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Abstract: Extreme hydro-meteorological events become an increasing risk in high mountain environ-
ments, resulting in erosion events that endanger human infrastructure and life. Vegetation is known
to be an important stabilizing factor; however, little is known about the spatial patterns of species
composition in glacial forelands. This investigation aims to differentiate sparse vegetation in a steep
alpine environment in the Austrian part of the Central Eastern Alps using low-cost multispectral
cameras on an unmanned aerial vehicle (UAV). Highly resolved imagery from a consumer-grade UAV
proved an appropriate basis for the SfM-based modeling of the research area as well as for vegetation
mapping. Consideration must be paid to changing light conditions during data acquisition, especially
with multispectral sensors. Different approaches were tested, and the best results were obtained using
the Random Forest (RF) algorithm with the target class discrimination based on the RGB orthomosaic
and the DEM as supplementary dataset. Our work contributes to the field of biogeomorphic research
in proglacial areas as well as to the field of small-scale remote sensing and vegetation measuring.
Our findings show that the occurrence of vegetation patches differs in terms of density and diversity
within this relatively recent deglaciated environment.

Keywords: UAV remote sensing; vegetation mapping; structure from motion

1. Introduction

Erosion processes, such as landslides, debris flows or rockfalls, constitute a permanent
threat to human settlements and infrastructure in high mountain environments [1]. Veg-
etation cover can stabilize affected slopes and reduce the amount of eroded material [2].
Hence, the establishment of vegetation cover is of great interest to local communities. In an
area of fast glacial retreat, primary succession begins from zero with the establishment of
pioneer species [3–5]. In the following years, different species try to settle, and the local
ecosystem becomes denser and more diverse. The earlier this colonization occurs, the better
erosion can be counteracted. Geoecological succession, however, is not a simple one-way
sequence of development stages, and successional pathways are not always this straight [5].
Increasing vegetation cover goes along with the development of soils, and if enough sedi-
ment is stabilized, the intensity of geomorphological activities decreases [6]. Disturbances
may still occur and hamper the progress of the successional development resulting in a
diverse spatial pattern of different successional stages along the area of glacial retreat.

Robust approaches for vegetation estimation using satellite data such as Sentinel or
Landsat in combination with vegetation indices have been developed in recent years [7,8],
and especially the Sentinel series is still widely used for scientific research [9], but even
with state-of-the-art sensor technology, there remains the problem of the insufficient spatial
resolution of satellite-based data for various applications such as the detection and discrim-
ination of small plants. Unmanned aerial systems have experienced a massive upswing in
usage in the last decade and are partially able to close the gap between the fast-but-coarse
satellite sensing technologies and time-intensive data collection directly in the field. In
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conventional remote sensing approaches, the collection of field observations for training-
and reference data was a time-consuming process that was also connected with further
obstacles such as geolocation inaccuracies and biases. In very high resolution (VHR-)
datasets, samples are extracted directly from the images since the visual identification of
the target classes is possible in highly resolved imagery [10]. Using data from UAVs for
vegetation classification has several advantages, such as the provision of three-dimensional
information through the Structure from Motion (SfM) technology, as well as the use of
low-cost multispectral sensors [11–15]. The upscaling of fundamental biogeomorphical
research is facilitated by high-resolution vegetation data of the study area.

Key research questions here are:

1. What are the limitations of low-cost multispectral cameras fixed on commercially
available UAVs in the context of vegetation remote sensing in proglacial areas?

2. What combination of input parameters (e.g. sensors and Terrain Ruggedness Index)
delivers the best accuracy results with regard to land cover?

