workflow is illustrated in
Figure 2. The calculation formula of radiometric calibration is described in Equation (1):

Le = Gain × DN + Bais, (1)
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where Le is the equivalent radiance at the entrance pupil of the satellite load channel, DN is
digital number, and Gain and Bias denote the gain and offset of the calibration coefficient,
respectively. The high spatial-resolution panchromatic image was used as the base image
to perform the geometrical registration of the multispectral image. The nearest neighbor
diffuse pan-sharpening algorithm was utilized to fuse the panchromatic image and the
multispectral image. Finally, a multispectral image with four bands (i.e., G, B, R, and NIR)
of 1 m spatial resolution was obtained.

Table 1. Attributes of the GF-2 satellite images.

Parameters Panchromatic Images Multispectral Images

Spectral range 0.45–0.90 µm
0.45–0.52 µm
0.52–0.59 µm
0.63–0.69 µm
0.77–0.89 µm

Spatial resolution 1 m 4 m

Revisit period 5 days

Image width >45 km

Average orbit altitude 631 km
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2.3. Dataset Construction

ENVI 5.3 software was used to manually label the satellite images to generate ground
truth data. The samples were divided into the background, wheat fields, and wheat lodging
areas according to visual interpretations and on-site measured data. The values of the three
types of samples, that is, background, wheat fields, and wheat lodging areas, were 0, 1, and
2, respectively. Pre-processed images and labeled images were clipped into images of size
256 × 256 pixels (Figure 3). Finally, 1000 images and 1000 labeled images were obtained
and ready for use in constructing the dataset.

Both augmentation methods, offline augmentation and online augmentation, were
used in this study because of the class imbalance problem. The images and their corre-
sponding labels were divided into a training set and a test set before offline augmentation,
consisting of 500 and 500 images, respectively. Because the number of images in the training
set was low, offline augmentation was performed to increase the number of images in the
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training set to 2000, while the test set remained the same. The test set comprised 20% of the
entire dataset.
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The wheat lodging dataset collected from a UAV, which was used for the general-
ization test, was constructed simultaneously using the same workflow mentioned above.
Figure 4 shows a UAV image. One thousand images of size 256 × 256 pixels were ob-
tained after clipping five UAV images, with 800 used to train the pyramid transposed
convolution network (PTCNet) using a finetuning method and 200 used to perform the
generalization test.
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3. Methodology

A flowchart of wheat lodging extraction is exhibited in Figure 5. Firstly, a wheat lodg-
ing dataset is generated using the preprocessed satellite image mentioned in Section 2.2
after ground-truth labeling. Meanwhile, vegetation indices were calculated and edge fea-
tures were generated by edge operators. These two types of characteristics are concatenated
with row images as a complete dataset. Secondly, the dataset is randomly shuffled and
divided into training and test set. Subsequently, the augmented training set is used to
perform model training by k-fold cross-validation method. The test set is used to produce
results of the prediction of wheat lodging and to perform model performance assessment.
Our approach is highlighted among existing studies of winter wheat extraction as follows:
(1) A new semantic segmentation neural network used for wheat lodging extraction was
proposed, which combines multi-scale low-level spatial features with multi-scale high-level
semantic features to generate more complementary feature maps to benefit the finer ex-
traction of wheat lodging. (2) Boundary refinement extraction problem was considered in
the study. Edge operators were added to generate edge features that are fit for the good
detection of boundaries between lodged and non-lodged wheat. To avoid overfitting in
the small dataset, the k-fold cross-validation method was used to increase the reliability of
the results.
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3.1. Network Architecture

The majority of semantic segmentation networks adopt an encoder–decoder structure,
which encodes the input to intermediate features and then decodes the intermediate
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features to the output. The PTCNet proposed in this study comprises two parts: encoder
and decoder. In addition, PTCNet pays attention to VIs and edge features of wheat lodging
areas in order to be suitable for detecting large-scale wheat lodging incidences. PTCNet’s
architecture is shown in Figure 6a.
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The first part is the encoder module, which comprises an improved Xception [38].
The improved Xception is divided into three flows: entry, middle, and exit. There are
20 blocks, including 3 for the entry flow, 16 for the middle flow, and 1 for the exit flow.
Depth-wise separate convolutions are utilized in Xception, including depth-wise and point-
wise convolutions. The former is the convolution of packets for which its number is equal
to the number of channels, which implements a cross-channel correlation mapping, and the
latter implements a spatial correlation mapping. This indicates that depth-wise separate
convolutions achieve a complete decoupling of the cross-channel correlation and spatial
correlation. High-level features with a size of 1/16 of the original input images were
obtained after input images flowed into the backbone network. Meanwhile, low-level
features at three different scales were extracted from the backbone network by performing
1 × 1 convolutions on three different output channels, that is, 32, 48, and 64 channels for
the dimensionality’s reduction operation.

