On the Impacts of Historical and Future Climate Changes to the Sustainability of the Main Sardinian Forests
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Tree Cover of the Main Sardinian Forests
2.3. Meteorologic Data
2.4. Statistical Analysis
2.5. Future Projections
3. Results
3.1. Long-Term Trends in Precipitation
3.2. Trends in Tree Cover
3.3. Long-Term Trends in Air Temperature and Vapor-Pressure Deficit
3.4. Evaluation of the Climate Impact on Forest Cover Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
BLF | broad-leaved forest |
BS | percentage of bare soil (%) |
BSV | bushy sclerophyllous vegetation |
CF | coniferous forest |
CLC | Corine Land Cover |
CMIP5 | Coupled Model Intercomparison Project Phase 5 |
CMIP6 | Coupled Model Intercomparison Project Phase 6 |
GCMs | Global Climate Models |
MAP | mean annual precipitation (mm) |
MAPcp | MAP at which the maximum tree cover is attained (mm) |
NTV | percentage of non-tree vegetation (%) |
P | precipitation (mm) |
RCP | representative concentration pathway |
SC | future climate scenario |
SSP | Shared Socioeconomic Pathway |
T | near surface air temperature (°C) |
TC | percentage of tree cover (%) |
TCmax | maximum tree cover (%) |
Td | dew point temperature (°C) |
VPD | vapor-pressure deficit (kPa) |
β | Theil–Sen slope estimator |
τ | Mann-Kendall statistic index |
y | annual |
ew | ‘extended winter period’ (December through March) |
ss | ‘shortened spring period’ (April and May) |
es | ‘extended summer period’ (June through September) |
sf | ‘shortened fall period’ (October and November) |
References
- Dorman, M.; Svoray, T.; Perevolotsky, A.; Moshe, Y.; Sarris, D. What Determines Tree Mortality in Dry Environments? A Multi-Perspective Approach. Ecol. Appl. 2015, 25, 1054–1071. [Google Scholar] [CrossRef] [PubMed]
- Knapp, A.K.; Hoover, D.L.; Wilcox, K.R.; Avolio, M.L.; Koerner, S.E.; La Pierre, K.J.; Loik, M.E.; Luo, Y.; Sala, O.E.; Smith, M.D. Characterizing Differences in Precipitation Regimes of Extreme Wet and Dry Years: Implications for Climate Change Experiments. Glob. Chang. Biol. 2015, 21, 2624–2633. [Google Scholar] [CrossRef]
- Briffa, K.R.; Van Der Schrier, G.; Jones, P.D. Wet and Dry Summers in Europe since 1750. Int. J. Climatol. 2009, 1905, 1894–1905. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Nanni, T.; Navarra, A. Droughts and Extreme Events in Regional Daily Italian Precipitation Series. Int. J. Climatol. 2002, 22, 543–558. [Google Scholar] [CrossRef]
- Ceballos, A.; Martínez-Fernández, J.; Luengo-Ugidos, M.Á. Analysis of Rainfall Trends and Dry Periods on a Pluviometric Gradient Representative of Mediterranean Climate in the Duero Basin, Spain. J. Arid Environ. 2004, 58, 215–233. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Moran-Tejeda, E.; Zabalza, J.; Lorenzo-Lacruz, J.; García-Ruiz, J.M. Impact of Climate Evolution and Land Use Changes on Water Yield in the Ebro Basin. Hydrol. Earth Syst. Sci. 2011, 15, 311–322. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N. Modelling Long-Term Fire Occurrence Factors in Spain by Accounting for Local Variations with Geographically Weighted Regression. Nat. Hazards Earth Syst. Sci. 2013, 13, 311–327. [Google Scholar] [CrossRef]
- Ventura, F.; Rossi Pisa, P.; Ardizzoni, E. Temperature and Precipitation Trends in Bologna (Italy) from 1952 to 1999. Atmos. Res. 2002, 61, 203–214. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Ozturk, T.; Ceber, Z.P.; Türkeş, M.; Kurnaz, M.L. Projections of Climate Change in the Mediterranean Basin by Using Downscaled Global Climate Model Outputs. Int. J. Climatol. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will Drought Events Become More Frequent and Severe in Europe ? Int. J. Climatol. 2018, 1736, 1718–1736. [Google Scholar] [CrossRef]
