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Abstract: In recent years, with the rapid growth of State Grid digitization, it has become necessary to
perform three-dimensional (3D) reconstruction of power elements with high efficiency and precision
to achieve full coverage when simulating important transmission lines. Limited by the performance
of acquisition equipment and the environment, the actual scanned point cloud usually has problems
such as noise interference and data loss, presenting a great challenge for 3D reconstruction. This
study proposes a model-driven 3D reconstruction method based on Airborne LiDAR point cloud
data. Firstly, power pylon redirection is realized based on the Principal Component Analysis (PCA)
algorithm. Secondly, the vertical and horizontal distribution characteristics of the power pylon point
cloud and the graphical characteristics of the overall two-dimensional (2D) orthographic projection
are analyzed to determine segmentation positions and the key segmentation position of the power
pylon. The 2D alpha shape algorithm is adopted to obtain the pylon body contour points, and then the
pylon feature points are extracted and corrected. Based on feature points, the components of original
pylon and model pylon are registered, and the distance between the original point cloud and the
model point cloud is calculated at the same time. Finally, the model with the highest matching degree
is regarded as the reconstructed model of the pylon. The main advantages of the proposed method
include: (1) identifying the key segmentation position according to the graphical characteristics;
(2) for some pylons with much missing data, the complete model can be accurately reconstructed.
The average RMSE (Root-Mean-Square Error) of all power pylon components in this study was
15.4 cm. The experimental results reveal that the effects of power pylon structure segmentation and
reconstruction are satisfactory, which provides method and model support for digital management
and security analysis of transmission lines.

Keywords: Airborne LiDAR; model-driven; power pylon; three-dimensional reconstruction; point
cloud registration

1. Introduction

Electrical energy is an indispensable source for daily human life; it is vital to sustain
its uninterrupted generation, transmission, and distribution [1,2]. However, the power
grid has long transmission distances reaching wide areas, which makes it exposed to
the complex and varying geographical environment [3]. Hence, bad weather conditions,
such as snowstorms, hails, and typhoons or natural disasters (e.g., earthquakes, floods,
and landslides [4]) have certain impacts on the reliability of the transmission lines [5]. To
ensure the stable and efficient operation of the power grids, it is necessary to monitor
the high-voltage lines regularly [6–8]. As one of the key components of transmission
lines, power pylons are directly related to the security of high-voltage lines [9,10]. Power
pylon monitoring includes checking whether the pylon structure is complete, deformed,
or inclined, and whether the pylon base is stable. Conventional methods include artificial
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visual observation, instrument measurement, and aerial photogrammetry, which are often
inefficient, difficult, or it is impossible to achieve monitoring due to various limitations and
the lack of three-dimensional (3D) information.

Airborne LiDAR (Light Detection and Ranging) technology, as a new technique to
obtain 3D spatial data, has been widely used in many fields, such as forestry resources,
digital city, and power inspection, due to its directness, high precision, and high efficiency.
It is not restricted by complex terrain conditions and can obtain high-density and high-
precision 3D point cloud information of the power pylon directly and quickly [11–14].
Through data processing, the 3D vector or the true 3D digital model of the power pylon is
constructed to restore the real shape of transmission lines, which provides basic data and
model support for the digitization, visualization, and automation of power grid facilities.