The decoder module mainly includes the pyramid transposed convolution (PTC)
module, which we propose for upsampling high-level features of the encoder output by
transposing convolutions at different scales. The detailed workflow of the PTC module
is illustrated in Figure 6a,b. Transposed convolutions not only expand the size of feature
maps but also extract the features of images. The obtained feature maps were 1/8, 1/4,
and 1/2 the size of the original figures after transposed convolutions and upsampling
at different levels. These three scales of feature maps are then concatenated with the
corresponding low-level features to generate new feature maps of the three scales. The
feature maps are then upsampled to the size of the original input images using the bilinear
upsampling method.
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In addition, studies [39–41] showed that the spectral reflectance of a crop tends to
increase when lodging events occur, and the increase is different for each band. The four
VIs varied with spectral reflectance. Therefore, four types of VIs were generated based
on original input images, which are the normalized difference vegetation Index (NDVI),
GNDVI, the enhanced vegetation index (EVI), and the ratio vegetation index (RVI). The
formulae for the four VIs are listed in Table 2. One of the generated VIs was concatenated
to the original input images before flowing into the Xception network.

Table 2. Formulae of vegetation indices.

Vegetation Indices Formulae

NDVI NDVI = NIR−R
NIR+R

GNDVI GNDVI = NIR−G
NIR+G

EVI EVI = 2.5× NIR−R
NIR+6×R−7.5×B+1

RVI RVI = NIR
R

Because of the obvious boundary between healthy plants and lodging plants after
the lodging event, three types of edge operators were included in the network model:
Scharr, Prewitt, and Roberts operators. The Scharr in the x and y directions, Prewitt in the x
and y directions, and Roberts in the x and y directions are denoted as FilterSx and FilterSy
(Equation (2)), FilterPx and FilterPy (Equation (3)), and FilterRx and FilterRy (Equation (4)),
respectively.

FilterSx =

 −3 0 3
−10 0 10
−3 0 3

, FilterSy =

−3 −10 −3
0 0 0
3 10 3

, (2)

FilterPx =

−1 0 1
−1 0 1
−1 0 1

, FilterPy =

−1 −1 −1
0 0 0
1 1 1

, (3)

FilterRx =

[
1 0
0 −1

]
, FilterRy =

[
0 −1
1 0

]
, (4)

Edge feature maps were created from original input images by edge operators. A 1 ×
1 convolution was used to increase the dimension of the edge feature maps. Subsequently,
these feature maps were concatenated with the feature maps flowing out from the PTC
module, and predicted images were obtained by final convolutions.

As for the integration of VIs and edge features, VIs were calculated by corresponding
formulas. The results were saved as images in TIF format. Meanwhile, edge features were
extracted by edge operators. The extracted results were also saved as images in TIF format.
Finally, the original images were concatenated with their corresponding VIs and edge
features images. Spatial information would be lost after VIs and spectral features flew into
the backbone network, while the integration of edge features made up for the loss of spatial
information.

3.2. K-Fold Cross-Validation

Regarding the size of the wheat lodging dataset not being sufficiently large, we
proposed using the k-fold cross-validation method for data training and performance
assessment. In addition, this method effectively avoids overfitting. The training data were
divided into ten folds in this study, with nine as the training set and one as the validation
set. Each fold was set up for validation to remove the limitations and particularities of
fixed partitions for small-scale datasets. A schematic of the k-fold cross-validation used in
this study is shown in Figure 7. Each network was trained with the k-fold cross-validation
method, and ten models were obtained each time. The test set was tested on these ten
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models resulting in ten results. The final result was obtained by averaging ten results. This
workflow was designed to prevent overfitting problems due to the small size of the dataset.
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3.3. Model Training

