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Abstract: Root-zone soil moisture exerts a fundamental control on vegetation, energy balance, and the
carbon cycle in Arctic ecosystems, but it is still not well understood in vast, remote, and understudied
regions of discontinuous permafrost. The root-zone soil moisture product (30 m resolution) used
in this analysis was retrieved from a time-series P-Band (420–440 MHz) synthetic aperture radar
(SAR) backscatter observations (August 2017 & October 2017). While similar approaches have been
taken to retrieve surface (0 cm to 5 cm) soil moisture from L-Band (1.2 GHz) SAR backscatter, this is
one of the first known attempts at reaching the root-zone in permafrost regions. Here, we analyze
secondary factors (excluding primary factors, such as precipitation) controlling summer (August) soil
moisture at depths of 6 cm, 12 cm, and 20 cm over a 4500 km2 area on the Seward Peninsula of Alaska.
Using a random forest model, we quantify the impact of topography, vegetation, and meteorological
factors on soil moisture distributions. In developing the random forest model, we explore a variety of
feature scales (30 m, 60 m, 90 m, 120 m, 180 m, and 240 m), tune hyperparameters (the structure of
individual decision trees making up the ensemble including the number and depth of trees), and
perform the final feature selection using cross-validated recursive feature elimination. Results suggest
that root-zone soil moisture on the Seward Peninsula is primarily controlled by vegetation at 6 cm,
but deeper in the soil column topography and meteorological factors, such as predominant winter
wind direction and summer insolation, play a larger role. The random forest model accounts for 40%
to 60% of the variation observed (R2 = 0.44 at 6 cm, R2 = 0.52 at 12 cm, R2 = 0.58 at 20 cm). These
results indicate that vegetation is the dominant control on soil moisture shallow in the soil column,
but the impact of vegetation does not extend to deeper layers retrieved from P-Band SAR backscatter.

Keywords: soil moisture; permafrost root-zone; synthetic aperture radar; random forest; Arctic

1. Introduction

In the Arctic alone, more than 1500 billion metric tons of carbon are sequestered in
permafrost, more than twice the amount currently in the atmosphere [1]. As a result of
climate change, surface air temperatures in the Arctic have warmed at twice the rate of
the rest of the globe, resulting in massive landscape shifts due to permafrost thaw [2].
Permafrost, which is defined as ground that has maintained temperatures below 0 ◦C for
two or more consecutive years [3], is highly susceptible to these temperature fluctuations.
As permafrost degrades it changes the geomorphology [4], hydrology [5], and geochemical
pathways [6] of arctic tundra.

To study and understand these important changes in Arctic system processes, Earth
System Models (ESMs) and their included land surface models can be used. One of the
most critical variables to ESMs is soil moisture because of the control it has on the energy
balance, carbon cycle, vegetation, and subsurface thermal properties [7]. Additionally, soil
moisture influences the rates of decomposition and photosynthesis, which can alter the
ability of an Arctic ecosystem to act as a carbon sink or source [8]. The soil moisture content
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of Arctic ecosystems dictates the aerobic or anaerobic nature of environments which in turn
regulate the microbial breakdown of organic carbon and the release of carbon dioxide and
methane [9]. Typically, models of soil moisture incorporate three complex and overlapping
environmental controls to represent soil moisture variability and associated feedback
loops: local topography, soil conditions, and vegetation cover [10–13]. For example, soil
conditions impact vegetation patterns which in turn strongly affect local soil temperature
and moisture [14]. Vegetation type and distribution also control soil moisture through
mechanisms including evapotranspiration and the trapping of snow [14–16]. Topographic
features, such as slope and aspect, have also been shown to control the spatial variability of
soil moisture [10].

While land surface models that incorporate topography, land cover type, and soil
type have been shown to capture soil moisture variability reasonably well, Arctic regions
are complicated by the presence of permafrost, which is not directly observable from the
surface. In most Arctic landscapes, the water table resides high in the soil column due to
the underlying, ice-rich permafrost layer. However, degradation, in the form of thawed
zones such as taliks, increases hydrologic drainage resulting in greater variations of soil
moisture across watersheds [17,18]. Therefore, the spatial and temporal heterogeneity of
soil moisture in regions underlain by permafrost are difficult to capture and model with
accuracy, particularly over the large spatial scales needed to validate ESMs. To improve
soil moisture predictions from ESMs, reliable, continuous, regional datasets are needed to
help scientists better understand the role topography, vegetation, and other environmental
features play in the consumption and redistribution of water.

Soil moisture is commonly measured as the volumetric water content, which is the
ratio of the volume of water to the volume of soil. In the simplest terms, volumetric
water content depends upon soil texture (porosity), topography (runoff, pooling, and solar
illumination), vegetative cover (evapotranspiration), and climate (precipitation, wind, and
humidity) of the region [19]. In-situ soil moisture can be measured using time-domain
reflectometry and the gravimetric sampling method, but these observations represent
spatially and temporally discrete soil measurements. In-situ measurements over larger
scales are prohibitively expensive, yet strategic in-situ sampling is critical to validating
soil moisture. With airborne and satellite sensors, it is possible to measure soil moisture
remotely and over regions large enough to compare with ESMs.