3. What spatial resolution could be achieved in terms of the vegetation cover classifica-
tion in the glacial foreland?

2. Materials and Methods
2.1. Study Area

The Kaunertal valley is located in western Austria (federal state Tyrol) and is situated in
the Ötztaler Alps, which are part of the crystalline Central Eastern Alps. The Gepatschferner
glacier at the southern end of the valley is the second largest glacier in Austria. The study
area is a hanging side-valley west of the retreating Gepatschferner glacier tongue and
comprises roughly 1.75 km2 in size. Altitudes range from 2300 to 2900 m above sea level.
The bedrock consists of more than 70% paragneiss, in combination with orthogneisses and
amphibolites [16,17]. The present climate is characterized by a relatively low amount of
precipitation and low temperatures throughout the whole year, classifying the Kaunertal as
an inner-alpine dry valley [17,18]. The once glaciated catchment shows a distinctive U Shape
with lateral, middle and end moraine features, as well as various roche moutonnées along
the perennial river, which in parts is a braided river system of Strahler stream order one.
The steep alpine slopes and the relatively young (<170 years) deglaciated unconsolidated
moraine sediments are prerequisites for high geomorphological activity. Rockfalls, debris
flows and some landslides can be observed throughout the study area [17]. The research
area is only sparsely vegetated. Due to the lack of sunshine, long-lasting snow cover and
high geomorphologic activity, the highest growing plants are Juniperus and Salixes, with a
maximum height of 50 cm. Different terrain ages can be observed along the area of glacier
retreat, interrupted by patches of geomorphic activity or stability (see Figure 1). The area
in the south-west has been ice-free for roughly 50 years, so an intermediate successional
stage would be expected here. Bordering it on the lower side, areas of higher terrain age
are located, which have been ice-free for approximately 100 years and fall into the late
successional stage [5]. The former extent of the Little Ice Age (≈170 years ago) is clearly
visible below in the form of distinct moraines.
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Figure 1. Study area. Overview and detailed map of the study area with glacier terminus lines and 
successional stages. The study area is located in the federal state of Tyrol in Austria. 

2.2. Data Collection 
The data collection took place at the beginning of August 2019 over the course of 

three days. In total, 39 ground control points (GCPs) were arranged in the study area, 
some of which were sprayed on rocks and some fixed on the ground as laminated A3 
printouts. The GCPs were located using a Trimble Zephyr 3 differential GNSS receiver.  

A DJI Phantom 4 Pro V2.0 equipped with a 1-inch 20-megapixel CMOS sensor and a 
focal length of 8.8 mm/24 mm (35 mm equivalent) [19] and two mounted multispectral 
cameras from MAPIR (https://www.mapir.camera/ (accessed on 10 January 2022)) was 
used to obtain high-resolution imagery of the research area. One camera captured images 
in the red edge (RE) channel (725 nm), which acted as an indicator of plant productivity 
by measuring the chlorophyll content in leaves [20,21]. The second camera employed a 
combination of three spectral bands (OCN; orange: 490 nm, cyan: 615 nm, near-infrared: 
808 nm), which were used to measure sparse vegetation on bare soil or in between rocks 
[22]. Both cameras used a 12-megapixel Sony Exmor R IMX117 sensor with a focal length 
of 19 mm and produced images with 4000 × 3000 pixels [23]. These cameras were 
originally designed for agricultural use, but due to the relatively low cost and promising 
spectral variety, we decided to use them as a supplement in our research approach. We 
used the flight planning application drone harmony (https://droneharmony.com/ 
(accessed on 1 June 2022)) to create four tailored flight plans of the study area with a front 
overlap of 80 percent and a side overlap of 70 percent while taking nadir pictures. These 
flight plans were designed as terrain-aware, which means that the UAV kept a constant 
height of 60 m above the underlying ground. The imagery has an average ground 
sampling distance (GSD) of 1.85 cm/pixel for the onboard RGB camera and a GSD of 2.25 

Figure 1. Study area. Overview and detailed map of the study area with glacier terminus lines and
successional stages. The study area is located in the federal state of Tyrol in Austria.

2.2. Data Collection

The data collection took place at the beginning of August 2019 over the course of three
days. In total, 39 ground control points (GCPs) were arranged in the study area, some of
which were sprayed on rocks and some fixed on the ground as laminated A3 printouts.
The GCPs were located using a Trimble Zephyr 3 differential GNSS receiver.