The experiment was conducted in a software environment with the CentOS Linux
release 7.9 operating system, Python 3.8, PyTorch1.9.0, and CUDA 11.2. The convolution
operation is followed by batch normalization (BN) and linear rectification (ReLU) to ensure
the nonlinearity of the semantic segmentation network. The initial learning rate was 1 ×
10-4 the image size in the training set was 256 × 256, the number of training epochs in each
fold was 200, and batch size was four. The multi-class DiceLoss [42] was chosen as the loss
function because it can handle the imbalances between positive (i.e., wheat lodging areas)
and negative (i.e., others) samples in this semantic segmentation experiment. The learning
rate schedule POLY was used for model training (Equation (5)):

lr = base_lr×
(

1− epoch
num_epoch

)power
, (5)

where lr is the new learning rate, base_lr is the base learning rate, epoch is the training
iterations, num_epoch is the maximum training iterations, and power is used to control the
curve shape. Moreover, SegNet [43], PSPNet [44], FPN [45], and DeepLab v3+ [38] were
used in this study.

3.4. Evaluation Method

Six evaluation indicators were used to quantitatively evaluate and analyze the segmen-
tation’s results, using ground-truth data as a reference. It is assumed that the pixels in the
result graphs are distinguished as follows: the pixels correctly identified as their categories
(true positive, TP), the pixels correctly identified as other categories (true negative, TN), the
pixels incorrectly identified as their categories (false positive, FP), and the pixels incorrectly
identified as other categories (False Negative, FN). The precision, recall, F1 score, overall
accuracy (OA), intersection over union (IoU), and mean intersection over union (mIoU)
were chosen to evaluate the performance of models. The formulae for the six evaluation
indicators are listed in Table 3.



Remote Sens. 2022, 14, 4887 11 of 22

Table 3. Evaluation indicators and formulae.

Vegetation Indices Formulae

Precision Precision = TP
TP+FP

Recall Recall = TP
TP+FN

F1 score F1 = 2× Precision×Recall
Precision+Recall

OA OA = TP+TN
TP+TN+FP+FN

IoU IOU = TP
TP+FN+FP

mIoU mIOU = ∑n
i IOU

n

4. Results and Discussion
4.1. Influence of Various VIs on Model Performance

To explore the differences in canopy spectral variations before and after wheat lodging,
the spectral reflectance of lodged and non-lodged wheat in the study area was collected,
as shown in Figure 8a. The spectral reflectance histograms of lodged wheat in the NIR
and visible-light bands shifted from left to right, indicating an increase in the spectral
reflectance of lodged wheat. Similarly, Figures 8b and 9 show that the spectral reflectance
of the wheat canopy increases after lodging. Additionally, they demonstrate that spectral
changes in wheat after lodging during the filling stage of wheat are obvious, which provides
a theoretical basis for monitoring lodging areas with high-resolution remote sensing images.
As shown in Figure 9, the spectral reflectance of NIR is the highest among the four bands in
both non-lodged wheat (0.40) and lodged wheat (0.48). The highest relative rate of increase
was observed in the green band, which was approximately 20%.
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These variations were related to changes in the canopy structure of wheat after lodging.
A possible reason for this phenomenon is that the spikes and leaves of wheat contributed the
most to the canopy spectrum before lodging, while the stalk became the main contributor
to the canopy spectrum when lodging occurred, which reduced the shielding of the top
leaves; thus, the spectral reflectance increased overall [12,40].

The VIs used in this study were calculated from spectral reflectance. Therefore, changes
in vegetation spectral reflectance could result in changes in VIs. Figure 10 compares the
values of NDVI, GNDVI, EVI, and RVI for lodged and non-lodged wheat. In the case of
lodging, the reflectance of four VIs was larger than that of non-lodged wheat. However,
no significant reflectance differences were observed between lodged and healthy wheat.
In addition, the median and mean values of GNDVI in both cases were close due to the
largest relative increase rate in the green band.
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The encoder–decoder structure was used as the baseline model (BM) in the study.
Four Vis mentioned above are added into BM separately to generate four models listed
in Table 4. These four models were compared with the BM to further demonstrate the
influence of Vis on the model. The results in Table 4 show that the performance of the
model improved because the four Vis changed after wheat lodging, which implies that
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new features were introduced into the model. The sensitivity of wheat lodging increased
the most when NDVI was used instead of the other three VIs, with an IoU and F1 score
of 73.97% and 85.04%, respectively. GNDVI had the least effects on the improved model
performance, which may be related to the fact that its values did not change significantly.