- Dobrowski, S.Z.; Littlefield, C.E.; Lyons, D.S.; Hollenberg, C.; Carroll, C.; Parks, S.A.; Abatzoglou, J.T.; Hegewisch, K.; Gage, J. Protected-Area Targets Could Be Undermined by Climate Change-Driven Shifts in Ecoregions and Biomes. Commun. Earth Environ. 2021, 2, 1–11. [Google Scholar] [CrossRef]
- FAO; Plan Bleu. State of Mediterranean Forests 2018; Food and Agriculture Organization of the United Nations: Rome, Italy; Plan Bleu: Marseille, France, 2018; ISBN 978-92-5-131047-2. [Google Scholar]
- Peñuelas, J.; Sardans, J. Global Change and Forest Disturbances in the Mediterranean Basin: Breakthroughs, Knowledge Gaps, and Recommendations. Forests 2021, 12, 603. [Google Scholar] [CrossRef]
- Bussotti, F.; Ferrini, F.; Pollastrini, M.; Fini, A. The Challenge of Mediterranean Sclerophyllous Vegetation under Climate Change: From Acclimation to Adaptation. Environ. Exp. Bot. 2014, 103, 80–98. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Tomer, M.D.; Schilling, K.E. A Simple Approach to Distinguish Land-Use and Climate-Change Effects on Watershed Hydrology. J. Hydrol. 2009, 376, 24–33. [Google Scholar] [CrossRef]
- Montaldo, N.; Corona, R.; Curreli, M.; Sirigu, S.; Piroddi, L.; Oren, R. Rock Water as a Key Resource for Patchy Ecosystems on Shallow Soils: Digging Deep Tree Clumps Subsidize Surrounding Surficial Grass. Earth’s Future 2021, 9, 1–24. [Google Scholar] [CrossRef]
- Montaldo, N.; Oren, R. Changing Seasonal Rainfall Distribution With Climate Directs Contrasting Impacts at Evapotranspiration and Water Yield in the Western Mediterranean Region. Earth’s Future 2018, 6, 841–856. [Google Scholar] [CrossRef]
- Piras, M.; Mascaro, G.; Deidda, R.; Vivoni, E.R. Impacts of Climate Change on Precipitation and Discharge Extremes through the Use of Statistical Downscaling Approaches in a Mediterranean Basin. Sci. Total Environ. 2016, 543, 952–964. [Google Scholar] [CrossRef]
- Montaldo, N.; Sarigu, A. Potential Links between the North Atlantic Oscillation and Decreasing Precipitation and Runoff on a Mediterranean Area. J. Hydrol. 2017, 553, 419–437. [Google Scholar] [CrossRef]
- Salis, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Finney, M.A.; Pellizzaro, G.; Spano, D. Analyzing Seasonal Patterns of Wildfire Exposure Factors in Sardinia, Italy. Environ. Monit. Assess. 2015, 187, 4175. [Google Scholar] [CrossRef] [PubMed]
- Gazol, A.; Camarero, J.J. Compound Climate Events Increase Tree Drought Mortality across European Forests. Sci. Total Environ. 2022, 816, 151604. [Google Scholar] [CrossRef]
- Lionello, P.; Abrantes, F.; Congedi, L.; Dulac, F.; Gacic, M.; Gomis, D.; Goodess, C.; Hoff, H.; Kutiel, H.; Luterbacher, J.; et al. Introduction: Mediterranean Climate-Background Information. In The Climate of the Mediterranean Region; Lionello, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. xxxv–xc. ISBN 9780124160422. [Google Scholar]
- Cramer, W.; Guiot, J.; Marini, K.; Azzopardi, B.; Balzan, M.V.; Cherif, S.; Doblas-Miranda, E.; dos Santos, M.; Drobinski, P.; Fader, M.; et al. MedECC 2020 Summary for Policymakers. In Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; Union for the Mediterranean, Plan Bleu, UNEP: Marseille, France, 2020; pp. 11–40. [Google Scholar]
- Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; Cantero, A.; Sánchez-Salguero, R.; Sánchez-Miranda, A.; Granda, E.; Serra-Maluquer, X.; Ibáñez, R. Forest Growth Responses to Drought at Short- and Long-Term Scales in Spain: Squeezing the Stress Memory from Tree Rings. Front. Ecol. Evol. 2018, 6, 9. [Google Scholar] [CrossRef]
- Caloiero, T.; Guagliardi, I. Temporal Variability of Temperature Extremes in the Sardinia Region (Italy). Hydrology 2020, 7, 55. [Google Scholar] [CrossRef]