A DJI Phantom 4 Pro V2.0 equipped with a 1-inch 20-megapixel CMOS sensor and a
focal length of 8.8 mm/24 mm (35 mm equivalent) [19] and two mounted multispectral
cameras from MAPIR (https://www.mapir.camera/ (accessed on 10 January 2022)) was
used to obtain high-resolution imagery of the research area. One camera captured images
in the red edge (RE) channel (725 nm), which acted as an indicator of plant productivity by
measuring the chlorophyll content in leaves [20,21]. The second camera employed a combi-
nation of three spectral bands (OCN; orange: 490 nm, cyan: 615 nm, near-infrared: 808 nm),
which were used to measure sparse vegetation on bare soil or in between rocks [22]. Both
cameras used a 12-megapixel Sony Exmor R IMX117 sensor with a focal length of 19 mm
and produced images with 4000 × 3000 pixels [23]. These cameras were originally designed
for agricultural use, but due to the relatively low cost and promising spectral variety, we
decided to use them as a supplement in our research approach. We used the flight planning
application drone harmony (https://droneharmony.com/ (accessed on 1 June 2022)) to
create four tailored flight plans of the study area with a front overlap of 80 percent and a
side overlap of 70 percent while taking nadir pictures. These flight plans were designed as
terrain-aware, which means that the UAV kept a constant height of 60 m above the underly-
ing ground. The imagery has an average ground sampling distance (GSD) of 1.85 cm/pixel
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for the onboard RGB camera and a GSD of 2.25 cm/pixel for the multispectral cameras. Due
to time and resource constraints, all three sensors were attached to the UAV simultaneously.
In order to counteract exposure fluctuations, the flights were attempted to be carried out
under constant light conditions, which was only partially possible due to the weather
situation and the alpine terrain, which cast large shadows. Furthermore, the calibration
target provided by MAPIR was used.

2.3. Data Processing

Data processing was undertaken separately for the RGB imagery and the multispectral
imagery. The multispectral pictures needed to be preprocessed and calibrated in the soft-
ware application MAPIR Camera Control, turning the recorded pixel values into reflection
values for the respective bands. Then, the captured RAW and JPEG images were combined
with TIFF images.

The photogrammetric processing procedure (SfM) in Agisoft Metashape (https://
www.agisoft.com/ (accessed on 3 May 2022)) followed the workflow described by the
United States Geological Survey [24] and was modified in line with on-site experience. The
modifications included removing the camera positions before the alignment process to
minimize matching issues, using filtering options customized to the data, and building the
orthomosaic on the basis of the DEM, which is reliable for aerial surveys. The workflow was
carried out using high settings in the Agisoft dialogues with the same configurations for
each set of images. Adaptive camera model fitting was activated, and low-quality pictures
were removed beforehand. Image quality was assessed inside Agisoft with a drop-out
threshold of <0.5. The project was rectified and georeferenced using 39 ground control
points, of which nine were used as check points for uncertainty estimation. Table 1 shows
the uncertainty values (RMSE) for the control points and check points:

Table 1. Uncertainty values: The RMSE for the control points and check points.

Count X Error
(cm)

Y Error
(cm)

Z Error
(cm)

XY Error
(cm)

Total
(cm)

Control points 30 3.20 3.27 5.44 4.58 7.11
Check points 9 3.66 4.37 5.53 5.70 7.94

The derived products from the photogrammetric processing in Agisoft were:

• Digital elevation model (from RGB imagery, spatial resolution: 10 cm/pixel);
• True color orthomosaic (from RGB imagery, spatial resolution: 4.5 cm/pixel);
• False color orthomosaic (from OCN imagery, spatial resolution: 4.5 cm/pixel);
• False color orthomosaic (from RE imagery, spatial resolution: 4.5 cm/pixel).

Changing weather conditions led to variations in the illumination of the recorded
pictures and to inconsistent brightness values across the final orthomosaic. This caused
difficulties in the further course of the classification procedure.

