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Abstract: Floods are one of the most destructive natural hazards to which Australia is exposed. The
frequency of extreme rainfall events and consequential floods are projected to increase into the future
as a result of anthropogenic climate change. This highlights the need for more holistic risk assessments
of flood affected regions. Flood risk assessments (FRAs) are used to inform decision makers and
stakeholders when creating mitigation and adaptation strategies for at-risk communities. When
assessing flood risk, previous FRAs from Australia’s most flood prone regions were generally focused
on the flood hazard itself, and rarely considering flood vulnerability (FV). This study assessed FV in
one of Australia’s most flood prone regions—the Hawkesbury-Nepean catchment, and investigated
indicator-based approaches as a proxy method for Australian FV assessment instead of hydrological
modelling. Four indicators were selected with the intention of representing environmental and socio-
economic characteristics: elevation, degree of slope, index of relative socio-economic disadvantage
(IRSD), and hydrologic soil groups (HSGs). It was found that combination of low elevation, low
degree of slope, low IRSD score, and very-low infiltration soils resulted in very high levels of
vulnerability. FV was shown to be at its highest in the Hawkesbury-Nepean valley flood plain
region on the outskirts of Greater Western Sydney, particularly in Blacktown, Penrith, and Liverpool.
This actionable risk data which resulted from the final FV index supported the practicality and
serviceability of the proxy indicator-based approach. The developed methodology for FV assessment
is replicable and has the potential to help inform decision makers of flood-prone communities in
Australia, particularly in data scarce areas.

Keywords: flood; flood vulnerability assessment and mapping; flood vulnerability index; hawkesbury-
nepean catchment; Australia; flood risk assessments

1. Introduction

The implications of natural hazards, including floods have become increasingly pro-
found in Australia, as well as globally over the past few decades. The ensuing impacts
of such events on communities are extensive and underscore the need for more proactive
approaches to natural hazard risk mitigation and adaptation [1]. A flood is described by the
Australian Bureau of Meteorology (BoM) as the “overflow of water beyond the normal lim-
its of a watercourse” [2]. Notably over the past years, the effects of several flood disasters
have been felt in regions along Australia’s East Coast. Historically, flood events have been
recurring in Queensland and New South Wales [3], however their increasing frequency
and intensity has caused concern amongst the communities most affected by them.

Ecologically, floods have the ability to be beneficial in environments that regularly
endure them. In floodplain ecosystems that are largely undisturbed, the exposure to annual
or occasional extreme floods can see benefits such as the dispersal of soil nutrients and
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sediments [4]. However, in modern times, urbanisation on these flood plains has meant
that natural ecosystems are largely fragmented or lost completely [4,5]. When replaced
with human settlements, flood events become devastating, causing the loss of important
infrastructure, homes, and lives [6]. According to the EMT-DAT Natural Disaster Database,
floods were recorded globally as the most frequent natural disaster (43%) between 1997
and 2013 [7]. They are also estimated as one of the costliest occurring natural hazards in
Australia [8], with the Australian Insurance Council estimating that in 2022 alone, floods
have caused AUD 4.3 billion in insured losses [9].

Floods are commonly categorised under three main classifications: pluvial, fluvial,
and coastal. Pluvial floods which are the result of rainfall events are considered surface
water floods or ‘flash floods’, whereas fluvial floods are defined as the overflowing of a
river or water body. Coastal flooding often involves the surge of seawater onto land from
events such as storms [10]. For the purposes of this study, pluvial and fluvial flooding will
be the main focus.

Interannual variability in the frequency and intensity of floods in Australia is influ-
enced by a number of climate drivers including the El Niño-Southern Oscillation (ENSO)
which contains the cooler, wetter La Niña phase, contributes largely to the heavy precipita-
tion events that often lead to Australian floods [11]. Anthropogenic climate change coupled
with influence of the ENSO and other key climate drivers can culminate in an intensified
hydrological cycle, resulting in extreme rainfall events particularly in Southern Queensland
(QLD) and along the New South Wales (NSW) coast [12].

Globally, there has been increasing endeavours within the scientific community to
develop methods to assess potential natural disaster risks [13]. Natural hazard risk assess-
ments aim to gauge the potential threats posed by a natural disaster to a community. Risk
is usually described as “the probability of a loss” as a product of three risk components—
hazard, exposure, and vulnerability [14,15]. and can be expressed as Equation (1):

Risk = hazard × exposure × vulnerability (1)

The current approach to flood risk assessment (FRA) and management in Australia
is customarily conducted on a local government area (LGA) level. The methodology of
FRA in these cases is widely variable as well as sparse, and largely hazard-centric [16,17].
Currently, the dominant process of FRA across Australian LGAs involves hydrological
modelling and mapping using remote sensing and Geographical Information Systems (GIS)
software to understand flood behaviour and characteristics [18]. This has left some disparity
in the consideration of how hazard, exposure, and vulnerability constitute flood risk, and
in particular how pre-existing conditions may lessen or heighten losses due to flooding [19].
Flood modelling assessments of this design are usually completed in accordance with the
Australian Institute of Disaster Resilience guidelines for flood risk management [20]. By
following this guideline, LGA reports can be heavily centred around hazard modelling and
can lack a holistic perspective in the sense of models including the three factors (hazard,
exposure, and vulnerability).

In comparison, another methodology that has been used internationally to assess flood
risk is the use of indices. Index-based assessment and mapping condenses large datasets
into single values that can be applied to features across a study area. This scalable and
replicable proxy methodology of FRA is quantitative in nature and encourages a more
holistic approach to assessments [21].

This study focuses specifically on flood vulnerability (FV) as one of three risk com-
ponents, and how the antecedent conditions within a given area affect the outcome of a
flood event within communities. The definition of FV is varied in the literature, so for
this study the definition provided by the Intergovernmental Panel on Climate Change
(IPCC) was used. The IPCC defines vulnerability as “the propensity or predisposition to be
adversely affected. It encompasses a variety of concepts and elements, including sensitivity
or susceptibility to harm and lack of capacity to cope and adapt” [14].
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It is important to note that the concept of FV often overlaps with that of community
flood resilience (CFR). Drawing distinction between these two ideas can be difficult, and
literature has underscored this need for correct characterisation. For this study, the IPCC
definition was adopted. According to the IPCC, resilience is “the ability of a system and its
component parts to anticipate, absorb, accommodate, or recover from the effects of a haz-
ardous event in a timely and efficient manner, including through ensuring the preservation,
restoration, or improvement of its essential basic structures and functions” [14]. Literature
such as Batica and Gourbesville (2020) [22], outlines that FV encompasses pre-flood event
conditions, whereas in contrast, CFR is characterised by actions related to preparedness,
response and recovery post-flood event that decrease vulnerability into the future. CFR is an
important concept that will be covered in our future investigations. However, in this study,
scope will be limited to investigating FV.

In international literature, three main categories are usually considered when assessing FV.

1. Physical/environmental: Focuses on coupled human-environmental systems. This
aspect delves into the surrounding physical characteristics of an area. This can vary
from anthropogenically made places to local ecology [23].