- Feidas, H.; Noulopoulou, C.; Makrogiannis, T.; Bora-Senta, E. Trend Analysis of Precipitation Time Series in Greece and Their Relationship with Circulation Using Surface and Satellite Data: 1955–2001. Theor. Appl. Climatol. 2007, 87, 155–177. [Google Scholar] [CrossRef]
- Varlas, G.; Stefanidis, K.; Papaioannou, G.; Panagopoulos, Y.; Pytharoulis, I.; Katsafados, P.; Papadopoulos, A.; Dimitriou, E. Unravelling Precipitation Trends in Greece since 1950s Using ERA5 Climate Reanalysis Data. Climate 2022, 10, 12. [Google Scholar] [CrossRef]
- Tošić, I.A. Spatial and Temporal Variability of Winter and Summer Precipitation over Serbia and Montenegro. Theor. Appl. Climatol. 2004, 77, 47–56. [Google Scholar] [CrossRef]
- Unal, Y.S.; Deniz, A.; Toros, H.; Incecik, S. Temporal and Spatial Patterns of Precipitation Variability for Annual, Wet, and Dry Seasons in Turkey. Int. J. Climatol. 2012, 32, 392–405. [Google Scholar] [CrossRef]
- Salameh, A.A.M.; Fallah, R.Q. Changes in Air Temperature and Precipitation over the Syrian Coastal Region (Lattakia Governorate) from 1970 to 2016. Cuad. Geogr. 2018, 57, 140–151. [Google Scholar] [CrossRef]
- Gado, T.A.; El-Hagrsy, R.M.; Rashwan, I.M.H. Spatial and Temporal Rainfall Changes in Egypt. Environ. Sci. Pollut. Res. 2019, 26, 28228–28242. [Google Scholar] [CrossRef] [PubMed]
- Tramblay, Y.; El Adlouni, S.; Servat, E. Trends and Variability in Extreme Precipitation Indices over Maghreb Countries. Nat. Hazards Earth Syst. Sci. 2013, 13, 3235–3248. [Google Scholar] [CrossRef]
- Scorzini, A.R.; Leopardi, M. Precipitation and Temperature Trends over Central Italy (Abruzzo Region): 1951–2012. Theor. Appl. Climatol. 2019, 135, 959–977. [Google Scholar] [CrossRef]
- Staver, A.C.; Archibald, S.; Levin, S.A. The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science 2011, 334, 230–232. [Google Scholar] [CrossRef]
- Sankaran, M.; Hanan, N.P.; Scholes, R.J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le Roux, X.; Ludwig, F.; et al. Determinants of Woody Cover in African Savannas. Nature 2005, 438, 846–849. [Google Scholar] [CrossRef]
- Sankaran, M.; Ratnam, J.; Hanan, N. Woody Cover in African Savannas: The Role of Resources, Fire and Herbivory. Glob. Ecol. Biogeogr. 2008, 17, 236–245. [Google Scholar] [CrossRef]
- Good, S.P.; Caylor, K.K. Climatological Determinants of Woody Cover in Africa. Proc. Natl. Acad. Sci. USA 2011, 108, 4902–4907. [Google Scholar] [CrossRef]
- Yang, X.; Crews, K. Applicability Analysis of MODIS Tree Cover Product in Texas Savanna. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 186–194. [Google Scholar] [CrossRef]
- Yang, X. Woody Plant Cover Estimation in Texas Savanna from MODIS Products. Earth Interact. 2019, 23, 1–14. [Google Scholar] [CrossRef]
- Anderegg, W.R.L. Spatial and Temporal Variation in Plant Hydraulic Traits and Their Relevance for Climate Change Impacts on Vegetation. New Phytol. 2015, 205, 1008–1014. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Schwalm, C.; Biondi, F.; Camarero, J.J.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Shevliakova, E.; Williams, A.P.; et al. Pervasive Drought Legacies in Forest Ecosystems and Their Implications for Carbon Cycle Models. Science 2015, 349, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate Change and Forests of the Future: Managing in the Face of Uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef] [PubMed]
- Marqués, L.; Ogle, K.; Peltier, D.M.P.; Camarero, J.J. Altered Climate Memory Characterizes Tree Growth during Forest Dieback. Agric. For. Meteorol. 2022, 314, 108787. [Google Scholar] [CrossRef]