Machine Learning Methods

Different machine learning (ML) methods, including Convolutional Neural Networks
(CNNs) and RF, were tested in this work. Tests using the CNNs did not deliver promising
results and overstrained our computational capacities and were therefore dismissed. An RF
machine learning algorithm was chosen to classify the vegetation based on the orthomosaics
because of its robust and reliable functionality. RF has proven very successful for compa-
rable applications in the field of land cover classification and vegetation mapping [25–28].
The RF classifier makes predictions based on a set of classification and regression trees
(CARTs) and is insensitive to overfitting and robust when handling inconsistencies in
spectral response [29–32]

Class balance and a high target representation were ensured by skilled personnel
manually selecting samples directly from the highly resolved orthomosaic. To warrant

https://www.agisoft.com/
https://www.agisoft.com/
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independent validation data, 20% of the samples were excluded from the training process
and used for validation after the classification process. These samples were chosen ran-
domly from the entirety of the samples to avoid any kind of bias. In total, 3345 samples
were digitized by hand, from which 2686 were used for training and 659 for validation. The
results of the validation process are presented in Table 2.

Table 2. Land cover classes and number of ground truthing samples used for the classification.

Class Value Class Description Number of Samples

1 Snow 423
2 Water 307
3 Bedrock 399
4 Coarse sediment 585
5 Fine sediment 305
6 Juniper (Juniperus communis) 300
7 Thistle (Cirsium spinosissimum) 399
8 Mixed vegetation with >50% grass 310
9 Mixed vegetation with >50% forbs and moss 317

We distinguished between nine land cover classes that were defined as follows:
Normally, the RF classifier is able to detect the variables which are most suitable for

differentiating the predefined target classes, but for this paper, this step was performed
by hand. This was because the RF tool implemented in ArcGIS Pro does not offer this
functionality due to the low number of available variables.

Training and classification were carried out with the implemented RF algorithm in
ArcGIS Pro. RF achieves higher accuracy values when more trees are used, but this also
increases the computational resources required [31]. Different studies, however, show
that constantly increasing the number of trees does not necessarily lead to better model
performance. Above a certain number of trees, no significant improvements were de-
tectable [33,34]. We used 50 trees and a tree depth of also 50 as a starting point for figuring
out the appropriate values for our application. Then the classification procedure was
performed multiple times under consistent initial conditions except for the number of
trees and the tree depth, respectively, which were adjusted for each test run. For our final
classification, we used 100 trees and a tree depth of also 100 because with these values, the
best classification results were obtained. Tests using a higher number for these values did
not significantly improve the outcome. Except for the parameters we assessed ourselves, we
followed the manufacturer’s [35] recommendations, e.g., regarding the maximum number
of samples per class that can be used, which is 1000 samples for unsegmented rasters. The
training and classification processes were based on the RGB orthomosaic from which the
samples were taken, utilizing the digital elevation model as an ancillary input dataset.
Other supplementary datasets such as the OCN orthomosaic, the RE orthomosaic, the
Terrain Ruggedness Index (TRI) and a slope layer were tested as well by adding them to
the classification process instead of the DEM. The reached accuracy values for each layer
are presented in the results section.

3. Results

In the OCN and RE orthomosaics (Figures 2 and 3), changing illumination conditions
during the survey are visible and could not be eliminated using the MAPIR calibration
target. Fluctuations in brightness influenced the reflection values of the multispectral
imagery more strongly than the actual variance in vegetation on the ground. The integrated
vibration dampers did not meet the requirements of our application. Camera instabili-
ties resulted in partly blurry images even when paying attention to the camera settings
(shutter speed, ISO value). Faulty reflection values (Figure 2) occurred randomly and
could not be traced to certain cover changes. Geometrical artifacts looking somewhat
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like rocks appeared in the digital elevation model during photogrammetric processing
(see Supplementary Materials).
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Accuracy Assessment

Initial tests utilizing the CNNs provided accuracy values below 70% and failed several
times due to a lack of computational resources, which made a deeper analysis of the
obtained results difficult. Simultaneously performed tests with the RF algorithm achieved
more promising accuracy values. The best classification results with RF were achieved
using the RGB orthomosaic as the foundation of the classification and employing the digital
elevation model for additional input data. The DEM was tested against the two available
multispectral orthomosaics, the TRI layer and a slope layer, and turned out to be the best
supplement for this approach, as presented in Table 3.