2. Social: The product of social inequalities in a given region. These can include gender,
ethnicity, age groups, poverty, health, education, marginalised groups, availability of
affordable housing, etc. [24,25].

3. Economic: Refers to economic assets of a household or community as well as the
economic susceptibility of a given place. This can include construction density, re-
tail density, living resources such as food, appliances, private housing, and other
commodities [24,25].

In Australia, FV is sparsely included in FRAs. When FV does appear in assessments, it
tends to address only one or two of the three FV categories (physical, social and economic),
and very rarely draws comparison between factors from each of these categories [26]. This
is largely due to community reports by councils or consultancy groups focusing time and
resource allocation into hydrological modeling-based approaches [27]. In Australia, FV
assessments are predominantly assessed using flood damage models. For this reason, there
is room in Australian FRAs for a more holistic, index-based methodology, especially when
measuring FV [21].

The Australian FV assessments that do exist infrequently use indicator-based ap-
proaches. Indicator methods usually follow a multi-criteria analysis structure that explicitly
evaluates multiple conflicting components in decision making. Indicator methods con-
vert geospatial data into standardised indicators with the end goal of producing the final
Flood Vulnerability Index (FVI). Internationally, Nasiri et al. (2016) [28] outlines two main
approaches to indicator methodology as the deductive and inductive approaches. The
deductive approach is built on a theoretical framework and requires considering each
indicator relationship with FV. Meanwhile, the inductive approach selects indicators based
on statistical links with observed vulnerability consequences. This study adopts a de-
ductive approach in order to properly consider the contribution of each indicator to the
vulnerability in the study area. In areas where data can be scarce, or where multiple LGAs
must be measured, this index technique can be beneficial as it is scalable and requires less
resources than data modeling.

The overall aim of this study is to quantify FV across one of the most flood prone areas
in Australia, the Hawkesbury-Nepean catchment (HNC) through a proxy indicator-based
approach, and to develop a FVI composed of relevant and specific FV indicators.

2. Materials and Methods
2.1. Study Area

Eastern parts of Australia including Southern Queensland and New South Wales have
long been known as areas that are exposed to extreme flood events [29]. In this study,
FV to pluvial and fluvial flooding is assessed, meaning that an area that is removed from
potential coastal flood events was preferable as a study area. Over the past years, the HNC
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area located in Greater Western Sydney (GWS) has been subjected to heavy precipitation
events that have led to several floods [30]. The region stretches over 21,000 km2 from
south of Goulburn to north of the Putty Valley, and from west of Lithgow to the coast. The
catchment contains 26 LGAs (Figure 1) and 11 main rivers (Figure 2).
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Additionally, the presence of urbanised communities and infrastructure throughout
the floodplain means that the effects of flood can have a heightened human impact. This
is because there is more that stands to be lost. The severity and frequency of floods in
this area, coupled with the tragic losses that have been associated with these events, are
important reasons as to why the location was chosen as a case study area.

2.2. Selecting Vulnerability Indicators

The selection of vulnerability indicators was carried out by consulting prior literature
and FV assessments. Previous Australian assessments tended to largely focus on either
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physical or economic indicators, with few using a combination of both. In many cases,
flood risk management strategies do not investigate soil structure, which is highlighted in
Alaoui et al. (2018) [31] as being a key driver in flood runoff behaviour [1]. International
studies showed a more holistic approach to this selection process, with a larger number of
assessments using a combination of all three categories outlined above. For this study, this
holistic approach is preferable, therefore in the selection process of indicators all three of
the vulnerability categories were included in the chosen indicators.

Initially, indicators such as vegetation biomass, topographic wetness index (TWI), and
soil curve number (CN) were all considered for physical gauges of the catchment. This
was mainly due to data availability, data overlaps, and subjectivity. It was important for
this study to be easily replicable in other areas of Australia, and in order to ensure this, the
indicators selected must have data availability across the whole country. While vegetation
indicators were found to be important in runoff behaviour, they were ruled out as their
data availability was inconsistent and hard to obtain in a high resolution. TWI was ruled
out due to some overlap with soil moisture indicators in a partnering flood hazard study.
The goal of this study involved combining FV with flood hazard to create an index, and the
crossover between data here would have rendered the indicator obsolete. Lastly, CN was
discarded as the process of its calculation relies on deciphering different land use types
present in a given area. This is achieved by consulting a CN table which requires decisions
about the cover type and urbanisation characteristics of a given area. Available data on the
HNC would not have been informative or sufficient enough to make objective decisions
about these properties. Instead, a more unbiased approach was favoured. It was found
to be advantageous to limit the number of indicators to three or four in order to preserve
simplicity and to reduce overlap, therefore the selection of indicators had to be carefully
considered. The following section explains the selected indicators and their relevance to FV.

2.2.1. Elevation

Elevation is a topographic factor that influences the direction and velocity of water
flow during flooding. As a physical indicator, elevation shows vulnerability where the
lowest lying areas occur as water flows from higher to lower elevated areas. It is expected
that the floodplains within the catchment will be the locally lowest lying areas, meaning
that they will be the most vulnerable to flood conditions. Earlier studies highlight the use
of elevation as a key flood vulnerability indicator [28,32]. While elevation can be a major
factor, other factors could be also important, e.g., gradient or the geomorphic character of
the study region and subregions which dictate where water flows from and where it flows
to. However, being an obvious factor contributing to FV, using elevation data is useful to
draw comparisons to the variation in other environmental indicators.

2.2.2. Degree of Slope

Often found coupled with elevation, the degree of slope is the percentage of change
in elevation over a certain distance [33]. It describes the shape and relief of the land as
opposed to the height of the land. Slope is calculated using Equation (2):

Slope = Difference in height/Horizontal Distance (2)

Slope influences the speed at which water will travel, meaning that in areas with a
higher degree of slope, water will runoff more readily resulting in a lower flood risk [34].
This indicator was chosen as it complements elevation data and shows reasonable variation
across the catchment. It is also frequently used in past FV assessments with a historically
high influence on flood runoff behaviour [35].

2.2.3. Index of Relative Socio-Economic Disadvantage

The Index of Relative Socio-economic Disadvantage (IRSD) is a comprehensive index
which is a component of the Socio-Economic Indexes for Areas (SEIFA) created by the
Australian Bureau of Statistics (ABS). It summarises a range of information about the



Remote Sens. 2022, 14, 4894 6 of 24

economic and social conditions of people and households within an area [36]. Unlike the
other indexes, IRSD only describes factors of relative disadvantage, meaning that it purely
characterises the pre-flood conditions that make the community most vulnerable. The
IRSD was advantageous to adopt as it encompasses both economic and social elements
outlined previously, combining two important vulnerability categories into one indicator.
IRSD scores are mapped using quintiles. The lowest scoring 20% of areas are given a
quintile number of 1, the second-lowest 20% of areas are given a quintile number of 2 and
so on, up to the highest 20% of areas which are given a quintile number of 5. Low IRSD
scores indicate that an area has a relatively greater disadvantage in general. For example,
areas that have low IRSD scores may have (i) many households with low incomes, or (ii)
many people with long term health conditions or disabilities, or (iii) many dwellings that
are overcrowded, etc. Conversely, areas with a high IRSD score would present a lack of
disadvantage meaning, e.g., (i) few households with low incomes, or (ii) few people with
long term health conditions or disabilities, or (iii) few overcrowded dwellings, etc.