- Hartmann, H.; Moura, C.F.; Anderegg, W.R.L.L.; Ruehr, N.K.; Salmon, Y.; Allen, C.D.; Arndt, S.K.; Breshears, D.D.; Davi, H.; Galbraith, D.; et al. Research Frontiers for Improving Our Understanding of Drought-Induced Tree and Forest Mortality. New Phytol. 2018, 218, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.F.; Ding, J.N.; Zhang, Y.; Li, Y.F.; Zhu, R.; Yuan, X.Z.; Zou, H. Exposure to Polystyrene Nanoplastic Leads to Inhibition of Anaerobic Digestion System. Sci. Total Environ. 2018, 625, 64–70. [Google Scholar] [CrossRef]
- Jönsson, A.M.; Eklundh, L.; Hellström, M.; Bärring, L.; Jönsson, P. Annual Changes in MODIS Vegetation Indices of Swedish Coniferous Forests in Relation to Snow Dynamics and Tree Phenology. Remote Sens. Environ. 2010, 114, 2719–2730. [Google Scholar] [CrossRef]
- Le Maire, G.; Marsden, C.; Verhoef, W.; Ponzoni, F.J.; Lo Seen, D.; Bégué, A.; Stape, J.L.; Nouvellon, Y. Leaf Area Index Estimation with MODIS Reflectance Time Series and Model Inversion during Full Rotations of Eucalyptus Plantations. Remote Sens. Environ. 2011, 115, 586–599. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Kennedy, R.E.; Yang, Z.; Braaten, J.; Krankina, O.N.; Friedl, M.A. Detecting Forest Disturbance in the Pacific Northwest from MODIS Time Series Using Temporal Segmentation. Remote Sens. Environ. 2014, 151, 114–123. [Google Scholar] [CrossRef]
- Yang, X.; Crews, K.; Frazier, A.E.; Kedron, P. Appropriate Spatial Scale for Potential Woody Cover Observation in Texas Savanna. Landsc. Ecol. 2020, 35, 101–112. [Google Scholar] [CrossRef]
- Adzhar, R.; Kelley, D.; Dong, N.; Torello Raventos, M.; Veenendaal, E.; Feldpausch, T.; Philips, O.; Lewis, S.; Sonké, B.; Taedoumg, H.; et al. MODIS Vegetation Continuous Fields Tree Cover Needs Calibrating in Tropical Savannas. Biogeosciences 2022, 19, 1377–1394. [Google Scholar] [CrossRef]
- Aleman, J.C.; Staver, A.C. Spatial Patterns in the Global Distributions of Savanna and Forest. Glob. Ecol. Biogeogr. 2018, 27, 792–803. [Google Scholar] [CrossRef]
- D’Onofrio, D.; Baudena, M.; Lasslop, G.; Nieradzik, L.P.; Wårlind, D.; von Hardenberg, J. Linking Vegetation-Climate-Fire Relationships in Sub-Saharan Africa to Key Ecological Processes in Two Dynamic Global Vegetation Models. Front. Environ. Sci. 2020, 8, 136. [Google Scholar] [CrossRef]
- Huang, S.; Siegert, F. Land Cover Classification Optimized to Detect Areas at Risk of Desertification in North China Based on SPOT VEGETATION Imagery. J. Arid Environ. 2006, 67, 308–327. [Google Scholar] [CrossRef]
- Sexton, J.O.; Song, X.P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m Resolution Continuous Fields of Tree Cover: Landsat-Based Rescaling of MODIS Vegetation Continuous Fields with Lidar-Based Estimates of Error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef]
- Yang, X.; Crews, K.A. The Role of Precipitation and Woody Cover Deficit in Juniper Encroachment in Texas Savanna. J. Arid Environ. 2020, 180, 104196. [Google Scholar] [CrossRef]
- Norrant, C.; Douguédroit, A.; Philandras, C.M.; Nastos, P.T.; Kapsomenakis, J.; Douvis, K.C.; Tselioudis, G.; Zerefos, C.S.; Caloiero, T.; Caloiero, P.; et al. Monthly and Daily Precipitation Trends in the Mediterranean (1950–2000). Water Environ. J. 2018, 83, 89–106. [Google Scholar] [CrossRef]
- Philandras, C.M.; Nastos, P.T.; Kapsomenakis, J.; Douvis, K.C.; Tselioudis, G.; Zerefos, C.S. Long Term Precipitation Trends and Variability within the Mediterranean Region. Nat. Hazards Earth Syst. Sci. 2011, 11, 3235–3250. [Google Scholar] [CrossRef]
- Ghiglieri, G.; Carletti, A.; Pittalis, D. Runoff Coefficient and Average Yearly Natural Aquifer Recharge Assessment by Physiography-Based Indirect Methods for the Island of Sardinia (Italy) and Its NW Area (Nurra). J. Hydrol. 2014, 519, 1779–1791. [Google Scholar] [CrossRef]
- Canu, S.; Rosati, L.; Fiori, M.; Motroni, A.; Filigheddu, R.; Farris, E. Bioclimate Map of Sardinia (Italy). J. Maps 2015, 11, 711–718. [Google Scholar] [CrossRef]