1.1. Related Works

In recent years, several researchers have studied the classification and 3D reconstruc-
tion of transmission lines and ground features using Airborne LiDAR point cloud data.
However, the research on automatic modeling of power pylons is relatively limited. Due to
the complexity of the pylon structure, the diversity of the pylon type [8], and the occlusion
by ground objects, the data may be missing or the point density may not be high enough
during the actual scanning, which poses challenges to accurate and rapid reconstruction.
Currently, there are many methods for power pylon 3D reconstruction based on laser point
clouds, which can be generally divided into three categories according to their processing
strategy: (i) data-driven, (ii) model-driven, and (iii) hybrid-driven [8]. The reconstruc-
tion strategy of the data-driven method is often bottom-up, without making assumptions
about the shape and style of the object in advance, but commencing with the data directly.
Han [15] first extracted the power pylon point clouds by using the connection points of
the power line pairs, and then used the binary image contour line tracking method to
track lines followed by reconstructing pylons according to the tracked lines. This method
was limited to the data quality, such as the point density and distribution, required by
the data-driven strategy [16]. The model-driven method adopts a top-down process con-
trary to its data-driven counterpart, in which the model library needs to be defined in
advance. Then, the best matching model is searched to complete the reconstruction. Yu
et al. [17] proposed a model-driven power pylon modeling method. They established a
local coordinate system for the pylon, captured the key points of the pylon through manual
semi-interaction, and matched the models in the model library to obtain the best matching
model. This method ensured the integrity of the established model, but the modeling
process required some manual intervention. Li et al. [18] divided the pylon into three
parts: the foot, the body, and the head. They determined the pylon head type by SVM
(Support Vector Machine) classification method and reconstructed the head with a pre-build
head model library. The pylon body was reconstructed by calculating intersection lines
of the fitted side planes. They proposed a 3D pylon reconstruction method based on the
constructed parametric pylon model. Experiments suggested that the pylon head and body
can be reconstructed automatically. However, interactive operation was required for pylon
foot reconstruction. Guo et al. [7] proposed a new method for the accurate reconstruction
of power pylons. They defined the energy function as composed of two terms, combined
with Markov Chain Monte Carlo (MCMC) and Simulated Annealing (SA) algorithms,
to determine the optimal parameters in the process of optimizing the energy function.
The maximum distance from the laser points to the models was 0.32 m. This strategy is
robust in terms of data quality, but it takes a long time when required to estimate a large
number of parameters. The hybrid-driven strategy combines two methods, data-driven
and model-driven, and introduces constraints taken from prior knowledge, such as sym-
metry, orthogonality, and coplanarity, to achieve model optimization. Generally, different
strategies are adopted for different blocks and the modeling requirements of each structure
are considered, which can improve the modeling accuracy. For example, Zhou et al. [8]
divided the power pylon into two parts (pylon body and pylon head) by analyzing the local
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maximum point density and local minimum length. They reconstructed the pylon body by
fitting edge lines using RANSAC (Random Sample Consensus) algorithm, identified the
pylon type, estimated parameters by shape context algorithm, and simulated annealing
algorithm, respectively. This method can effectively reconstruct the main structure of
pylon, but it lacks the representation of the internal structure. Chen et al. [14] proposed to
reconstruct complex upper structures by establishing an a priori abstract template structure,
and to reconstruct inverted triangular pyramid lower structures and quadrangular frustum
pyramid middle structures based on data fitting. Experiments have shown that this method
improved reconstruction efficiency and 3D models can display part of the internal structure
of the pylon. However, when faced with a pylon missing data, the model reconstructed by
this method is prone to incompletion. In summary, although the model-driven strategy
is limited by the model library, it has great advantages in dealing with missing data and
describing model details.

1.2. Contributions

This study analyzes the vertical and horizontal distribution characteristics of the power
pylon point cloud and graphical characteristics of the overall 2D orthographic projection.
Concavity vs. convexity is introduced as a new feature to identify the key segmentation
position. It proposes an automatic model-driven 3D reconstruction method of the pylon
based on component segmentation. The applicability and accuracy of the proposed method
are experimentally verified. This study also demonstrates the great potential of model
matching methods for reconstructing complete and detailed models, particularly for some
pylons with missing data.

1.3. Overview

The study is organized as follows. Section 2 elaborates on the experimental data.
Section 3 explains the novel model-driven reconstruction method that is proposed in this
study. In addition to the parameter settings, the segmentation and reconstruction results
are presented in Section 4. Section 5 discusses the influence of three main factors on
segmentation and reconstruction. Finally, Section 6 provides the conclusions and puts
forward future work.

2. Experimental Data

The experimental data relating to the transmission channel were collected in 2017 by
a LiDAR system, named Riegl VUX-1UAV, which was located in an ultra-high-voltage
transmission corridor of the State Grid in Anhui Province, China. The UAV flew at the
speed of 8 m/s and about 40 m high above the power lines. Table 1 shows the technical
specifications of the LiDAR system.

Table 1. Technical specifications of the LiDAR system.

Parameter Index

Field of view 330◦

Pulse repetition frequency 550 kHz
Maximum scan speed 200 scans/s

Beam divergence 0.5 mrad
Accuracy/precision 10 mm/5 mm

Max. range: target reflectivity 60% 920 m
Max. range: target reflectivity 20% 550 m

Average point density 100 pts/m2

Hollow structure and T-support structure are two common structures of the power
pylon head. Based on this, power pylons can be mainly divided into type-T pylons and
type-O pylons, which are principal research objects in this study. Six different types of
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power pylons, (a–f), were finely extracted with complete structure and low noise. Figure 1
shows the pylon point clouds. Details are provided in Table 2.

Figure 1. Power pylon point clouds. (a–c) Pylons of type-O; (d–f) pylons of type-T.

Table 2. Details of the power pylon point clouds.

Pylon Number Number of
Points

Length of the
Pylon (m)

Width of the
Pylon (m)

Height of the
Pylon (m)

a 6163 15.155 4.376 34.134
b 7489 24.464 7.011 43.352
c 3033 9.954 5.865 30.012
d 16,423 22.695 13.219 65.552
e 10,922 20.424 11.446 66.502
f 25,775 47.590 16.351 87.702
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Models of common components which have been built and their feature point co-
ordinates were stored in the model library according to the categories of cross-arm, pylon
head, and quadrangular frustum pyramid. Figure 2 shows some typical models which
have been built.