The ABS recommends that IRSD data should be employed when investigating broad
measures of disadvantage rather than specific measures [36], and this is applicable to this
study as a broad scope is more appropriate for assessing the data’s contribution to FV. A
detailed list of the indicators that form IRSD is presented in Appendix A.

2.2.4. Hydrologic Soil Groups

Hydrologic soil groups (HSGs) located in the HNC have been chosen as a fourth
indicator that assesses another physical vulnerability of the area. Earlier studies have
outlined the importance of soil properties in the runoff behaviour of water during flood
events, and described the applicability to Australian flood plains [37]. Despite this being
recorded in previous studies, investigation into Australian FV assessments showed little
focus on the contribution of soils to flood susceptibility. This was the main reason for the
selection of this indicator. HSG is imperative in the calculation of ‘soil curve number’ or
CN, a widely used hydrological model for direct runoff estimation. Higher CN indicates
that an area has a higher runoff potential, leading to less waterlogging in the soil and thus,
lower flood vulnerability [38]. HSG was chosen to represent how the composition of soil
contributes to such runoff estimation, and was preferred due to the availability of objective,
high resolution data that evenly covered the study area. HSG is measured in classes as
outlined in Table 1 compiled based on information from [39].

Table 1. Hydrologic soil classes with corresponding infiltration behaviours and runoff potential.

Hydrologic Soil Class Infiltration Behaviour Runoff Potential

A High infiltration rates Low
B Moderate infiltration rates Moderate
C Low infiltration rates High
D Very low infiltration rates Very high

The proportions of sand, silt, and clay that comprise the soils in HNC impact the
texture and structure of the soil, therefore influencing how the soil allows for the infiltration
of surface water. Soils that are more compacted, tend to allow for less infiltration, and
therefore contribute to higher runoff, whereas soils that are less compacted (e.g., sandy
soils with higher porosity) can be expected to allow the infiltration of surface water more
readily [40]. In urbanised areas, infiltration rates are expected to be lower, due to the
compacted nature of soils after human interference. Urban surface materials such as
concrete and asphalt also contribute to higher runoff due to their impermeable nature.
Conversely, it is expected that in areas of low human population density and higher levels
of vegetation, runoff potential will be lower [41].
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2.3. Datasets

This study aimed to collate the highest resolution and current data available where
possible. Previous natural hazard risk assessments for Australia that have used index-based
mapping have used LGA level resolution data consistently to measure all indicators [42–44].
This FVI aims to utilise data that is of a higher resolution in order to capture larger amounts
of variation. This is notably important when assessing FV, as physical vulnerabilities in
particular reveal more variability when observed in detail. This is considerably applicable
in the circumstance of soil measurements, as these characteristics can show great variation
spatially. Where possible, the most recent datasets were used (this was most important
when considering economic and social factors), however, due to the nature of census data
provided by the ABS, the most current statistics for populations is from the last published
Australian Census in 2016. This indicates the possibility for future updates when data
from the most recent census emerges. For physical indicators, the consistent nature of most
environmental conditions means that having recent data was not necessarily detrimental,
but still preferred. The specificity of some indicators meant that most of the datasets varied
in resolution, this is described by Table 2.

Table 2. Dataset summary for map layers used in this study, including their source.

Indicator Dataset Source Horizontal Resolution Year

Elevation GEODATA 9 Second DEM Version 3.0 Geoscience Australia 9 s (250 m) 2008

Degree of Slope Degree Slope (3” resolution) Version 0.1 Data.gov.au 1 s (approx. 30 m) 2021

IRSD SEIFA 2016 Australian Bureau of Statistics Statistical Area 2 (SA2) 2016

HSG Hydrologic Soil Groups (HSG) of NSW SEED (NSW Gov) 50 m 2021

2.4. Elevation

To assess elevation as an indicator for FV, data was obtained from Geoscience Australia
in the form of a digital elevation model (DEM) raster layer. This 9 s resolution raster data
was imported to QGIS where it was clipped to include only the HNC area. This was to
remove any unnecessary area, streamlining the data. This clipped DEM was then edited to
present the data in a choropleth form. This allows for the intervals of elevation to be more
obvious for further data adjustment, and allows initial trends to be observed.

2.5. Degree of Slope

Slope data was obtained via the Australian Government Bioregional Assessment
Program (a collaborative assessment between the Department of Agriculture, Water and
the Environment, the BoM, CSIRO, and Geoscience Australia). The data was imported to
QGIS as a raster layer file. As per the methodology described in Section 2.4, it was then
clipped to the area of HNC. The clipped version of the layer was then stylistically adjusted
to adopt a single band pseudo colour rendering.

2.6. Index of Relative Socio-Economic Disadvantage

The data for IRSD score was collected from the ABS’s SEIFA, a product created from
Census data consisting of four indexes. IRSD was available as its own Excel dataset on the
ABS website. These data were also available for download on the AURIN portal [45] as a
shapefile layer package in Statistical Area 2 (SA2) resolution. The IRSD data in this shapefile
layer showed large gaps in the map where no information was present. This presented an
issue, as processing this data would skew results. One reason for large areas of ‘no data’
was the presence of national parks (Figure 2). The Blue Mountains National Park, the Yengo
National Park, Wollemi National Park and the Upper Nepean State Conservation Area
are just some of the main national and state parks in the catchment. It would be expected
that in areas of protected ecosystem services there would be very little to no permanent
human populations residing there, and thus there would be no data relating to relative
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disadvantage. Some smaller areas that also presented gaps were situated in suburbs and
towns, and were found to be industrial areas or mines. To fill these data sparse regions, the
missing SA2 gaps were selected and replaced with the IRSD score corresponding to their
respective LGA areas outlined in the Excel spreadsheet data. These SA2s were then added
back into the overall IRSD map by merging the two layers together.

2.7. Hydrologic Soil Groups

To assess HSG, the vector file summarised in Table 1 was imported into QGIS. Here, the
process of clipping the layer was completed in accordance with methodology as described
in Sections 2.4 and 2.5. Due to the nature of the HSG data being categorical, the soil classes
were reclassified into values. This was to ensure that any future data processing would
function correctly with numbers being attributed to the HSGs instead of words, as the
ArcGIS Fuzzy Membership tool required all data inputs to be in numerical form in order to
be processed. To accomplish this, the reclassification tool in ArcGIS was used to alter the
class column in the HSG layer’s attribute table to the following in Table 3. The reclassified
HSG values outlined in this table were simply selected to be evenly spaced as there was
little information in the data source regarding how these categories should be separated.