Table 3. Supplementary datasets. This table presents the overall accuracy values reached for different
supplementary layers when used in combination with the RGB orthomosaic in the classification.

Supplementary Layer DEM OCN TRI Slope RE No Suppl. Layer

Overall accuracy (%) 87.1 73.1 73.0 70.9 69.2 67.0

The classification of the RGB orthomosaic in combination with the DEM achieved
an overall accuracy of 87.1%. In the approach where the OCN orthomosaic was used as
a supplement, the OA was considerably smaller at 73.1%. When utilizing the TRI layer,
the OA was very similar, with 73.0%, while using the slope layer as an additional input
resulted in an overall accuracy of 70.9%. The RE orthomosaic was the supplementary
dataset that delivered the worst results with less than 70% OA, a performance that was
only slightly better than using no additional data with the RGB orthomosaic at all, which
resulted in an OA of 67%.

The accuracy of the final classification was assessed by calculating a conventional
confusion matrix resulting in the following statistical metrics: overall accuracy (OA), pro-
ducer’s accuracy (PA), user’s accuracy (UA) and the Kappa Coefficient. The 659 samples
that were not used for training the algorithm were utilized for the validation of the clas-
sification results. In 87.1 percent of the samples verified, the classified landcover class
matched the actual value, which was determined beforehand by the authors using the RGB
orthomosaic. The results of this evaluation are displayed in Table 4, showing the accuracy
values of the validation samples from the most accurate classification (RGB + DEM):

Table 4. Accuracy assessment. Confusion matrix displaying the accuracy values of the validation
samples for each target class + overall accuracy, producer’s accuracy, user’s accuracy and Kappa
Coefficient for the final classification.

Class Name Snow Water Bedrock Coarse
Sed.

Fine
Sed. Juniper Thistle >50%

Grass
>50% Forbs
and Moss Total UA (%) Kappa

Snow 77 0 1 3 1 0 0 0 0 82 93.9 0
Water 0 53 1 13 0 0 1 0 0 68 77.9 0
Bedrock 0 0 70 14 0 0 1 0 1 86 81.4 0
Coarse sed. 0 8 6 81 0 0 0 1 1 97 83.5 0
Fine sed. 1 0 1 3 60 0 0 0 0 65 92.3 0
Juniper 0 0 0 0 0 55 4 1 0 60 91.7 0
Thistle 0 0 0 2 0 3 69 4 3 81 85.2 0
>50% grass 0 0 0 0 0 2 2 51 0 55 92.7 0
>50% forbs and moss 0 0 1 2 0 0 2 2 58 65 89.2 0

Total 78 61 80 118 61 60 79 59 63 659 0.0 0
PA (%) 98.7 86.9 87.5 68.6 98.4 91.7 87.3 86.4 92.1 0.0 87.1 0.0
Kappa 0 0 0 0 0 0 0 0 0 0 0.0 0.854

OA (%) 87.1

The Kappa value for the best model performance (RGB + DEM) is 0.854. The Kappa
coefficient compares the classification results with randomly assigned values for each class.
Therefore, one can derive how far a classification result is caused not by chance but by a
good model performance. Kappa values of 0.6–0.8 are considered good, and values above
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0.8 indicate excellent model performance with very high concordance between the model
and the actual ground truth [36].

In simple terms, the producer’s accuracy and the user’s accuracy describe the accuracy
from the point of view of the map producer and the map user, respectively. This means
that the producer’s accuracy shows how often real features are correctly classified on the
final map. User’s accuracy, however, shows how often a classified value on the map will
actually be present in reality [37]. In the case of class 4 (coarse sediment), the producer’s
accuracy is the lowest at 68.6%. The RF tool implemented in ArcGIS Pro delivered good
results (OA 87.1%) in regard to landcover mapping and vegetation cover.