Figure 2. Some typical component models in the model library: (a–e) models of type-O pylon
head; (f–i) models of type-T pylon head; (j) the model of type-T pylon cross arms; (k–o) models of
quadrangular frustum pyramid structure.

3. Methodology

Figure 3 illustrates the processing flowchart of the reconstruction method, divided
into the following steps: complete the redirection of the power pylon based on the Principal
Component Analysis (PCA) algorithm; analyze the vertical and horizontal distribution
characteristics and the graphical characteristics of the overall 2D orthographic projection to
finish decomposing key structures of the power pylon (pylon head, pylon body, and pylon
foot); identify the pylon type and further divide key structures of the pylon into several
components; obtain pylon body contour points, then extract and correct feature points of
each component; match the component with models in the model library to find the best
matching model.
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Figure 3. The processing flowchart of the reconstruction method.

3.1. Pylon Redirection

The orientation of the power pylon point cloud on the XY plane is arbitrary, as shown
in Figure 4. To make full use of its orthographic projection in extracting local features,
the PCA algorithm is used to calculate the rotation angle θ. The pylon is rotated θ degrees
around the Z-axis direction to achieve the redirection. The specific steps are as follows:

Figure 4. The projections of the pylon on the XY, YZ, and XZ planes.
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(1) The orientation of the power pylon on the XY plane is mainly related to its superstruc-
ture, here select the point cloud with the Z value above H and project the selected
point cloud onto the XY plane;

(2) The PCA algorithm is used to calculate the eigenvalues and eigenvectors of the point
cloud after projection, where the eigenvector (v1, v2) that corresponds to the smallest
eigenvalue is perpendicular to the principal direction of the point cloud at this time;

(3) Equation (1) is used to calculate the rotation angle θ:

θ = arccos

(
v1√

v1
2 + v22

)
(1)

v1>0, v2>0, θ ∈
(
0, π

2
)
; v1>0, v2<0, θ ∈

( 3π
2 , 2π

)
.

(4) Equation (2) is used to calculate x′ and y′ coordinates after rotation:{
x′ = xcos(θ) + ysin(θ)
y′ = ycos(θ)− xsin(θ)

(2)

Figure 5 shows the projections of the pylon after redirection.

Figure 5. The projections of the pylon on the planes of X’Y’, Y’Z, and X’Z.

3.2. Pylon Structure Segmentation

The types of power pylon vary. Observing the whole pylon structure from top to
bottom, it is found that it can usually be divided into three parts: pylon head, pylon
body, and pylon foot. The structure of the pylon head is complex, which is the key to
distinguishing different pylon types. The pylon body and foot are relatively regular and
simple in structure, which can be abstracted as quadrangular frustum pyramids and
inverted triangular pyramids. Accurate segmentation of the pylon determines whether the
subsequent feature points can be effectively extracted. Feature points play an important
role in the registration process. Therefore, pylon structure segmentation is a key step in the
reconstruction process. Firstly, determine the segmentation positions of the pylon based
on the vertical density and the horizontal filling rate of the pylon point cloud; secondly,
traverse the vertices of the constructed polygon and find the concave vertices to determine
the key segmentation position that divides pylon head and pylon body; thirdly, identify
the pylon type according to the vertical filling rate of the pylon head; finally, divide the
pylon into several components, then finish the decomposition of the pylon.
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3.2.1. Identification of Segmentation Positions

The point cloud density histogram of the power pylon is generated through the vertical
layering of the pylon. Then, a sliding window is used to find the local maximum density layer,
and the segmentation positions are further identified based on the horizontal filling rate.

The pylons are layered with a certain interval d1 along the Z-axis, and the number of
points falling into each layer is counted to generate the density histogram of the pylon point
cloud. By setting a sliding window W with height D, slide one layer at a time upward from
the bottom of the pylon. If the number of points in the middle layer of the sliding window
is greater than the number of points in other layers in the window, the middle layer of
the window is determined to be the layer with the local maximum density, as shown in
Figure 6 (dark green lines).

Figure 6. Pylon segmentation position identification: (a,d) Projections of the pylon on the Y’Z plane;
(b,e) density histograms, and dark green lines are layers with the local maximum density; (c,f) filling
rate histograms, and purple lines are segmentation positions.