Table 3. Original HSG categories and their reclassification through ArcGIS to a numerical value for
forthcoming data processing and standardising.

Original HSG Class Reclassified HSG

A—High Infiltration Rates 1
B—Moderate Infiltration Rates 25

C—Low Infiltration Rates 50
D—Very Low Infiltration 75

2.8. Data Standardising—Fuzzy Logic

In order to prepare the maps for the creation of an index, the data for each indicator
underwent a standardising process. This was particularly important due to the varying
characteristics of each dataset. For example, the data collected for different indicators used
different scales, units, and classes, with elevation measured in metres, slope measured in
degrees, IRSD measured by a score/ranking system, and HSG measured in qualitative
classes. In order to standardise each of these datasets, the Fuzzy Membership tool in
ArcGIS was used. The Fuzzy Membership tool has been used in previous natural hazard
risk analysis for Australia, particularly in studies that involve indicator assessments [42].

The tool requires a class assignment so that the data can be processed, two of these
classes being small and large. Following the application of fuzzy small membership, the
algorithm transforms an input raster to a fuzzified raster and thereby standardised data
to values between 0 and 1, with the value of 0 implying no membership with the defined
fuzzy set, and a value of 1 suggesting full membership. In this study small membership
was used. Two of the most important parameters of fuzzy membership are the midpoint
and spread. For this method, the spread was kept at its default value (5). The mid-point
was initially set to its default value (the midpoint of the range of values of the input raster).

2.9. Constructing Final Flood Vulnerability Index

The final FVI was created by combining the fuzzified layers of each indicator. This
was accomplished using the Fuzzy Gamma Overlay tool available in ArcGIS. This tool
multiplies the fuzzified indicator layers together to result in a combined layer, which is also
standardised using the same 0–1 classification. An algebraic product of fuzzy Product and
fuzzy Sum are both raised to the power of gamma, of which the default value of 0.9 was
used as per Equation (3):

µ(x) = (FuzzySum)γ × (FuzzyProduct)1−γ (3)
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Additionally, a simple correlation analysis was performed using the Spearman Rank
method [46], to measure the strength and direction of association existing between each
standardised indicator and the final FVI. This was calculated using Python programming.

3. Results

Results of flood vulnerability assessment are presented as choropleth maps. These
maps show the raw and standardised values of the data, which noticeably all correspond
appropriately to small membership, as their lower values relate to higher vulnerability. The
secondary, green maps depict the indicator data post Fuzzy Membership standardising.
These show the way in which each indicator contributes to vulnerability on a scale from 0–1.
Each index as well as the final FVI are expressed in classes, which is specified in Table 4.
The boundaries of the classes are defined as per the natural breaks assigned by QGIS.
These natural breaks group values that are evenly separated from each other, normalising
the data.

Table 4. Vulnerability classes applied to natural breaks produced by the Fuzzy Membership tool.
Lighter green colours indicate very low and low Vulnerability, while darker colours represent severe
and extreme Vulnerability.

Class Elevation
Vulnerability

Slope
Vulnerability

IRSD
Vulnerability

HSG
Vulnerability

Flood Vulnerability
Index

Very low 0.030–0.453 0.00–0.05 0.22–0.39 0.03–0.26 0.10–0.30
Low 0.454–0.822 0.06–0.37 0.40–0.57 0.27–0.51 0.31–0.51

Moderate 0.823–0.995 0.38–0.95 0.58–0.75 0.52–0.75 0.52–0.72
Severe 0.996–0.999 0.96–0.99 0.76–0.93 0.76–0.99 0.73–0.93

Extreme 1.000 1.00 0.94–1.00 1.00 0.94–1.00

3.1. Elevation

Maps of elevation in the Hawkesbury-Nepean Catchment before and after standar-
dising with Fuzzy membership are presented in Figures 3 and 4, respectively. Figure 3
shows the raw elevation data extracted from the GEODATA 9 Second DEM Version 3.0
after employing the method described in Section 2.4. The GWS region of the Hawkesbury-
Nepean Valley in the east of the catchment exhibits the lowest levels of elevation (0.00
m). Radiating out from this area elevation increases slightly (147.18 m–441.55 m). Slightly
higher elevation (588.74 m–883.11 m) is consistent across most of the southern-most regions
of the catchment, e.g., the Wingecarribee Shire, Upper Lachlan Shire, and the Hills Shire.
Meanwhile, the highest elevation was recorded in the Western-most regions of the catch-
ment (Blue Mountains and Wollemi regions) with the highest recorded elevation being
1324.66 m. Figure 4 represents the elevation index after standardising using methods from
Section 2.8. The darkest region indicating higher vulnerability is found in the areas of low
elevation, following the same trend as Figure 3. The GWS region of the HN valley presents
an extreme level of elevation vulnerability.

3.2. Degree of Slope

Maps depicting degree of slope across the HNC before and after standardising with
Fuzzy membership are presented in Figures 5 and 6, respectively.

Figure 5 depicts the degree of slope data before standardising using Fuzzy Member-
ship. Blue colour indicates the lowest degree of slope (0.0–17.8) which is prevalent in the
HN Valley floodplain region as well as the southern part of the catchment. The highest
degrees of slope can be seen in sparse areas in the Blue Mountains/Wollemi region in the
west of the map (71.5). In the conservation areas in the western and north-western parts of
the map, a moderate to high degree of slope is recorded (17.9–35.8). This trend is translated
into the degree of slope index in Figure 6. Here, it can be seen that the highest slope
vulnerability is located in the floodplain region of the valley. The lowest slope vulnerability
(0.00–0.05) is depicted in the west and north-western area of the map, in the conservation re-
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gions of the catchment. Moderate slope vulnerability (0.06–0.38) is intertwined throughout
the centre and western areas of the map.
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Figure 4. Map of elevation Vulnerability in the Hawkesbury-Nepean Catchment after standardising
with Fuzzy membership. Lighter colours indicate very low and low Vulnerability, while darker
colours represent severe and extreme Vulnerability in accordance with Table 4.
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3.3. IRSD

Maps depicting raw Index of Relative Socio-economic Disadvantage (IRSD) data
across the HNC before and after standardising with Fuzzy membership are presented in
Figures 7 and 8, respectively.
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Figure 8. Map depicting Index of Relative Socio-economic Disadvantage (IRSD) data across the
Hawkesbury-Nepean Catchment after standardising with Fuzzy membership.

The raw IRSD data in Figure 7 was created using the methodology outlined in
Section 2.6. Here, large gaps of data have been filled with an LGA average IRSD score. This
has resulted in most of the conservation areas exhibiting a score range of approximately
998–1159. Low IRSD scores are also seen in the uppermost, western side of the map in
the Lithgow City Council LGA (836–997). The lowest IRSD scores are found in SA2s in
the GWS outer suburbs area that lies on the HN floodplain. Here, the lowest scores are
recorded to be 511–672. Closer to the Sydney CBD and further towards the Ku-Ring-Gai,
Northern Beaches, and The Shire of Hornsby, IRSD values become higher (1159–1160, the
highest being 1160). The general trend shows a gradual decrease in IRSD score from the
east to west. This trend is also apparent in the standardised map (Figure 8), where the
north-western area of the map shows moderate vulnerability.