Table 4. Segmentation results comparison of using different VIs on the test dataset.

Model Index Wheat (%) Wheat Lodging (%)

BM
F1 95.64 84.87

IoU 91.64 73.72

BM + NDVI
F1 95.66 85.04

IoU 91.68 73.97

BM + EVI
F1 95.67 84.99

IoU 91.71 73.90

BM + RVI
F1 95.72 84.97

IoU 91.79 73.88

BM + GNDVI
F1 95.62 84.80

IoU 91.60 73.83

4.2. Influence of Various Edge Operators on Model Performance

Edge operators can extract edge features due to the discontinuity of adjacent pix-
els [46,47]. Obvious edges were generated after wheat lodging. Figure 11 shows the edge
features extracted by the Scharr, Prewitt, and Roberts operators. It can be observed that the
edges extracted by the Roberts operator are incomplete with respect to a few details. Edges
extracted by the Scharr operator have many details but thay are not sufficiently clear.
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Figure 11. Edge detection results: (a) original image; (b) results of the Scharr operator; (c) results of
the Prewitt operator; (d) results of the Roberts operator.

The Roberts operator adopts the difference between two adjacent pixels in the diagonal
direction, which is simple to implement but leads to some functional limitations. For
example, it cannot effectively detect edges at 45◦, 90◦, and 135◦, resulting in lower details
in the edge’s features than the other two operators. Unlike the 2 × 2 filters used in the
Roberts operator, the Prewitt operator uses 3 × 3 filters to calculate the pixels in the region
of the kernel. Therefore, the edge detection effect of the Prewitt operator is superior to
that of the Roberts operator in horizontal and vertical directions. The edges detected by
the Scharr operator were thick, and there were some false edges. Although the weights of
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adjacent pixels of the Scharr operator are large enough to compute small gradient changes,
they may cause the Scharr operator to extract too many edges.

Table 5 presents the test results for each of the three edge operators added to the BM
and compares them with the test results of the BM. The results reveal that the addition
of three edge operators can effectively improve the segmentation performance of the
proposed model, with the Prewitt operator providing the most significant improvement in
segmentation performances, followed by the Roberts operator.

Table 5. Segmentation results comparison of using different edge operators on the test dataset.

Model Index Wheat (%) Wheat Lodging (%)

BM
F1 95.64 84.87

IoU 91.64 73.72

BM + Scharr
F1 95.65 85.08

IoU 91.66 74.04

BM + Roberts
F1 95.68 85.15

IoU 91.71 74.15

BM + Prewitt
F1 95.72 85.26

IoU 91.80 74.30

According to Section 4.1, NDVI is the best VI among the four VIs regarding the im-
provement of wheat lodging detection performance using segmentation model. Therefore,
the BM + NDVI model was taken as comparison model. Table 6 shows that three edge
operators were added to each of the BM + NDVI models, and the test results were compared
with those of the BM + NDVI model. The results indicate that the introduction of an edge
operator to the BM + NDVI model improves the segmentation’s performance. The Prewitt
operator still has the greatest effect. Hence, the BM + NDVI + Prewitt model was used as
the final segmentation model, and the PTCNet model refers to this model in later sections.

Table 6. Segmentation results comparison of using different edge operators with NDVI on the test
dataset.

Model Index Wheat (%) Wheat Lodging (%)