Remote Sens. 2022, 14, 4905 9 of 25

In practice, not all layers with the local maximum density correspond to the segmen-
tation positions of the pylon. Obviously, the filling rate of the segmentation positions in
the horizontal direction is greater than that of other sections. Therefore, the segmentation
positions can be further determined by calculating the filling rates. The calculation process
of the filling rate [18] is as follows. The points in each layer are projected onto the X’Y’
plane and then divided into N grids at the interval d2 along the Y’-axis direction, as shown
in Figure 7. The number of grids that contain points is counted as n, and n/N is calculated
to be the filling rate f of this layer.

Figure 7. The calculation process of the filling rate.

If the filling rate f of the layer is greater than the threshold value Tf , the middle
position of that layer is considered as the segmentation positions Si (numbered from
bottom to top), as shown in Figure 6 (purple lines).

3.2.2. Key Segmentation Position Identification

The segmentation position separating the pylon head and body is defined as the key
segmentation position [14]. Projecting the pylon point cloud onto the Y’Z plane, let point
Pymaxi be with the largest Y coordinate in the layer corresponding to each segmentation
position, as shown in Figure 8a (orange dots). Then, let one point whose Y coordinate is the
middle value ((Ymax + Ymin)/2) in the layer corresponding to the segmentation position
S1. Similarly, the other point corresponds to the segmentation position Smax, as shown in
Figure 8a (blue dots). Connect those points, in turn, to form a closed polygon, as shown in
Figure 8b.

Figure 8. Illustration of the closed polygon construction: (a) construction of the closed polygon; (b)
the result of the closed polygon construction.
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By traversing vertices Pymaxi from bottom to top in the counterclockwise direction,
the concave vertices of the polygon are obtained by the Vector Product method. As shown in
Figure 9a, assume that the coordinate of the vertex vi is (0, yi, zi), the coordinate of the vertex
vi−1 before that vertex is (0, yi−1, zi−1), the coordinate of the vertex vi−1 after that vertex is
(0, yi+1, zi+1), vector V1 = (0, yi − yi−1, zi − zi−1), vector V2 = (0, yi+1 − yi−1, zi+1 − zi−1),
and vector V3 = V1 × V2. If the result of the cross product V3, is positive, its direction
is perpendicular to the paper surface, and vertex i is convex; otherwise, it is concave.
The green points in Figure 9b are all concave vertices. If angle αi of the concave vertex
is less than the threshold Tα, this vertex will become a candidate point. When the point
with the smallest i value among the candidate points is selected, the segmentation position
corresponding to that concave vertex becomes the key segmentation position Sk.

Figure 9. Searching process of polygon concave vertices: (a) the cross-product-based concavity vs.
convexity determination; (b) the concave vertices of the polygon.

The segmentation position S1 usually separates the pylon body and foot, but some-
times there are special cases, as shown in Figure 10. Those cases can be determined by
calculating the vertical distance d12 between the segmentation positions S1 and S2. To be
more specific, the average value of all distance intervals between the adjacent segmentation
positions from S1 to Sk are calculated. If d12 is less than the average that is multiplied by the
proportional threshold Tr, i.e., d12< (average×Tr), S1 is abandoned and it is renumbered
upward from the segmentation position S2.

In summary, the pylon segmentation position Si and the key segmentation position Sk
have been determined so far, and the pylon has been divided into three parts: the head,
the body, and the foot, as shown in Figure 11.
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Figure 10. Special cases of segmentation positions. Purple lines are segmentation positions.

Figure 11. Segmentation positions of the pylon. The red point cloud is the pylon head; the green is
the pylon body; the blue is the pylon foot.

3.2.3. Type Identification and Structure Segmentation

The vertical filling rates of type-O pylon and type-T pylon in the blue box areas in
Figure 12a,b are obviously different. Each blue box is a rectangle generated by vertically
extending upward with the key segmentation position (red lines in Figure 12a,b) as the
bottom edge. The pylon heads are layered with the interval d3 along the Y’-axis direction,
then compute the vertical filling rate of each layer. The calculation method of filling rate
is similar to that mentioned in Section 3.2.1, except that the value of N which equals the
pylon head height divided by d1 is fixed for a certain pylon.
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Figure 12. (a,b) Projections of the pylon head on the Y’Z plane; (c,d) vertical filling rate histograms,
corresponding to type-O pylon head and type-T pylon head, respectively.

If the layer with the largest filling rate is in the blue box area, the pylon is a type-T
pylon, as shown in Figure 12d; otherwise it is a type-O pylon, as shown in Figure 12c.
If the pylon is a type-T pylon, its head can be further divided into cross arms, quadran-
gular frustum pyramid structures and head, while the type-O pylon does not need to
be subdivided.

The final segmentation results are shown in Figure 13. Pylons are divided into sev-
eral components.
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Figure 13. The final segmentation results. Each color represents a component of the pylon.