The magnified region in Figure 9 reveals the small SA2s that exhibit the cluster with the
highest IRSD vulnerability in the catchment. These areas are located on the HN floodplain
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in the Liverpool, Penrith and Blacktown LGAs. The magnified map demonstrates the
highest vulnerability level of some of these SA2s is extreme (0.94–1.00), with areas around
this cluster displaying a severe vulnerability level (0.76–0.93). It can also be seen that
the areas that show the lowest vulnerability (0.22–0.39) are situated around Ku-Ring-Gai,
the Northern Beaches, and The Shire of Hornsby. A small, outlying group can be seen
in the Goulburn region which is located at the southern point of the map. This group of
SA2s shows moderate–severe vulnerability, which is unique from the higher values in the
surrounding area.
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Figure 9. Magnified map depicting Index of Relative Socio-economic Disadvantage (IRSD) data
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3.4. Hydrologic Soil Groups

Maps depicting raw Hydrologic Soil Group (HSG) data across the Hawkesbury-
Nepean Catchment before and after standardising with Fuzzy membership are presented
in Figures 10 and 11, respectively.
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Raw HSG data is visualised in Figure 10 as a vector layer expressing the four classes
according to their infiltration behaviour. These four classes are in accordance with those in
Table 1. Figure 10 illustrates that the eastern floodplain region of the map is dominated
by soils of hydrologic classes C and D and that this area is composed majorly of slow and
very slow infiltration soils. These classes of soil are also littered around the northernmost
part of the catchment, and are heavily present in the southern region as well. This southern
part, especially the upper Lachlan Hills shire, the Goulburn Mulwaree council, and the
Wingecarribee Shire are dominated by HSGs C and D. Soils with higher infiltration rates,
(classes A and B) were found to be largely located in the Blue Mountains and Lithgow
council areas (conservation areas).

Figure 11 displays the standardised data as a HSG vulnerability index. It indicates that
the areas situated both in the HN Valley floodplain region and the southern area of the map
contain the most clusters of extreme vulnerability. High vulnerability is attributed to low
infiltration rates, with Figure 11 following the same trends depicted in Figure 10. The Blue
Mountains region and the northern side of the map are mostly composed of very low–low
vulnerability HSGs. The data was standardised using the automatic midpoint given by
the ArcGIS Fuzzy Membership (small) tool, and this gave an even spread across the map.
There were a few minor areas where water bodies were generalised as HSG class A. This
meant that these lakes, rivers or creeks were automatically assigned the Vulnerability level
of extreme. These areas were very small in comparison to the rest of the catchment area,
and would not have to be addressed as it would not influence the final FVI.

3.5. Flood Vulnerability Index

The final Flood Vulnerability Index in the HNC as a combination of four indicators
(Elevation, Slope, IRSD and Hydrologic Soil Groups) is presented in Figure 12.
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Figure 12. Final Flood Vulnerability Index as a combination of four indicators (Elevation, Slope,
IRSD and Hydrologic Soil Groups). This depicts the overall flood vulnerability in the Hawkesbury-
Nepean catchment, with darker colours indicating higher vulnerability, and lighter colours indicating
less vulnerability.

Figure 12 depicts the overall flood vulnerability index as a product of elevation, degree
of slope, IRSD, and Hydrologic Soil Group vulnerability. The map uses the same green
colour ramp as the previous standardised indicators, as well as the classification system
from Table 4 to characterise FV. The map indicates the highest levels of FV in the GWS
floodplain region, where severe to extreme levels of vulnerability are present. Severe and
extreme levels are also found in the upper west of the study area. Very low to low FV is
found to be in the western and northern regions of the map, with the lowest FV situated in
the Lithgow City Council region. The southern and north eastern regions of the catchment
were characterised by moderate/severe FV. The most vulnerable SA2s within the catchment
are highlighted in Appendix B (Table A1).

Correlation analysis between each standardised indicator and the final FVI was con-
ducted. It was found that elevation had the highest correlation value of 0.88. Secondary
to this was slope, with a correlation value of 0.11, followed by IRSD (0.10), and then HSG
(0.06). All indicators were positively and statistically significantly (p < 0.0001) correlated to
the FVI.

4. Discussion

This study aimed to quantify FV through the use of an indicator-based multi-criteria
analysis approach, and produce a FVI by considering indices which look at environmental
vulnerability and societal vulnerability (elevation, slope, IRSD and HSG). Ultimately, the
question driving this investigation asks whether or not an index based approach was useful
in the assessment of FV, and how to best use the chosen indicators for this methodology.
Additionally, this case study has endeavoured to provide actionable risk data. The following
sections will discuss findings and the reasoning behind them.

4.1. Elevation

The raw data map created for elevation gives a comprehensive overview of the main
topographic features of the HNC. From this map (Figure 3), it can be seen that the lowest
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values are mainly in the GWS region of the HN Valley. This region is an urbanised area
encompassing the outer suburbs of Sydney, and contains both the Hawkesbury and Nepean
rivers. It was expected that in areas closest to these main rivers, there will be low levels
of elevation, and when compared to Figure 2 this was found to be evident. This was
consistent with the fact that river beds are usually low lying due to running water eroding
surrounding soil [47]. Places that lie closer to the coast were also expected to have lower
elevation as they approach sea-level, and this is apparent in the north-eastern regions of
Figure 3. The GWS area of the HN Valley is situated on a pre-existing flood plain, and is a
long-established settlement since the 1800 s. Flood plains are formed by erosion removing
sediment from either side of a river, creating a flat, low-lying area. Therefore, it is reasonable
to assume that a flood plain will have a relatively low elevation in comparison to the land
directly surrounding it, and this is reflected in Figure 3.

Other topographic characteristics that are demonstrated through this map are land-
forms. These landforms can be seen mainly in the middle to upper-western region of the
catchment where a number of national parks are present. This area consists largely of the
Blue Mountains, a region consisting of forested, mountainous land. The Blue Mountains
and Wollemi areas are seen to have the highest elevation levels, with the exceptions of
zones where main rivers are present. Sudden decline in elevation in the centre of the Blue
Mountains region indicates a valley between two mountains. This is corroborated by the
degree of slope outlined in Section 4.2.

Areas within a close distance to main rivers are identified as having severe–extreme
vulnerability in Figure 4, and this is because moving waters in rivers act as an erosional
agent that grinds down sediment to create low lying floodplains and valleys. When
considering elevation closest to rivers and creeks it is important to note that these areas are
at higher risk of fluvial flooding, where extreme precipitation can cause riverine overflows.

During pluvial flooding events, the highest elevation points on the index also experi-
ence less subsequent pooling from rain water, as they do not receive as much subsequent
runoff from surrounding elevated areas. This is in contrast to the lowest areas which are
susceptible to receiving watersheds from areas of higher elevation. This occurs particularly
in valleys due to their characteristic U-shape cross section, or in floodplains that exhibit
a ‘bowl’-like topography, where deluges of water have little opportunities for drainage.
This topography can result in waters from extreme precipitation collecting in an area more
readily and remaining in this area for longer.