- Puddu, G.; Falcucci, A.; Maiorano, L. Forest Changes over a Century in Sardinia: Implications for Conservation in a Mediterranean Hotspot. Agrofor. Syst. 2012, 85, 319–330. [Google Scholar] [CrossRef]
- Barkhordarian, A.; Saatchi, S.S.; Behrangi, A.; Loikith, P.C.; Mechoso, C.R. A Recent Systematic Increase in Vapor Pressure Deficit over Tropical South America. Sci. Rep. 2019, 9, 15331. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.T.; Oliveira-Júnior, J.F.; Delgado, R.C.; Cubo, P.; Ramos, M.C. Spatiotemporal Rainfall and Temperature Trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 2017, 37, 2013–2026. [Google Scholar] [CrossRef]
- Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics; Raj, B., Koerts, J., Eds.; Advanced Studies in Theoretical and Applied Econometrics; Springer: Dordrecht, The Netherlands, 1992; Volume 23. [Google Scholar]
- Sen, P. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Amirabadizadeh, M.; Huang, Y.F.; Lee, T.S. Recent Trends in Temperature and Precipitation in the Langat River Basin, Malaysia. Adv. Meteorol. 2015, 2015, 579437. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Reygadas, Y.; Jensen, J.L.R.; Moisen, G.G. Forest Degradation Assessment Based on Trend Analysis of MODIS-Leaf Area Index: A Case Study in Mexico. Remote Sens. 2019, 11, 2503. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Collaud Coen, M.; Andrews, E.; Bigi, A.; Martucci, G.; Romanens, G.; Vogt, F.P.A.; Vuilleumier, L. Effects of the Prewhitening Method, the Time Granularity, and the Time Segmentation on the Mann-Kendall Trend Detection and the Associated Sen’s Slope. Atmos. Meas. Tech. 2020, 13, 6945–6964. [Google Scholar] [CrossRef]
- Şen, Z. Hydrological Trend Analysis with Innovative and Over-Whitening Procedures. Hydrol. Sci. J. 2017, 62, 294–305. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The Influence of Autocorrelation on the Ability to Detect Trend in Hydrological Series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters. Environ. Process. 2015, 2, 729–749. [Google Scholar] [CrossRef]
- Mallakpour, I.; Villarini, G. A Simulation Study to Examine the Sensitivity of the Pettitt Test to Detect Abrupt Changes in Mean. Hydrol. Sci. J. 2016, 61, 245–254. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Stocker, D.Q.T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 741–882. [Google Scholar]
- Cos, J.; Doblas-Reyes, F.; Jury, M.; Marcos, R.; Bretonnière, P.A.; Samsó, M. The Mediterranean Climate Change Hotspot in the CMIP5 and CMIP6 Projections. Earth Syst. Dyn. 2022, 13, 321–340. [Google Scholar] [CrossRef]
- Meehl, G.A.; Senior, C.A.; Eyring, V.; Flato, G.; Lamarque, J.F.; Stouffer, R.J.; Taylor, K.E.; Schlund, M. Context for Interpreting Equilibrium Climate Sensitivity and Transient Climate Response from the CMIP6 Earth System Models. Sci. Adv. 2020, 6, eaba1981. [Google Scholar] [CrossRef]
- Cannon, A.J. Multivariate Quantile Mapping Bias Correction: An N-Dimensional Probability Density Function Transform for Climate Model Simulations of Multiple Variables. Clim. Dyn. 2018, 50, 31–49. [Google Scholar] [CrossRef]
- Ciobotaru, A.M.; Patel, N.; Pintilii, R.D. Tree Cover Loss in the Mediterranean Region—An Increasingly Serious Environmental Issue. Forests 2021, 12, 1341. [Google Scholar] [CrossRef]
- Gentilesca, T.; Camarero, J.J.; Colangelo, M.; Nolè, A.; Ripullone, F. Drought-Induced Oak Decline in the Western Mediterranean Region: An Overview on Current Evidences, Mechanisms and Management Options to Improve Forest Resilience. iForest—Biogeosci. For. 2017, 10, 796–806. [Google Scholar] [CrossRef]