3.3. Pylon Reconstruction

The feature points are extracted based on the pylon segmentation positions Si as
explained in Section 3.2. The original pylon component feature points are registered with
the model pylon component feature points to obtain transformation parameters, which
are then utilized to perform the spatial transformation of the model pylon component.
Lastly, the model pylon component with the highest matching degree is considered as the
reconstruction model.

3.3.1. Extract the Point Cloud Data from the Model

The power pylon model data is in the OBJ format, which needs to be sampled as the
point cloud to facilitate the subsequent extraction of feature points and their registration
with the original pylon point cloud. As shown in Figure 14, in the rectangular space
coordinate system, suppose that point PA(xA, yA, zA) and point PB(xB, yB, zB) are the
vertices of the line PAPB in a pylon model. Then, the line PAPB is sampled as points with a
sampling interval ds.

Figure 14. Sampling principle of the pylon model.
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The sampling principle is as follows. In the 3D space, the formula of definite proportion
and the separated points is used. Supposing that PAPn = λPnPB, and PAPB = PAPn + PnPB,
the coordinate of the sampling point Pn(xn, yn, zn) can be calculated as Equation (3):

xn = xA+λxB
1+λ

yn = yA+λyB
1+λ

zn = zA+λzB
1+λ

(3)

where λ = n×d
distance(PAPB)−n×d , and distance(PAPB) =

√
(xB − xA)

2 + (yB − yA)
2 + (zB − zA)

2.

When the value of n varies from 1 to N, where N indicates the largest integer that is
smaller than the distance (PAPB)/ds, the sampling points of the line PAPB with a distance
interval of ds are obtained. All the connecting lines in the model are sampled as points
according to the above method. The encrypted point cloud can be obtained if combined
with the existing vertices in the original model.

3.3.2. Extract and Correct Feature Points

Based on the pylon segmentation positions Si, the pylon feature points are determined,
which are then used for subsequent registration. Traverse all points in the layer correspond-
ing to Si, and record the maximum value of X coordinate as xmaxi, the minimum value of X
coordinate as xmini, the maximum value of Y coordinate as ymaxi, and the minimum value
of Y coordinate as ymini. Take the points as Feapoint1(xmini, ymini, zsi ), Feapoint2(xmini, ymaxi,
zsi ), Feapoint3(xmaxi, ymini, zsi ), and Feapoint4(xmaxi, ymaxi, zsi ). The point set Feapoint is re-
garded as the feature point set of the pylon. However, as shown in Figure 15a,b (purple dots
in red circles), if boundary points that are located at segmentation positions are missing,
there will be some deviation between the extracted feature points and their real positions.
To solve this problem, the feature points of the pylon body are extracted by means of the
fitting method. Firstly, the pylon body is projected onto the YZ’ plane, and then 2D alpha
shape algorithm is used to extract boundary points after down sampling. Secondly, remove
points less than ∆d away from the upper or lower segmentation position (S1, Sk), and left
boundary and right boundary are divided according to the centroid of pylon, as shown in
Figure 16. Then, after extracting the boundary points, the RANSAC algorithm is applied to
fit the line equations, respectively. Finally, zsi are substituted into the equation to obtain
y′mini and y′maxi. Similarly, project the pylon body onto the XZ’ plane, and then repeat above
steps to obtain x′mini and x′maxi. For the type-T pylon, feature points of the part above the
pylon body should also be considered. Calculate the geometric center of feature points
of each layer of the pylon body. Normally, these center points are collinear. Therefore,
calculate the average value of x coordinates and y coordinates of these geometric centers,
respectively, to obtain xcenter, ycenter, and consider (xcenter, ycenter,) as the geometric center
of feature points of each layer above the pylon. Correct feature point coordinates of the
part above the pylon body according to the following steps: keep the one which is farther
from xcenter between xmaxi and xmini, and calculate the other according to the symmetry.
For example, if (xmaxi − xcenter) > (xcenter − xmini), x′mini = 2× xcenter − xmaxi. Similarly,
correct the values of ymaxi and ymini. As shown in Figure 15c,d (pink dots in blue circles),
the feature points with wrong positions have been corrected.
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Figure 15. Correction of feature points: (a,b) uncorrected feature points of type-T pylon head,
among which those in red circles are obvious wrong; (c,d) feature points of type-T pylon head before
and after correction, represented in purple and pink, respectively.

Figure 16. Boundary points of the pylon body.