In the topographically depressed areas of the HN valley, the low elevation combined
with narrow sections in surrounding rivers creates what is called the ‘bathtub effect’. This
effect is explored in a study by Munawar et al. (2022) [48]. There are several of these narrow
sections found in rivers across the valley, these sections are called ‘choke points’ where
large influxes of water are not able to be contained within the watercourse. Some of these
choke points are located at Wallacia in the Warragamba River, Castlereagh in the Grose
River, and Sackville in the Hawkesbury River. The low-lying conditions mean that the
overflows caused by these choke points result in flood waters spreading quickly across a
vast area. Munawar et al. [48] explains that it is this bathtub effect which has contributed to
some of the most dangerous flood events in the HN catchment, and this is reflected by the
elevation vulnerability index in Figure 4.

The initial midpoint set for this data during the Fuzzy Membership phase was the
default value, which was the median point of the dataset. When first processed, this
midpoint produced a map that was heavily skewed towards larger values, resulting in the
standardised elevation map exhibiting majorly severe/extreme vulnerability. By consulting
the raw elevation data in Figure 3 it was clear that this was not indicative of the true
topographic vulnerability of the area, therefore an alternative midpoint was trialed. The
mean value of the elevation dataset was instead utilised as the new midpoint which
resulted in a more even distribution that highlighted the characteristics of the catchment
more precisely.
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The high correlation between elevation and the final FV map (0.92) is supported by
the literature, as this indicator has been found to be largely influential in previous flood
risk assessments [49,50].

4.2. Degree of Slope

The two maps in Figures 5 and 6 depict both the raw and standardised versions of
slope data for the HNC. Slope is distinct from elevation as it measures the steepness or
angle of land instead of the relative height of the land. Similar to elevation, slope acts as an
indicator for the physical morphology of the landscape, and expresses topographic elements
that dictate the movement of water. For example, slope will indicate components such
as ridge lines, plateaus, cliff faces, or gullies, which compound or mitigate vulnerability
risk that cannot be determined with elevation data alone. This is why both elevation and
slope complement each other to form a coherent picture of the HN catchment’s topography.
These aforementioned components each have positive or negative consequences upon
communities in HN’s flood prone areas.

Figure 5 depicts the north-western area of the catchment with the highest degrees of
slope, with some of the highest values scattered around more remote national parks areas.
This is expected as these areas are largely mountainous national and state park areas with
varying undulation and landforms. This protected area has been exposed to significantly
less development and land clearing, leaving many of these organic formations intact. These
regions show low levels of flood vulnerability due to the fact that watersheds in these areas
do not stay stagnant or pool. Instead, runoff is expected to leave the area quickly, meaning
it has less potential to cause inundation.

Surface runoff generally moves at higher speeds in areas where higher degrees of slope
are present, which heightens peak flow [51]. When areas such as these lie close to those of
low elevation and slope, these low-lying areas are vulnerable to receiving this high velocity
watershed. This is particularly relevant in pluvial flooding scenarios. In the instance of the
HNC, the location of communities is in the low lying HN Valley, situated in GWS. From
Figure 6, it can be seen that as a result of the preceding conditions in the protected, elevated
areas, the HN Valley area shows extreme vulnerability to high levels of runoff, potentially
resulting in flash flooding. These extreme levels are also seen in the uppermost-western
region of the map and also in the south of the catchment, as these areas are considered
relatively flat in comparison to the mountainous regions mentioned previously. From this
reasoning, it was expected that low lying land positioned at the foot of slopes with high
runoff potential would exhibit the highest vulnerability in the catchment area, as this is
aligned with common findings in previous research such as Ajmal et al. (2020) [52]. From
Figure 6, these areas are in fact highlighted as having extreme vulnerability, however they
are difficult to visualise in the presence of other extreme areas on the map. The values for
degree of slope show some acute changes when surpassing the midpoint, with the majority
of the HN valley depicted as extremely vulnerable. In Figure 5, the large blue area does
not show the variation between areas at the foot of high slope areas and the low-lying
floodplain. This was due to the midpoint selection of the data.

The midpoint of the slope data was manually changed from the default value to the
mean of the data similar to that of elevation. This was because it presented more evenly
distributed data. Once changed, the map produced was able to give potential stakeholders
a comprehensive view of the variability of the catchment for actionable data usage. This
midpoint could have been further investigated in order to reveal the variation between
areas next to high slope, and low-lying areas at a distance from higher slope.

While a number of flat areas exhibited high vulnerability (particularly in the southern
part of the catchment), combining the results with elevation data in the final FVI established
the true manifestation of the effects of slope. This is because elevation data in Figures 3
and 4 illustrate that the southern localities in the catchment reveal moderate elevation and
thus low vulnerability levels. In contrast, the areas with relatively higher degrees of slope
experience lower vulnerability. The combination of moderate to high elevation and low
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degrees of slope indicates that an area is a high-lying plateau rather than a low flood plain.
In this case, these areas would not be exceedingly susceptible to flood events as they are not
made vulnerable by the bathtub effect outlined in Section 4.1. While there are a number of
rivers present in the southern part of the catchment, the lack of deep floodplain topography
would result in lower vulnerability overall.

Areas of extreme slope vulnerability in Figure 6, such as the HN Valley floodplain
region, are at a high risk of waterlogging. As a result of a broad lack of avenues for
accumulating rainfall to escape from the region, this low-lying flat area has the potential
to see severe inundation of water from extreme precipitation events. As heavy rainfall
accumulates there is very little topographic drainage present in the area to divert the flow
of water elsewhere. The build-up of precipitation in this one area can saturate the soil
below, meaning the residual water will remain on the surface. This can take hours to even
weeks to subside, alluding to elevated flood risk during these periods. This connection to
soil and its water holding capacity is further discussed in Section 4.4.

We found that slope had a much weaker positive correlation value when compared
with the overall FV map (0.17). On a surface level, the appearance of the final index seems
to be visually similar to that of the slope index. However, once processed in Python this
was found to be misleading. The numerical extremes seen in this data may offer a reason
as to why this low correlation has occurred. These extremes are seen in Figure 6 where
there is a large jump from moderate vulnerability (0.38) to severe vulnerability (0.96). This
distribution is not as evenly spaced as the elevation data. The extremely high resolution of
this data (1 s or 30 m) seen in Table 2 could also be a reason as to why this layer did not
correlate highly with the overall index, as it was much more detailed than any other layer.

The nature of human settlement in the HNC means that urbanised areas are subject
to the physical vulnerabilities posed by low-lying flat areas. It is intuitive that historically
humans generally tend to settle and build civilisations around water bodies, and that flat,
cleared areas have been favoured for this [28]. This is also true for the establishment of
farms. However, the progression of understanding flood hazards and their increase in
frequency over time indicates that these settlements are made extremely vulnerable for
these very same reasons.