- Acácio, V.; Dias, F.S.; Catry, F.X.; Bugalho, M.N.; Moreira, F. Canopy Cover Loss of Mediterranean Oak Woodlands: Long-Term Effects of Management and Climate. Ecosystems 2021, 24, 1775–1791. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Visbeck, M. The North Atlantic Oscillation. Science 2001, 291, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Chamaillé-Jammes, S.; Fritz, H. Precipitation-NDVI Relationships in Eastern and Southern African Savannas Vary along a Precipitation Gradient. Int. J. Remote Sens. 2009, 30, 3409–3422. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, C.; Pan, X.; Li, X.; Zhu, X. Downscaling Land Surface Temperature in an Arid Area by Using Multiple Remote Sensingindices with Random Forest Regression. Remote Sens. 2017, 9, 789. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Palik, B.J.; Williams, M.I.; Dumroese, R.K.; Madsen, P. Forest Restoration Paradigms. J. Sustain. For. 2014, 33, S161–S194. [Google Scholar] [CrossRef]
- Vásquez-Grandón, A.; Donoso, P.J.; Gerding, V. Forest Degradation: When Is a Forest Degraded? Forests 2018, 9, 726. [Google Scholar] [CrossRef]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant Responses to Rising Vapor Pressure Deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Mariotti, A.; Zeng, N.; Yoon, J.H.; Artale, V.; Navarra, A.; Alpert, P.; Li, L.Z.X. Mediterranean Water Cycle Changes: Transition to Drier 21st Century Conditions in Observations and CMIP3 Simulations. Environ. Res. Lett. 2008, 3, 044001. [Google Scholar] [CrossRef]
- Will, R.E.; Wilson, S.M.; Zou, C.B.; Hennessey, T.C. Increased Vapor Pressure Deficit Due to Higher Temperature Leads to Greater Transpiration and Faster Mortality during Drought for Tree Seedlings Common to the Forest-Grassland Ecotone. New Phytol. 2013, 200, 366–374. [Google Scholar] [CrossRef]
- Sanginés de Cárcer, P.; Vitasse, Y.; Peñuelas, J.; Jassey, V.E.J.; Buttler, A.; Signarbieux, C. Vapor–Pressure Deficit and Extreme Climatic Variables Limit Tree Growth. Glob. Chang. Biol. 2018, 24, 1108–1122. [Google Scholar] [CrossRef]
- Oren, R.; Sperry, J.S.; Katul, G.G.; Pataki, D.E.; Ewers, B.E.; Phillips, N.; Schäfer, K.V.R. Survey and Synthesis of Intra- and Interspecific Variation in Stomatal Sensitivity to Vapour Pressure Deficit. Plant Cell Environ. 1999, 22, 1515–1526. [Google Scholar] [CrossRef] [Green Version]
- Gratani, L.; Catoni, R.; Varone, L. Morphological, Anatomical and Physiological Leaf Traits of Q. Ilex, P. Latifolia, P. Lentiscus, and M. Communis and Their Response to Mediterranean Climate Stress Factors. Bot. Stud. 2013, 54, 35. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased Atmospheric Vapor Pressure Deficit Reduces Global Vegetation Growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Medrano, H.; Flexas, J.; Galmés, J. Variability in Water Use Efficiency at the Leaf Level among Mediterranean Plants with Different Growth Forms. Plant Soil 2009, 317, 17–29. [Google Scholar] [CrossRef]
- Saura-Mas, S.; Bonas, A.; Lloret, F. Plant Community Response to Drought-Induced Canopy Defoliation in a Mediterranean Quercus Ilex Forest. Eur. J. For. Res. 2015, 134, 261–272. [Google Scholar] [CrossRef]
- Stovall, A.E.L.; Shugart, H.; Yang, X. Tree Height Explains Mortality Risk during an Intense Drought. Nat. Commun. 2019, 10, 4385. [Google Scholar] [CrossRef]
- Bennett, A.C.; Mcdowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger Trees Suffer Most during Drought in Forests Worldwide. Nat. Plants 2015, 1, 15139. [Google Scholar] [CrossRef]
- Pasho, E.; Camarero, J.J.; de Luis, M.; Vicente-Serrano, S.M. Factors Driving Growth Responses to Drought in Mediterranean Forests. Eur. J. For. Res. 2012, 131, 1797–1807. [Google Scholar] [CrossRef]
- Bussotti, F.; Pollastrini, M. Opportunities and Threats of Mediterranean Evergreen Sclerophyllous Woody Species Subjected to Extreme Drought Events. Appl. Sci. 2020, 10, 8458. [Google Scholar] [CrossRef]