3.3.3. Register Feature Point Sets

When the distance between the point cloud to be registered and the target point cloud
is far, or there is a structural difference between them, direct fine registration is quick to fall
into a local optimum [19], and it takes a long time. Therefore, several points are selected
for registration. For each componenti(i = 2, 3, . . .) of the pylon, the feature points of the
segmentation position Si and Si+1 are taken as its feature point set P. Then the feature point
set P is registered with the feature point set X of each component model in the model library
in turn, and the transformation parameters including the scaling factor s, rotation matrix R,
and translation matrix T are estimated during each iteration of the closest points (ICP).

The core of the ICP algorithm is to iteratively perform the following two steps until
convergence. The first step is to search the corresponding point pairs between the point
cloud to be registered and the target point cloud. The second one is to calculate the best
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transformation between the corresponding point pairs and act on the point cloud to be
registered [20,21]. The scale factor s is estimated within the ICP algorithm by the method
proposed by Zinßer et al. [20]. In this study, the K-D tree nearest neighbor search algorithm
is used to improve the searching efficiency of the corresponding point pairs. It should be
noted that since the number of feature points of the uppermost component is less than that
of the feature points of other components, one more step is added to scale the height of the
component model according to the height of the component point cloud.

3.3.4. Pylon Reconstruction

For the pylon foot, it can be abstracted as the inverted triangular pyramid structure,
which is relatively simple. Therefore, the pylon foot is planned to be directly recon-
structed. In Figure 17, P1i(i = 1, 2, 3, 4) are feature points corresponding to the segmen-
tation position S1. P1i(i = 5, 6, 7, 8) are midpoints of four edges, which can be calculated
by P1i(i = 1, 2, 3, 4). In addition, the X’Y’ plane coordinates of P0i(i = 1, 2, 3, 4), whose Z
coordinates are the minimum value of Z coordinate of the pylon, can be calculated by the
line equations fitted in Section 3.3.2.

Figure 17. The pylon foot reconstruction.

For each component of pylon head and pylon body, the model matching method
is adopted for reconstruction. The aligned point cloud Cloudaligned, i.e., the point cloud
sampled from the model in model library, is transformed according to Equation (4):

Cloudtrans f orm = s× R× Cloudaligned + T, (4)

Calculate the distance between the original component point cloud and the component
model point cloud transformed. The K-D tree is used to find corresponding point pairs
between two point clouds mentioned before, and only the corresponding point pairs
between whose distance is less than the distance Td are recorded. For each component of
one pylon, calculate RMSE of distance and amount of corresponding point pairs between it
and each component model in the model library, which will be used to determine the best
matching model and evaluate the accuracy of the results. The calculation formula of RMSE
is shown in Equation (5):

RMSE =

√
∑n

i=1 di
2

n
(5)

where di is the distance between the i-th pair of corresponding points, and n is amount of
corresponding point pairs.

Find the maximum value of amount of corresponding point pairs, list the models
whose number of point pairs is greater than the maximum value multiplied by the pro-
portional threshold Tp as candidate models, and then select the component model with
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the lowest RMSE; that is, the component model with the highest matching degree. Finally,
combine the models of all components to complete 3D reconstruction of the pylon.

4. Results

The programs for power pylon structure segmentation and reconstruction were writ-
ten in C++, and run on a laptop. Table 3 provides the configuration information of the
laptop used.

Table 3. Laptop configuration information.

Laptop CPU GPU RAM

Lenovo XiaoXin Pro 16ACH 2021 AMD Ryzen 7 5800H NVIDIA GTX 1650 16 GB

The proposed method used to reconstruct six types of power pylon, and the parameter
settings of the programs, are shown in Table 4.

Table 4. Parameters of the pylon reconstruction.

Parameter Meaning Value

H(m) Minimum height of point cloud for redirection (3/4) × height of the pylon
d1(m) The layer interval along the Z-axis direction 0.2
D(m) The height of the sliding window W 2.0
d2(m) The grid interval when calculating horizontal fill rate 0.2

Tf The threshold of horizontal fill rate 75%
Tα(◦) The angle threshold for identifying the key segmentation position 165

Tr The proportional threshold for determining the segmentation position S1 0.5
d3(m) The layer interval along the Y’-axis direction 0.2
ds(m) The sampling interval of the model 0.05
∆d(m) The height parameter when extracting pylon body boundary points 0.2
Td(m) The distance threshold between corresponding point pairs 0.3

Tp The proportional threshold of the amount of corresponding point pairs 90%

4.1. Accuracy of Feature Points

The segmentation result of the pylon is the basis of model matching, and feature points
calculated based on the segmentation result directly affect the reconstruction accuracy.
Eight parameters need to be set in the process of pylon segmentation and calculation of
feature points. Missing pylon point cloud and noise points affect the parameter settings.
The feature points of the pylon were extracted manually and compared with the calculated
results, to evaluate the accuracy of the feature points. The comparison results are listed in
Table 5.

Table 5. The result of precision verification about feature points extracted.