4.3. Index of Relative Socio-Economic Disadvantage

The IRSD data gave an insight into where the socio-economic factors of the HNC
influence vulnerability the most, as well as how these factors spatially compare to the
physical environment.

The areas of the IRSD map that were initially ‘no data zones’ discussed in Section 2.6
exhibited a very-low to low vulnerability level after standardising. This was expected due
to the attributes of the state and national parks areas as well as industrial, non-residential
areas. However, especially in the state and national parks with no permanent population,
it was initially expected that these areas would have even lower vulnerability than what
was presented in Figure 8. This is because it would be expected to see less vulnerability in
an area that has no exposed population. Other methods could have been trialled to ensure
that this data was more precise.

The IRSD vulnerability index had a relatively low correlation to the overall FV index
in comparison to elevation (0.10). This very weak positive correlation might be related
to the layer having the lowest resolution of data, as well as significant data gaps that
required manual cleaning. While there was a cluster of extreme values, the dominant
class of vulnerability for the study area was 0.22–0.57 (Very low–Low). Therefore, when
compared to all environmental indicator maps, the overall value does not correlate highly.
This is also exhibited by many rural areas having more moderate levels of vulnerability,
whereas all physical indicators showed these areas as the least vulnerable. On a macroscale,
it can be deduced that IRSD may not play a large role in the vulnerability of the broader
catchment. However, on a smaller community level, critical local vulnerabilities should be
carefully considered.
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Low IRSD (higher vulnerability) is expected in communities with less access to infras-
tructure. This trend is generally seen in rural areas that are less developed as a result of
their isolated locations and distance from main cities and towns [53]. Therefore, some of the
higher results for indicators that constitute the IRSD such as ‘employed people classified
as low skill Community and Personal Service workers’ or ‘people aged 15 years and over
who have no educational attainment’ can be expected in more isolated areas.

The most urbanised communities in NSW tend to neighbour the coastline, which is
true for many populations in Australia. NSW’s capital city Sydney, lies in this vicinity,
and due to its ever-developing nature it has grown to encompass a large area of the HN
Valley as its outer suburbs. It was expected that SA2s located closer to the inner-city, or
Sydney CBD will exhibit higher IRSD scores (lower vulnerability) due to well established
localities and access to infrastructure. This was supported by the IRSD map (Figure 7)
which indicates lighter colours around the northern beaches and closer to Sydney CBD,
and generally, darker shades moving further into regional NSW.

This trend saw a number of outliers as some of the lowest IRSD values in the catchment
were recorded in the GWS region. These areas were found to be in Blacktown, Penrith,
Liverpool, Hawkesbury, and Fairfield. While the IRSD in these areas was relatively low in
comparison to surrounding localities, it is also important to note that those areas such as
Penrith are only ranked in the 44th percentile in Australia according to the SEIFA index.
This means that while some neighbouring areas in the Hills Shire show very low levels
of relative disadvantage, there are still extremely vulnerable communities situated close
by. Due to the vulnerability highlighted in this area (Figure 8), it could be assumed that
flood risk is an implicit factor in this low IRSD score. Further investigation into this area
reveals that government housing is present in a number of areas corresponding to these
low IRSD scores in Fairfield, Blacktown, and Liverpool. IRSD indicators such as ‘occupied
private dwellings paying rent less than $215 per week’ and low incomes (see Appendix A)
can be indicative of areas containing government housing. Additionally, the fact that these
disadvantaged communities are specifically located within the low-lying flood plain area
make them of greater concern in comparison to low IRSD levels outside of the flood plain.
This nature of the outer suburbs exhibits how disadvantages can manifest in places of
urban sprawl [54]. A 2015 report by the Australian Housing and Urban Research Institute
found that susceptibility to natural hazards is an additional factor contributing to affordable
housing and subsequent disadvantage in an area [55]. This has caused a feedback loop
in which housing costs become lower in areas of high FV, attracting buyers who may not
be able to afford insurance associated with living in a high flood risk area. This can see
disadvantaged communities being less likely to recover from a flood event.

Urbanisation on floodplains has ultimately resulted in the exposure of communities to
flood hazards, and the impacts felt by these communities are lessened or heightened by
their socioeconomic vulnerability. Ultimately, continuing to expand communities in this
low-lying, vulnerable area is not sustainable, especially with extreme precipitation events
in the HNC becoming more frequent and severe. This coupled with a growing population
could see more disadvantaged individuals being left vulnerable in the face of extreme
pluvial and fluvial flood events.

4.4. Hydrologic Soil Groups

HSG was found to follow a similar spatial pattern to elevation and slope, and also
highlighted the vulnerability of the floodplain in Figures 10 and 11. HSGs are dictated by
the composition and structure of the topsoil in a given location. Historically, the groups
A, B, C, and D have been assigned in accordance with these soil characteristics. Soil type
A or high infiltration soils consist of larger pore spaces, larger soil aggregates and larger
amounts of sand and organic matter in their compositions. This increased spacing within
the topsoil creates deposits that readily accept surface water. The ability for these soils
to absorb this water means that there tends to be less runoff and therefore less chance of
fast-moving flood waters causing devastation in areas that consist of them.
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Historically, the capacity for this soil to allow infiltration is measured in hydraulic
conductivity [56] a quantitative measure of a saturated soil’s ability to transmit water when
subjected to a hydraulic gradient. High infiltration soils (type A) have a saturated hydraulic
conductivity of 40 micrometres per second. In contrast, type D soils consist largely of clay
and silt, which have significantly smaller particle sizes than that of sand. The saturated
hydraulic conductivity of type D soils is generally 1.0 micrometres per second. These soils
contain smaller pore spaces between soil aggregates, leaving less room for infiltration.
These soils are expected to absorb less water, resulting in runoff remaining on the surface
with nowhere to discharge. This is also heightened when external forces compact the soil,
squashing pore spaces within the ground and allowing for less infiltration.

Figure 10 indicates that group A soils are mainly situated in protected, forested
areas, particularly in the Blue Mountains region. The largely undisturbed nature of the
soils in these areas means that very little compaction has occurred from anthropogenic
interventions. This allows the earth in this area to maintain pore space [57]. The increased
organic matter within this location due to dense vegetation also contributes to decreased
runoff potential of the soil. The forested areas consist of significantly more biomass than
urbanised or cleared areas. This biomass enters the ground either through root systems
or organic litter, assisting in the aggregation of the soil and increasing pore space [58].
This vegetation also has the potential to protect the soil beneath it from erosion, meaning
that it will maintain the soil structure, as well as the degree of topographic relief. The
presence of type A soils in this area of high slope means that soils will have more water
absorbing characteristics while slope will encourage faster runoff. Further investigation
has determined that the degree of slope will have a dominant impact on the behaviour of
runoff in comparison to HSG.