BM + NDVI
F1 95.66 84.04

IoU 91.68 73.97

BM + NDVI + Scharr
F1 95.66 85.12

IoU 91.68 74.10

BM + NDVI + Roberts
F1 95.79 85.15

IoU 91.92 74.14

BM + NDVI + Prewitt
F1 95.67 85.31

IoU 91.70 74.38

4.3. Segmentation Result Comparison among Different Semantic Segmentation Networks

Figure 12a shows the changes in the IOU of wheat lodging areas and the loss function
values for each model according to the number of epochs. As shown in Figure 12a, in
previous epochs of each model, the IOU of the wheat lodging areas ascended abruptly and
the loss value descended quickly. The network remained stable as the number of training
epochs increased. The learning rate of each model decayed gradually with an increase in
iterations due to the learning rate scheduler. As shown in Figure 12a–c, although all curves
fluctuated slightly after the 175th epoch, the wheat lodging IOU, overall accuracy, and
loss function values of each model remained stable. As shown in Figure 12a–c, PTCNet
achieved the highest wheat lodging IOU, the highest overall accuracy, and the lowest loss
function values, which are 83.46%, 96.47%, and 0.09, respectively. The wheat lodging IoU
of the PTCNet model was 14.01, 8.38, 6.53, and 4.49% higher than that of SegNet [43],
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PSPNet [44], FPN [45], and DeepLab v3+ [38], respectively. The loss function values of
the PTCNet model were 0.093, 0.042, 0.036, and 0.036 lower than those of SegNet, PSPNet,
FPN, and DeepLab v3+, respectively. This reveals that PTCNet has a better segmentation
performance than the other networks. Figure 12d shows that both the training loss and
validation loss converged and the difference between them is small, which demonstrates
that a high fitting goodness is achieved by PTCNet.
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To further validate the actual segmentation effect of the proposed method, evaluations
were conducted on a test set consisting of 500 images with a size of 256 × 256 pixels.
Figure 13 shows visual segmentation results for the five models mentioned above. The
original images, ground truth, and visualized segmentation results are demonstrated from
left to right in Figure 13. The results of SegNet, PSPNet, FPN, DeepLab v3+, and PTCNet
are shown in Figure 13c–g, respectively. As illustrated in Figure 13, the segmentation
effects of the above networks are good for large lodging areas. However, PSPNet and
SegNet cannot extract the details of the boundaries between lodging areas and normal
areas. SegNet could not discriminate between wheat fields. The detection performance of
wheat lodging boundaries by PTCNet is the most consistent with the ground truth among
these five models, which is probably related to the edge operator module used in the model.
Moreover, PTCNet was more sensitive to spotted and punctate lodging areas than the
other networks.
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Compared to the upsampling process, which uses bilinear interpolation and un-
pooling operations, transposed convolution was used for upsampling in this study, because
parameters of transposed convolution are learnable [48].

The joint usage of edge features and multi-scale high-level features makes PTCNet
sensitive to the extraction of lodging areas. In the prediction of the test images in Figure 13,
it is evident that PTCNet had a superior prediction effect than SegNet, PSPNet, FPN, and
DeepLab v3+ in terms of edge information. Xception was used as the primary feature
extractor in the PTCNet model, and transposed convolution was used to restore the size of
the feature map to make use of the multi-scaled features of images for segmentation.

Notably, metric values of segmentation are highlighted for the result and discussion
in Table 7. PTCNet had the highest wheat lodging IOU and highest F1 score (74.38% and
85.31%, respectively), as shown in Table 7. The results indicated that the PTCNet had
the best identification performance for wheat lodging compared with other networks, for
example, SegNet, PSPNet, DeepLabv3+, and FPN.
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Table 7. Segmentation results in comparison of different networks on the test dataset.

Model Index Wheat (%) Wheat Lodging (%)

SegNet F1 94.53 81.57
IoU 89.64 68.89

PSPNet
F1 95.86 82.48

IoU 92.05 70.18

DeepLabv3+ F1 95.21 82.99
IoU 90.85 70.93

FPN
F1 95.69 84.01

IoU 91.73 72.44

PTCNet
F1 95.67 85.31

IoU 91.70 74.38

4.4. Ablation Experiments

Ablation experiments were conducted on the test dataset to validate the effectiveness
of the VI and edge operator module proposed in this study. The evaluation indicators, that
is, the F1 score and IoU value of the wheat and wheat lodging categories, are provided in
Table 8.

Table 8. Segmentation results of the ablation study.

Model Index Wheat (%) Wheat Lodging (%)

BM
F1 95.64 84.87

IoU 91.64 73.72

BM + NDVI
F1 95.66 85.04

IoU 91.68 73.97

BM + Prewitt
F1 95.72 85.26

IoU 91.80 74.30

BM + NDVI + Prewitt
F1 95.67 85.31

IoU 91.70 74.38

As shown in Table 8, the combination of the VI and edge operator module has a
positive effect on the segmentation results of the network. The IoU of wheat lodging
improved from 73.72% to 73.97% when NDVI was combined with the BM. The IoU of
wheat lodging increased by 0.58% when the Prewitt operator was used in the BM. This
reveals that compared with VI, the edge operator module makes the network more effective
in wheat lodging identification. The wheat and wheat lodging IoU on the test dataset
increased from 91.64% and 73.72% to 91.70% and 74.38%, respectively, using VI and edge
feature extraction modules simultaneously. The results of ablation studies proved that the
effectiveness of multiple feature combinations can improve the segmentation accuracy of
wheat lodging.