Pylon
Number

S1
cm

S2
cm

S3
cm

S4
cm

S5
cm

S6
cm

S7
cm

S8
cm

Average
(cm)

a

∆x′min 4.2 9.9 0.6 1.2 4.0
∆x′max 2.4 6.1 3.8 5.2 4.4
∆y′min 6.1 0.8 1.1 1.3 2.3
∆y′max 0.4 1.8 9.1 4.1 3.8

∆z 7.9 2.7 5.0 9.3 6.5

b

∆x′min 3.8 9.5 1.7 2.2 4.3
∆x′max 1.8 4.4 5.0 0.7 3.0
∆y′min 3.6 0.7 7.2 3.1 3.6
∆y′max 6.3 3.2 3.7 2.7 4.0

∆z 9.5 3.0 6.5 7.0 6.5
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Table 5. Cont.

Pylon
Number

S1
cm

S2
cm

S3
cm

S4
cm

S5
cm

S6
cm

S7
cm

S8
cm

Average
(cm)

c

∆x′min 2.2 0.9 0.7 6.4 2.5
∆x′max 3.7 0.6 2.1 5.2 2.9
∆y′min 4.0 0.3 0.5 0.9 1.4
∆y′max 0.4 3.0 0.6 2.9 1.7

∆z 6.5 6.5 2.0 7.0 5.5

d

∆x′min 7.1 5.0 2.5 4.1 1.7 1.4 4.4 13.3 4.9
∆x′max 9.7 9.2 7.9 8.8 4.3 3.8 4.3 13.1 7.6
∆y′min 2.0 3.7 1.6 2.0 1.8 7.9 9.8 13.1 5.2
∆ymax′ 1.2 0.9 2.5 5.1 1.2 1.7 0.9 0.5 1.8

∆z 0.0 2.5 5.0 6.5 2.0 8.5 0.5 1.5 3.3

e

∆x′min 10.6 5.3 9.4 17.2 15.0 6.9 14.0 11.2
∆x′max 3.4 8.3 0.8 5.1 13.0 1.1 1.4 4.7
∆y′min 2.1 6.5 5.0 9.6 2.6 1.4 0.8 4.0
∆y′max 0.7 12.0 11.7 1.6 15.1 18.7 13.1 10.4

∆z 6.0 1.0 0.5 5.5 3.0 2.5 0.5 2.7

f

∆x′min 5.6 0.0 1.0 7.6 11.6 5.2
∆x′max 5.3 2.8 5.2 6.8 15.9 7.2
∆y′min 6.4 1.0 3.8 6.5 0.0 3.6
∆y′max 1.5 0.9 0.9 9.1 1.0 2.7

∆z 1.3 3.7 5.4 6.5 3.1 4.0

4.2. Accuracy of Pylon Reconstruction

Figure 18 shows the reconstruction results.

Figure 18. Cont.
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Figure 18. Cont.
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Figure 18. Pylon reconstruction results: (a–f) overlay display results of point cloud and model, as well
as overall and magnification plots of the model, corresponding to pylon types a-f respectively.

Table 6 provides RMSE of the point distance between each component of pylon and
the matched model. The average RMSE of all power pylon components in this study was
15.4 cm.

Table 6. Model matching results.

Pylon
Number

C1 *
(cm)

C2 *
(cm)

C3 *
(cm)

C4 *
(cm)

C5 *
(cm)

C6 *
(cm)

C7 *
(cm)

C8 *
(cm)

C9 *
(cm)

Average
(cm)

a - 13.8 11.8 9.5 16.4 12.9
b - 18.7 15.5 17.9 15.8 17.0
c - 14.5 11.0 10.5 16.1 13.0
d - 17.6 15.5 10.5 18.7 11.8 17.0 14.8 20.7 15.8
e - 15.5 13.8 13.8 14.1 12.6 15.2 18.4 14.8
f - 18.2 17.9 17.6 17.9 18.7 18.1

*Ci represents the componenti of the pylon.

5. Discussion

The actual scanned point cloud usually has problems such as noise interference, data
loss, and sparse density. It is necessary to prove the robustness of the proposed method to
these factors.

5.1. Noise Impact

Noise points mainly exist in three areas of the pylon. There are insulator strings and
power lines in the pylon head area, as shown in the black box area in Figure 19a. There may
be high vegetation around the pylon body, as shown in the green box area in Figure 19a.
The main interference items around the pylon foot are vegetation and ground points,
as shown in the orange box area in Figure 19a. The noise points around the pylon body
will affect the accuracy of feature points. As shown in Figure 19a (red dots), the position of
feature points is deviated to the outside, which will cause the reconstructed model to be
larger than the real model. Therefore, if such points exist, try to remove them as much as
possible. Different from the type-O pylon, for the type-T pylon, noise points in the black
box will cause the similar problem as mentioned above. The pylon foot reconstruction is
based on the fitted edges of the pylon body, so the noise points around the foot have little
impact. Figure 19b shows the result of pylon reconstruction after removing the noise points
in the green box, which indicates its robustness to the other two types of noise.
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Figure 19. The impact of noise on pylon reconstruction: (a) the noise points around the pylon; (b) the
result of pylon reconstruction after removing the noise points around the pylon body.