Conversely, areas that have had more anthropogenic interference will be more com-
pacted, and consist of less organic matter. Many soils in urban areas are labelled ‘An-
throposols’ as they have been tampered with so much that their original composition is
permanently changed. These urban soils tend to be more silt/clay heavy, and obstruct
infiltration [57]. A lack of vegetation in these areas also means that the soils are exposed to
erosion, which breaks soil aggregates, resulting in smaller soil particles which allow less
pore space between them. Figure 10 illustrated this link, whereby the most urbanised areas
on the HN flood plain consist of class C and D soils. It is these areas that express the highest
vulnerability in the resulting HSG index (Figure 11). This low infiltration behaviour is also
enhanced by anthropogenic materials found in urban areas (e.g., asphalt, concrete, metals,
etc.). These materials combined with type C and D soils have the potential to contribute to
high velocity flash flood events. Around water bodies this low infiltration behaviour can
allow overflows to travel widely.

HSG showed the lowest correlation to the overall FVI (0.04). This low correlation could
be due to the fact that the HSG data was categorical, and only varied between four soil
categories. In contrast, other indicators had numerous data points separated into natural
breaks. The difference in the nature of the HSG data may have impacted how this layer
related to the others.

4.5. Flood Vulnerability Index

After combining all four indicator indices using the Fuzzy Gamma Overlay tool, the
resulting map showed a successful, high-resolution depiction of the FVI over the HN
catchment (Figure 12). The most noticeable trend emphasises the GWS communities on the
HN Valley flood plain as extremely vulnerable, with the central-western region exhibiting
the lowest levels of vulnerability. This is a culmination of the conclusions drawn from
Sections 4.1–4.4.

Outlying regions include the uppermost-western part of the map identified as a part
of Lithgow. This region was labelled with severe–extreme vulnerability in all indicator
maps. However, while this area exhibits low elevation, slope, and IRSD along with slow
infiltration soils, it has not historically been subjected to high hazard vulnerability, however
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a changing climate may affect this. Future collaboration between hazard and vulnerability
studies has the potential to reveal this relationship. The past instances of extreme flood
have been in the flood plain region of the catchment, making this area of higher interest
than the Lithgow area. Regions in the south of the map show moderate–severe FV, mostly
due to slope and HSG data.

Each of the indicators used to produce the final FVI provide concise information
regarding the characteristics of the catchment. However, alone each indicator has a level of
ambiguity. It is with the combination of all four indicators that the relationships between
this data comes to light, and the interplay between the physical and socio-economic char-
acteristics becomes apparent. For example, when viewed in isolation, the degree of slope
can mislead viewers into thinking that all flat land is highly vulnerable. When combined
with elevation it is noticed that high, flat areas are less susceptible to flooding. Another
relationship can be drawn between elevation, slope, and HSG, where high infiltration soils
generally occur in the higher, undisturbed conservation regions. HSG alone informs the
viewer that high infiltration soil in the Blue Mountains region of the catchment will lead
to less runoff, however, when looked at in combination with slope data, it was found that
slope would also contribute highly to the behaviour of watersheds, and the magnitude of
each of these indicators’ influence is difficult to decipher. Finally, IRSD and the distribu-
tion of human populations can be related to slope and elevation, as historically colonial
settlements tend to occur in flat areas close to water bodies.

5. Conclusions

With flood prone Australian communities likely to experience more intense and fre-
quent extreme flood hazards in the future, it is important to assess their physical and
socio-economic vulnerabilities to better understand what may turn these flood hazards
into disasters. This study was centralised around this concept, and aimed to create a flood
vulnerability index for the Hawkesbury-Nepean catchment from relevant, compatible and
readily accessible indicators. The topographic morphology of the region was explored
through elevation and degree of slope indicators in order to express how the movement
of flood waters can be heightened. These indicators were compared to the hydrologic soil
group indicator, which assessed how the composition of soils can also be an influential
physical factor. Finally, the socio-economic characteristics of the catchment were repre-
sented by the index of relative socio-economic disadvantage, which revealed the ability
for people to cope and adapt. These indicators were combined to produce an overall flood
vulnerability index of the study area.

Flood vulnerability was shown to be at its highest in the Hawkesbury-Nepean valley
flood plain region on the outskirts of Greater Western Sydney. Here, the highest values
were recorded in Blacktown, Penrith, and Liverpool, with the most extreme value (0.95)
being recorded in the Bidwill-Herbersham-Emerton SA2 region (Blacktown). It was found
that a combination of low elevation, low degree of slope, low IRSD score, and very-low
infiltration soils resulted in very high levels of vulnerability. Therefore, the low lying, flat,
highly urbanised area of the HN floodplain was evidently the most vulnerable area in the
catchment. Combining all four indicators into a standardised flood vulnerability index
clearly showed a more substantial view of vulnerability than any individual indicator alone.

This study will act as the foundation for further assessment of the overall flood risk of
the catchment combining the vulnerability index with both hazard and exposure indices.
This intends to give the actionable risk data from this study the ability to reach relevant
stakeholders who wish to adopt index-based approaches within flood prone regions. The
fact that this novel approach is replicable for the whole country makes it easily accessible
to those who have a vested interest in flood risk mitigation and adaptation. Before this,
there is great opportunity for elaboration on flood vulnerability and improvement to this
proof-of-concept methodology.

This inquiry into the flood vulnerability of the Hawkesbury-Nepean catchment ulti-
mately highlights environmental and socio-economic index techniques that are somewhat
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overlooked. It also brings to light the fact that the flood hazard itself can be largely influ-
enced by the environment around it. By viewing natural disasters as being influenced by
vulnerability factors, those decision makers and stakeholders can feel more empowered
to make proactive, risk informed decisions. This is because many of these vulnerability
factors have the ability to be addressed, whereas the occurrence of the flood itself may be
out of human control. In the future, addressing vulnerability in FRAs will enhance the
proactive management of flood disasters, and ultimately build greater flood resilience.
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Appendix A

A detailed list of all the indicators used in the IRSD index provided by the ABS.
The variables used in the index are listed below. All variables in this index are indica-

tors of disadvantage. INC_LOW is the strongest indicator of disadvantage (ABS 2018).

• INC_LOW: % of people with stated household equivalised income between $1 and
$25,999 per year

• CHILDJOBLESS: % of families with children under 15 years of age who live with
jobless parents

• NONET: % of occupied private dwellings with no internet connection
• NOYEAR12ORHIGHER: % of people aged 15 years and over whose highest level of

education is Year 11 or lower
• UNEMPLOYED: % of people (in the labour force) who are unemployed
• OCC_LABOUR: % of employed people classified as Labourers

Appendix B

Table A1. Summary of the most vulnerable communities within the Hawkesbury-Nepean catchment
by statistical area 2.

SA 2 LGA Flood Vulnerability Score Flood Vulnerability
Risk Class

Bidwill-Herbersham-Emerton Blacktown City Council 0.95 Extreme
Whalan Blacktown City Council 0.93 Severe

Lethbridge Park—Tregear Blacktown City Council 0.93 Severe
Colyton—Oxley Park Penrith City Council 0.92 Severe

Badgerys Creek Liverpool City Council 0.92 Severe
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