The final classification results for the whole study area are based on the most accurate
RF model, which was trained using the 2686 training samples and validated using the
659 validation samples. The results demonstrate a predominance of non-vegetated areas
(>70%), with coarse sediment as the most common class (>30%). Figure 4 shows the
geographical distribution of the detected classes, and Table 5 presents the results in absolute
and relative values.
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The most highly evolved species, Juniperus communis, is mostly found in the northern
part of the study area in lower regions and, in particular, on south-facing slopes that have
been ice-free for at least 100 years. This statement is also true for the grass-dominated
mixed-vegetation class. Cirsium spinosissimum often occurs in patches and always in areas
with high ground humidity, such as along streams, whereas the mixed vegetation class
consisting of >50% forbs and moss is more dispersed and also occurs frequently in higher
regions. The highest sections in the southeastern part of the study area are dominated
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by large sediment fields and smaller interspersed snow patches, whereby the latter are
obviously subject to rapid changes throughout the year.

Table 5. Classification results based on the final RF model. Total and relative distribution of the
defined classes in the research area.

Class Name Total Area
(Hectares)

Relative Area
(%)

Snow 5.38 3.05
Water 17.96 10.17

Bedrock 41.95 23.76
Coarse sediment 56.99 32.27

Fine sediment 4.47 2.53
Juniper (Juniperus communis) 6.26 3.55

Thistle (Cirsium spinosissimum) 7.75 4.39
Mixed vegetation with >50% grass 17.53 9.93

Mixed vegetation with >50% forbs and moss 18.29 10.36

Regardless of the terrain age, the most dominant vegetation class is “>50% forbs and
moss”, except for those regions that have been ice-free for more than 170 years. In this area,
the most common vegetation is grass (“>50% grass”). In areas that have been unglaciated
for at least 100 years (terrain age > 170 years and terrain age < 170 years), the least common
vegetation class is “Juniper”, whereas, in the two-remaining terrain-age classes, the rarest
vegetation form is grass. The youngest terrain in the highest part of the study area has
been ice-free for roughly 50 years and is the only sector where not all vegetation classes are
present. In this section, no juniper was found at all.

4. Discussion

Using a consumer-grade UAV to perform the surveys in this research turned out to
be a sufficient approach as it was able to carry the weight of three small-scale cameras,
enabling us to record the area of interest with multiple sensors at the same time. Minor
problems regarding flight performance occurred (reduced flight time partly caused by the
additional payload and difficulties in stabilizing the aircraft during strong winds) but did
not inhibit the planned flights. Given the additional weight on the aircraft and the rough
environmental conditions in our research area, these problems might not arise in a different
setting such as a lower altitude study area and when using an unmodified UAV. Challenges
with stabilizing UAVs, however, are also documented by other authors [38]. To some extent,
the limited battery capacity is an issue that still pertains to other settings and restricts the
maximum area that can be monitored. If it takes several days to record the whole area of
interest (like in our case), there is an increased risk of unstable weather conditions, which
might negatively influence the picture quality (e.g., varying illumination conditions and
fog on images).

We view the use of low-cost multispectral cameras for classifying vegetation in
proglacial areas very critically because the cameras we employed did not deliver sat-
isfactory results for our use case. Illumination problems occurred more severely on the
multispectral imagery than on the RGB imagery, even though the intended calibration
target was used. Radiometric calibration and atmospheric correction should reduce the
adverse effects of varying illumination conditions if performed professionally in a labo-
ratory or at least with a field spectrometer. Such actions improve the measurements of
biophysical parameters, as different studies show [39–41]. Employing a superior mount for
the multispectral cameras might lead to an improvement because of less blur in the pictures,
but the problem of the high sensitivity towards illumination fluctuations still persists.

Due to the large area of interest that needed to be covered by our UAV survey, the
creation of multiple flight plans helped to reduce energy consumption and made the
flights more efficient. However, we suspect that the arrangement of the flight plans led to
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difficulties in the further processing steps. Although we ensured a steady image overlap
within the individual flight plans, the overlap between the different flight plans was not
always sufficient. We consider this as a possible source of the beforementioned errors that
arose in the elevation data during photogrammetric processing. Some artifacts occurred in
linear structures in regions where the flight plans adjoined one another. Using the depth
maps instead of the dense point cloud for the DEM generation in Agisoft resolved this
problem, but the origin of these errors could not be explicitly determined. We assume that
the imperfect overlap between the flight plans and patches of fog that moved through the
study area while performing the UAV flights created noise in the point cloud that could
not be eliminated by filtering.