5.2. Data Loss

Due to occlusion during scanning, misclassification during classification and extrac-
tion, etc., point cloud data of pylon may be missing. As shown in Figure 20, from (a) to
(i), from (j) to (o), the degree of data loss of the pylon head point cloud gradually deep-
ens. In general, if corner points and height of the pylon head can be accurately obtained,
and the pylon head retains some points, the corresponding model can be matched. Sev-
eral points are missing in the middle part of the pylon body, but there are still a small
number of boundary points. In this case, feature points can still be extracted and model
matching can be performed, as shown in Figure 20p. Figure 20q shows the result of pylon
reconstruction with data loss using the method proposed by Chen et al. [14]. Comparing
Figure 20p,q, the model integrity of the former is stronger, which is a highlight of the
model-driven strategy.
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Since the method in this study strongly relies on the point cloud data of the segmen-
tation positions, if the segmentation position point cloud is missing, it will have a great
impact on the decomposition of the pylon. If the decomposition is wrong, it may match the
model that is inconsistent with the actual situation, resulting in reconstruction failure.

5.3. Data Sparsity

LiDAR system usually emit a single line or multi-line laser during scanning. The points
near one end of the laser rangefinder are densely arranged, and at the other end, the points
which are far away from the laser rangefinder are sparse. To study the influence of data
sparsity, the original point cloud data are uniformly sampled with distances varied from
0.1 m to 0.4 m, and specific sample information is shown in Table 7. When the sample
distance is less than 0.4 m, the pylon usually can be reconstructed correctly. However,
when the sample distance increases to 0.4 m, the point cloud becomes somewhat sparse.
Due to improper parameter settings, segmentation position identification is prone to errors,
as shown in Figure 21d.
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Table 7. The number of pylon points uniformly sampled with different distances.

Pylon Number Point Cloud The Number of Points

a

Original Point Cloud 6163

Sample distance

0.1 m 5069
0.2 m 3590
0.3 m 2573
0.4 m 1955

b

Original Point Cloud 7489

Sample distance

0.1 m 6565
0.2 m 5318
0.3 m 4173
0.4 m 3288

f

Original Point Cloud 25,775

Sample distance

0.1 m 23,106
0.2 m 15,923
0.3 m 11,528
0.4 m 8663

Figure 21. The results of pylon reconstruction with varying sample distances: (a,e,i) sample
distance = 0.1 m; (b,f,g) sample distance = 0.2 m; (c,g,k) sample distance = 0.3 m; (d,h,l) sample
distance = 0.4 m.
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6. Conclusions

This study proposes an automatic reconstruction method for power pylons based on
component segmentation and model matching, whose applicability and accuracy have been
verified by experiments. The error in the segmentation position is less than 10 cm, and the
average RMSE of all power pylon components in this study was 15.4 cm. Compared to the
existing pylon reconstruction methods, our proposed method has the following several
characteristics and merits: (1) it considers the graphical characteristics, i.e., concavity vs.
convexity, as a new feature to effectively identify the key segmentation position of the power
pylon; (2) it automatically extracts and corrects the pylon feature points, and registers the
corresponding feature point pairs; (3) due to occlusion during scanning, misclassification
during classification and extraction, etc., it is one of the common situations in which some
data of the acquired point cloud is lost. The model-driven strategy is adopted in this
study, and complete models can still be reconstructed for some power pylons with missing
data; and (4) it has high robustness to the noise points around the pylon head and foot.
In short, our method is effective for power pylon visualization and digitization, ensuring
the integrity of the reconstructed model. Constructing 3D vector models can not only
restore true forms of main facilities of the transmission line, but also facilitate the detection
of faults in time to then take measures. At the same time, it is also convenient in planning
surrounding houses, buildings, etc.

Despite these capabilities, some parts need improvement, which will be addressed in
future studies: (1) under normal circumstances, the pylon is left-right symmetrical. Hence,
if the missing parts are not symmetrical in distribution and they fall into a small area,
this feature can be used to supplement the missing part data. (2) It should be noted that
model-driven strategy is limited by the existing model library, which needs to be expanded.
(3) Extracting more feature points to ensure reconstruction accuracy and improve matching
efficiency should also be considered.
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