4.5. Generalization Ability Test

To verify the generalizability of the PTCNet model proposed in this study, UAV images
collected over the study area were selected as the dataset for wheat lodging areas extraction.
UAV images were divided into training and testing datasets. The images were trained by
loading the trained PTCNet model by using a finetuning method, and a target model was
obtained. A generalization ability test was then performed on the test dataset using the
target model. The test results are shown in Figure 14.
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It can be observed from Figure 14 that PTCNet has a great generalization ability in
UAV images. However, the issues of false alarm and leak alarm rate still exist. For example,
in the first and third rows of Figure 14, the PTCNet model is not particularly accurate in
extracting the boundaries of lodged and non-lodged wheat; in the second row of Figure 14,
the PTCNet model mistakenly identified part of the tree as wheat.

The test results of the PTCNet model are shown below each row of pictures in Figure 14
to quantitatively analyze its generalization ability. The overall accuracy of the PTCNet
model is high, and the low accuracy of the second row of Figure 14 is due to the incorrect
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classification of trees near the wheat field. The wheat lodging IOU is stable with an accuracy
ranging from 74.3% to 84.15% which indicates that the model after finetuning is highly
sensitive to lodged wheat.

4.6. Mapping of the Study Area

The northern area of the study area comprises a scenic spot and a few wheat fields, and
wheat fields are planted with dwarf wheat, which has good lodging resistance and almost
no lodging. In order to make the mapping intuitive and clear, the southern area of the
study area was selected as the wheat lodging extraction area. The size of the orthorectified
Gaofen-2 image is around 13,000 × 9000 pixels, which is much larger than the 256 × 256
pixels size of patches in the model training. If the size of images is too large, the level of
information abstraction will not be high, and calculations become much larger than that
of images with small sizes. Therefore, 13,000 × 9000 pixels size images were cropped to
256 × 256 pixels. The same strategy of edge-ignoring prediction in [49] was adopted. In
our experiment, the number of edge pixels ignored in the four directions of a patch is
28 pixels. the final size used for stitching is 200 × 200 pixels. In the end, the prediction
results of each patch were mosaiced to map the southern part of Zhangji Town. Figure 15 is
the distribution map of wheat and wheat lodging in Zhangji Town. It is clear that wheat
lodging is more serious in the east and southwest parts than that in other parts.
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5. Conclusions

Satellite imagery has a wider width compared with UAV imagery, which can realize
a wide range of wheat lodging area identification. According to the characteristics of the
satellite imagery, a semantic segmentation network model named PTCNet was proposed in
this study for wheat lodging area extraction and detection using low-orbit satellite images
with high spatial resolution, which outperformed other networks, such as SegNet, PSPNet,
FPN, and DeepLabv3+. The main conclusions of this model are as follows:

(1) After wheat lodging, the canopy structure changes, resulting in variations of canopy
spectral reflectance. VIs also change and show an increasing trend. Therefore, VIs are
added to PTCNet, and NDVI improves the performance of the model significantly.

(2) Obvious boundaries appear between lodged and non-lodged wheat, so edge operators
are added to PTCNet to get edge features. After combining dimension-upgrading
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edge features with advanced features obtained by convolutions, the performance of
the model is enhanced, and the Prewitt operator has the greatest effect on the model.

(3) PTCNet connects multi-scale high-level features with low-level features to improve
the segmentation accuracy and enhance the sensitivity of the model to wheat lodging
areas. Among several semantic segmentation networks, PTCNet achieves the highest
wheat lodging IOU, which is 74.38%.

The results showed that the proposed model can be used to extract the lodging areas
of wheat from satellite images. The results of the generalization ability test revealed that
PTCNet had a good generalization performance, and it was suitable for the extraction
of wheat lodging areas on UAV images. The study also proved the feasibility of using
satellite images to identify wheat lodging areas and provided an effective solution for
the monitoring of large-scale wheat lodging areas. It should be noted that the evaluation
quality of the proposed method would be different in other growth stages due to changes
in wheat characteristics. For future work, collecting data at different growth stages is
necessary so that the model is suitable for monitoring lodging in the entire growth cycle.
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