Manual exposure processing of the original RGB images was omitted in order not to
distort the reflectance values, but the brightness differences that were initially present in
the RGB orthomosaic could be reduced using the color calibration tool in Agisoft. This
increased the quality of the final product but was not enough to completely eliminate the
variations. The RGB orthomosaic still turned out to be of high quality and was therefore
used as a basis for the classification and for taking the samples, as it is common with ultra-
high-resolution datasets [10]. Unfortunately, the multispectral datasets did not reach the
desired quality. Negative influences resulting from changing illumination conditions can
be observed in the OCN and the RE orthomosaic, as seen in figures two and three, which
is why these were excluded from the final classification procedure completely. Although
vegetation patterns could be observed by eye, especially on the OCN orthomosaic, the
changing light incidence affected the reflection values to such an extent that these datasets
eventually became unusable. Excluding the parts of the OCN orthomosaic with the heaviest
impairment led to fewer misclassifications but still to a noticeably worse model performance
than in the final approach. The RE orthomosaic showed even stronger detriments caused by
unstable illumination conditions than the OCN orthomosaic. The TRI and the slope layer
were created on the basis of the adjusted DEM and are of high quality. Both datasets were
able to increase the classification compared to a run without additional datasets. However,
the performance is behind that of the OCN orthomosaic and even more behind that of the
DEM (see Table 3). A limitation of the RF algorithm in ArcGIS Pro is the inability to add
multiple supplementary datasets to the classification procedure at the same time. This
makes determination of the variables which are most suitable for target class discrimination
more time-consuming and does not allow a multi-variable classification with more than
two layers. However, the performance of training and classification tasks was reliable, as
also shown by other authors [42], including a built-in option for accuracy assessment using
a confusion matrix.

The vast majority of our research area is unvegetated and covered largely in coarse
sediment. The measured distribution of the vegetation in our study area meets our ex-
pectations and has a high OA of 87.1%. Accuracy values in the range of 84–93% were
also achieved in comparable applications, with single larger species being classified in
most cases [10,12,26]. The most highly evolved species in our research area (Juniperus
communis) could be detected very well (PA and UA: 91.7%) and was mostly found in lower
and sunnier regions. Forbs and mosses formed the most common class and were present
in all parts of the research area, whereas thistles (Cirsium spinosissimum) were primarily
found in moist areas. The visual resemblance between the three “rock” classes (bedrock,
fine sediment, coarse sediment) makes clear demarcations very difficult. This is not only
true for the classification algorithm but also for the personnel digitizing the samples. As
can be observed in the north and northeastern regions of the study area, a lot of water
has been classified. In reality, most of these areas are covered with Juniper. This error
results from the beforementioned illumination problems during data acquisition. When
flights were performed in this area, the sky was partially covered by clouds which resulted
in darker images for this region. Training samples for the water class were also taken
from the fringe areas of streams which are characterized by dark-greyish wet sediment.
On the produced imagery, these wet rocks appear very much like the Juniper bushes,
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which were recorded in shadowed areas because the displayed structures bear a certain
resemblance to one another.