- Corcobado, T.; Cubera, E.; Juárez, E.; Moreno, G.; Solla, A. Drought Events Determine Performance of Quercus Ilex Seedlings and Increase Their Susceptibility to Phytophthora Cinnamomi. Agric. For. Meteorol. 2014, 192–193, 1–8. [Google Scholar] [CrossRef]
- Blois, J.L.; Williams, J.W.; Fitzpatrick, M.C.; Jackson, S.T.; Ferrier, S. Space Can Substitute for Time in Predicting Climate-Change Effects on Biodiversity. Proc. Natl. Acad. Sci. USA 2013, 110, 9374–9379. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Lloret, F.; Montoya, R. Severe Drought Effects on Mediterranean Woody Flora in Spain. For. Sci. 2001, 47, 214–218. [Google Scholar] [CrossRef]
CLC Class ID | Description |
---|---|
3.1.1. | Broad-leaved forest (BLF) Vegetation formation composed principally of trees, including shrub and bush understory, where broad-leaved species predominate. This class is applicable for mature forests of natural or anthropogenic origin. In Sardinia, it mainly includes evergreen broad-leaved woodlands composed of sclerophyllous trees (mainly Quercus Ilex, Quercus suber, Quercus Rotondifolia). Broad-leaved area must cover at least 75% of the forest tree component. |
3.1.2. | Coniferous forest (CF) Woodlands consisting mainly of trees, but also of bushes and shrubs, in which coniferous forest species dominate. This class is applicable for mature coniferous (needle-leaved) forests of natural or anthropogenic origin pure or mixed stands of fir (Abies), pine (Pinus), spruce (Picea), cedar (Cedrus), cypress (Cupressus), juniper (Juniperus), yew (Taxus), and species, among others. The coniferous surface must constitute at least 75% of the forest tree component. |
3.2.3. | Bushy sclerophyllous vegetation (BSV) Bushy sclerophyllous vegetation in a climax stage of development, including maquis, matorral, garrigue, and thermo-Mediterranean brushes, characterized by shrubs of sclerophyllous character (Quercus, P. latifolia, Pistacia lentiscus, Arbutus unedo, Mirtus, Juniperus, Cistus, Lavandula, Rosmarinus, Euphorbia, Genista, Erica, Laurus, etc., species), with hard leaves and short internodes, usually evergreen. |
Code | Name | Surface | Mean Altitude | Surface Covered by BLF | Surface Covered by BSV | Surface Covered by CF | Surface Covered by Other Vegetation |
---|---|---|---|---|---|---|---|
(-) | (km2) | (m asl) | (%) | (%) | (%) | (%) | |
F1 | Barigadu | 36.23 | 639.8 | 43% | 35% | 5% | 17% |
F2 | Sos Littos—Sas Tumbas (Bitti) | 19.27 | 378.2 | 73% | 7% | 2% | 18% |
F3 | Monti del Gennargentu | 447.53 | 1047.3 | 24% | 8% | 3% | 65% |
F4 | Supramonte di Oliena, Orgosolo e Urzulei—Su Sercone | 235.08 | 765.9 | 26% | 17% | 2% | 54% |
F5 | Foresta di Monte Arcosu | 303.8 | 449.6 | 52% | 24% | - | 24% |
F6 | Monte dei Sette Fratelli e Sarrabus | 92.98 | 531.5 | 72% | 11% | - | 17% |
F7 | Monte Linas—Marganai | 236.46 | 551.8 | 26% | 28% | - | 46% |
F8 | Monte Arci | 101.82 | 414 | 32% | 35% | 5% | 28% |
F9 | Monte Ferru | 32.05 | 336.7 | 28% | 36% | 0% | 37% |
F10 | Villasalto | 22.79 | 490.5 | 2% | 73% | 15% | 10% |
F11 | Fiorentini | 15.88 | 796.4 | 85% | - | - | 15% |
F12 | Monte Lerno | 99.26 | 612.9 | 22% | 26% | 25% | 27% |
F13 | Sorilis | 49.92 | 548.2 | - | 50% | 12% | 38% |
F14 | Siamanna | 37.93 | 343 | 0% | 56% | 13% | 31% |
F15 | Tacchixeddu | 29.07 | 461.5 | 19% | 55% | 6% | 20% |
F16 | Su Sartu | 11.03 | 555.5 | - | 41% | - | 59% |
F17 | Nuoro | 14.2 | 630.5 | 54% | 16% | - | 30% |
Code | τTCBLF | τTCBSV | τNTVBLF | τNTVBSV | τBSBLF | τBSBSV | βTCBLF | βTCBSV | βNTVBLF | βNTVBSV | βBSBLF | βBSBSV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(-) | (-) | (-) | (-) | (-) | (-) | (%TC/y) | (%TC/y) | (%NTC/y) | (%NTC/y) | (%BS/y) | (%BS/y) | |
F1 | −0.15 | 0.06 | 0.08 | −0.07 | 0.10 | 0.01 | −0.16 | 0.14 | 0.07 | −0.16 | 0.08 | 0.01 |
F2 | −0.12 | 0.04 | 0.10 | −0.03 | 0.02 | −0.07 | −0.15 | 0.09 | 0.14 | −0.07 | 0.07 | −0.02 |