One of the biggest challenges in classification tasks is the categorization of present
features into target classes. Some kind of generalization based on the corresponding char-
acteristics of these features was needed to meet the demands of a worthwhile classification.
This generalization was undertaken by experts in order to represent the given circum-
stances in a manageable number of classes without losing too much detail on the one hand
or overstraining the classification algorithm with overly high demands on the other hand.
The maximum accuracy of classification is always limited and hard to predict in advance.
This holds true specifically for landcover classifications and vegetation mapping because it
is impossible for the researcher to say with certainty which classes will be distinguishable
prior to planning the survey. In our case, this complicated the formation of target classes
even more. We tried to classify the existent vegetation in as much detail as possible because
we knew that we were limited by the resolution of our data anyway. Investigation of the
processed imagery revealed that it was only possible to base a distinction on species for
the largest plants growing in our research area. Thus, the classes “Juniper (Juniperus com-
munis)” and “Thistle (Cirsium spinosissimum)” are the only classes that actually describe
single species, while the remaining vegetation was aggregated into mixed vegetation classes
(“>50% grass” and “>50% forbs and moss”). The inconsistency of the class formations
brought further difficulties because underdeveloped specimens of thistles and junipers
might have been included in the mixed vegetation classes as well. A sharp demarcation
among the mixed vegetation classes was hard to achieve because the actual size of the
plants often fell below the spatial resolution of our imagery. In such cases, the additional use
of in-situ samples, as used complementarily in some classification approaches [43], could
increase accuracy. The beforementioned fact complicated the creation of training samples
for the researchers and lowered the preciseness of the classification. Similar complications
occurred with the non-vegetation classes, which were rather coarse. The difficulty of fuzzily
defined class borders occurred between the sediment classes (bedrock, coarse sediment,
fine sediment), which were impossible to separate definitely because of strong overlaps.
Another factor to which attention must be paid is the volatility of the snow class, which
changes dramatically during the year and always covers some of the other target classes.
With all of these restrictions in mind, one must be aware that a landcover classification
always resembles a coarser and temporally fixed reflection of reality. This kind of approach
still delivers valuable information on the area of interest and is able to function as the basis
for a wide range of further analyses. Accepting a certain degree of uncertainty is always
part of the game.

5. Conclusions

We conclude that the use of UAVs in combination with the RF classification algorithm is
a suitable approach for detecting sparse vegetation in proglacial areas. Photogrammetrically
processed drone imagery provides a sufficient backbone for robust land cover classification.
Multispectral data from consumer-grade cameras might offer an added value to vegetation
classifications if the quality is sufficient. We found that this kind of imagery is even more
sensitive to variations in light than RGB imagery. Therefore, an extended surveying time
increases the risk of changing weather conditions which might lead to major problems
regarding the recorded reflection values. Severe degradation of the multispectral data
forced us to exclude it from the analysis but using only RGB imagery and the DEM in
the RF algorithm proved time-efficient and reliable. A limiting factor for UAVs is the
battery capacity and, therefore, the maximum size of the study area. Care must be taken
as installing additional cameras on a UAV with a low payload impairs the drone’s flying
behavior significantly, even with an appropriate mount. The combination of the RGB
orthomosaic and the DEM produced the best results in our analysis. Other supplementary
layers were tested but did not deliver comparable results. Defining target classes for the
classification procedure is a crucial step that deserves special attention. The distinction of
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said classes might be challenging because of overlaps between the classes and features,
which are smaller than the ground sampling distance of the data. In this work, only the
largest plants could be distinguished at the species level. All other features were categorized
into mixed classes. The implemented RF tool in ArcGIS Pro is a suitable approach for
detecting sparse vegetation in alpine areas if a low number of variables are used.

Recommended actions for future research:

• Illumination conditions play a major role in UAV surveys and should therefore be a
primary consideration. UAV operators are advised to perform their fieldwork under
steady weather conditions and to try to maintain consistent illumination of the study
area throughout all flights.

• When dividing the research area into several flight plans, attention must be paid
to sufficient image overlap not only within the flight plans but also between them.
Linear artifacts in the photogrammetric products may occur in the border regions
if this is neglected.

• In cases where battery capacity plays a major role (because of a large study area or
additional weight on the aircraft) or when flying under windy conditions, the use of an
enterprise-segment UAV with a higher payload and more wind stability is recommended.

• Increasing the spatial resolution of the UAV imagery (by flying at a lower altitude or
using a different camera setup) also increases the ground sampling distance of the final
orthomosaic, which allows a more precise classification (especially of small features).

• When defining target classes, care should be taken to maintain a sharp distinctiveness
of the samples, not only in the field but also on the processed orthoimage. This should
lead to fewer misclassifications and reduced fuzziness of the final results.

• For multi-layer classification tasks, we recommend using a different framework than
ArcGIS Pro when applying the RF algorithm, one which can include a high number of
variables at the same time.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs14194919/s1, Figure S1: DEM with artifacts; Figure S2: Adjusted DEM.
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