F3 | 0.03 | −0.11 | 0.02 | 0.05 | −0.12 | −0.24 | 0.12 | −0.24 | 0.05 | 0.35 | −0.14 | −0.20 |
F4 | 0.00 | 0.06 | 0.06 | −0.05 | −0.14 | −0.02 | 0.05 | 0.12 | 0.11 | −0.12 | −0.14 | 0.01 |
F5 | −0.30 | 0.09 | 0.18 | 0.00 | 0.00 | −0.16 | −0.30 | 0.20 | 0.30 | −0.03 | 0.00 | −0.09 |
F6 | −0.12 | 0.11 | 0.03 | −0.13 | 0.11 | 0.11 | −0.09 | 0.19 | 0.02 | −0.29 | 0.10 | 0.06 |
F7 | −0.10 | 0.22 | 0.03 | −0.15 | 0.11 | −0.19 | −0.11 | 0.35 | 0.01 | −0.27 | 0.09 | −0.09 |
F8 | −0.19 | 0.14 | 0.06 | −0.15 | 0.25 | 0.05 | −0.21 | 0.20 | 0.05 | −0.32 | 0.34 | 0.13 |
F9 | −0.14 | 0.27 | 0.02 | −0.19 | 0.17 | −0.07 | −0.15 | 0.50 | 0.01 | −0.41 | 0.10 | −0.01 |
F10 | −0.21 | −0.03 | - | −0.01 | 0.08 | 0.04 | −0.19 | −0.06 | NaN | −0.01 | 0.02 | 0.07 |
F11 | −0.09 | 0.09 | 0.05 | 0.02 | −0.03 | −0.15 | −0.09 | 0.17 | 0.09 | −0.01 | 0.01 | −0.15 |
F12 | −0.09 | 0.15 | 0.03 | 0.12 | 0.06 | −0.30 | −0.10 | 0.22 | 0.04 | 0.17 | 0.04 | −0.35 |
F13 | - | 0.01 | - | −0.01 | - | 0.01 | - | 0.01 | - | −0.04 | - | 0.01 |
F14 | - | 0.07 | - | −0.10 | - | 0.08 | - | 0.13 | - | −0.20 | - | 0.05 |
F15 | −0.29 | 0.08 | 0.19 | −0.07 | 0.10 | −0.03 | −0.22 | 0.14 | 0.22 | −0.16 | 0.06 | 0.01 |
F16 | - | 0.01 | - | −0.04 | - | 0.10 | - | 0.07 | - | −0.13 | - | 0.07 |
F17 | −0.07 | 0.04 | 0.03 | −0.07 | 0.07 | 0.02 | −0.05 | 0.11 | 0.02 | −0.14 | 0.04 | 0.04 |
βTCBLF | βTCBSV | βBSBLF | βBSBSV | |||||
---|---|---|---|---|---|---|---|---|
ρ | p-val | ρ | p-val | ρ | p-val | ρ | p-val | |
MAP1990–2019 | 0.71 | 0.004 | 0.13 | 0.46 | −0.68 | 0.01 | −0.44 | 0.07 |
βTes | −0.22 | 0.45 | −0.13 | 0.61 | 0.02 | 0.24 | 0.18 | 0.49 |
βTew | −0.22 | 0.45 | −0.09 | 0.73 | 0.05 | 0.70 | 0.14 | 0.60 |
βTsf | −0.27 | 0.35 | −0.01 | 0.98 | −0.03 | 0.35 | 0.13 | 0.62 |
βTss | 0.04 | 0.91 | 0.16 | 0.53 | 0.00 | 0.89 | −0.23 | 0.38 |
βTy | −0.33 | 0.25 | −0.07 | 0.78 | −0.09 | 0.25 | 0.35 | 0.17 |
βVPDes | −0.12 | 0.68 | −0.42 | 0.09 | 0.16 | 0.52 | 0.27 | 0.30 |
βVPDew | −0.31 | 0.28 | 0.01 | 0.97 | −0.13 | 0.39 | 0.26 | 0.32 |
βVPDsf | −0.32 | 0.26 | −0.34 | 0.18 | 0.04 | 0.08 | 0.32 | 0.21 |
βVPDss | −0.28 | 0.33 | −0.39 | 0.12 | 0.00 | 0.10 | 0.46 | 0.06 |
βVPDy | −0.61 | 0.02 | −0.34 | 0.18 | −0.62 | 0.02 | 0.44 | 0.08 |
Future Scenario | Coupled Model Intercomparison Project Phase | Representative Concentration Pathways | Shared Socioeconomic Pathways | Period |
---|---|---|---|---|
SC1 | CMIP5 | RCP 45 | 2020–2030 | |
SC2 | CMIP5 | RCP 85 | - | 2020–2030 |
SC3 | CMIP5 | RCP 45 | - | 2055–2075 |
SC4 | CMIP5 | RCP 85 | - | 2055–2075 |
SC5 | CMIP5 | RCP 45 | - | 2081–2090 |
SC6 | CMIP5 | RCP 85 | - | 2081–2090 |
SC7 | CMIP6 | - | SSP 245 | 2020–2030 |
SC8 | CMIP6 | - | SSP 585 | 2020–2030 |
SC9 | CMIP6 | - | SSP 245 | 2055–2075 |
SC10 | CMIP6 | - | SSP 585 | 2055–2075 |
SC11 | CMIP6 | - | SSP 245 | 2081–2090 |
SC12 | CMIP6 | SSP 585 | 2081–2090 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipolla, S.S.; Montaldo, N. On the Impacts of Historical and Future Climate Changes to the Sustainability of the Main Sardinian Forests. Remote Sens. 2022, 14, 4893. https://doi.org/10.3390/rs14194893
Cipolla SS, Montaldo N. On the Impacts of Historical and Future Climate Changes to the Sustainability of the Main Sardinian Forests. Remote Sensing. 2022; 14(19):4893. https://doi.org/10.3390/rs14194893
Chicago/Turabian StyleCipolla, Sara Simona, and Nicola Montaldo. 2022. "On the Impacts of Historical and Future Climate Changes to the Sustainability of the Main Sardinian Forests" Remote Sensing 14, no. 19: 4893. https://doi.org/10.3390/rs14194893
APA StyleCipolla, S. S., & Montaldo, N. (2022). On the Impacts of Historical and Future Climate Changes to the Sustainability of the Main Sardinian Forests. Remote Sensing, 14(19), 4893. https://doi.org/10.3390/rs14194893