Soil moisture can be sensed remotely using optical, infrared, and microwave sensors
(radar or radiometer) [19]. Optical and thermal infrared (TIR) methods provide high
resolution, but are only applicable to the surface and are constrained by the presence
of clouds, light, and vegetation cover [20]. With longer wavelengths at L- or P-band,
microwave sensors can penetrate clouds, and possibly through vegetation canopies, and
operate regardless of day/night. In particular, P-band radar can penetrate deeper into the
soil column allowing them to detect moisture in the root-zone, which is the region that
drives vegetation and controls the surface fluxes of energy, water, and carbon [21].

Predicting soil moisture from polarimetric radar backscatter requires an understanding
of the effect of vegetation (fresh biomass, canopy structure, etc.), the dielectric constant of
the soil (e.g., [22–24]), the soil surface roughness, and radar imaging properties (frequency,
polarization, and incidence angle) [19,25,26]. The soil dielectric constant is a function of soil
water content, soil texture, bulk density, temperature, and freeze–thaw conditions [27,28].
To derive soil moisture from radar backscatter, researchers have used simple regression
models [29–34], semi-empirical models [29,35,36], and fully physically based models like
the Integral Equation Model (IEM) [26,37]. The evolution of synthetic aperture radar tech-
nology has allowed for the collection of higher resolution datasets than can be achieved with
passive radiometers [38]. By synthesizing a larger aperture, SAR instruments can measure
backscatter at scales consistent with the spatial heterogeneity of permafrost (i.e., meters).

Beginning in 2015, National Aeronautics and Space Administration’s (NASA, Wash-
ington, DC, USA) Arctic Boreal Vulnerability Experiment (ABoVE) project has conducted
repeat airborne campaigns over a range of biomes in arctic and boreal regions using SAR
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instruments [39]. A main goal of the ABoVE project is to bridge the gap between in situ
observations and ESMs. While SAR has been used to capture soil dielectric properties since
the 1990s, most observations have been limited to the near-surface (X, C, and L Bands),
sensing deeper into the soil column with longer P-band wavelengths is a more recent de-
velopment [40]. In 2017, the ABoVE project collaborated with US Department of Energy’s
Next Generation Ecosystem Experiment Arctic (NGEE Arctic) project to fly the Airborne
Microwave Observatory of Subcanopy and Subsurface (AirMOSS) instrument over NGEE
Arctic field sites on the Seward Peninsula of Alaska concurrent with in situ measurements
of soil moisture and active layer thickness. An understanding of soil moisture dynamics in
this region is important, as permafrost in the Arctic continues to thaw at an accelerating
rate due to anthropogenic climate change.

In this paper, we quantify the impact of topography, vegetation, and meteorological
features on SAR-derived root-zone soil moisture using two intersecting ABoVE flight lines
collected over the Seward Peninsula of Alaska in 2017. Using a three-layer dielectric model
to represent active layer and permafrost soils, Chen et al. (2019) retrieved active layer
properties, including soil moisture and the active layer thickness, from P-band time series
observations [41]. Using the depth-integrated soil moisture at various depths within the
root zone (6 cm, 12 cm, 20 cm), we train a random forest model based on easily-accessible
remotely sensed products for topography and vegetation. The paper includes a description
of the materials and methods, including details on the training and tuning of random forest
models. We then present the results of our random forest modeling including accuracy,
feature importance, and patterns observed. We discuss our findings, and conclude with
remarks on limitations and future work.

2. Materials and Methods
2.1. Region of Interest

As part of a large remote-sensing campaign (NASA ABoVE), the P-Band AirMOSS
radar instrument was flown over two perpendicular and overlapping swaths on the Seward
Peninsula of Alaska in 2017. The regions imaged are ~15 km wide and ~160 km long with
a total coverage of ~4500 km2, this region is referred to as the region of interest (ROI).
After excluding Open Water pixels, the ROI is composed primarily of Dwarf/Scrub (46%),
Shrub/Scrub (20%), and Sedge/Herbaceous (17%), according to the 2016 National Land Cover
Database (NLCD) for Alaska (Figure 1).

The climate of the Seward Peninsula experiences long, cold winters and short, cool
summers, with precipitation maximums occurring in August [42]. The long-term (1980–2010)
mean annual air temperature for Nome Airport climate station (Global Historical Climate
Network or GHCN station USW00026617) ranges from −6.4 ◦C to 1.2 ◦C, with a minimum
January temperature of −19.3 ◦C and maximum July temperature of 14.5 ◦C. Annual
precipitation is 430 mm with 45% falling as snow. Total precipitation falling from November
to April is 140 mm (1980–2010), while annual precipitation (rain and snow) is 425 mm.
Snow covers the ground from approximately October through May, with some year-to-year
inter-annual variability.

The Seward Peninsula is characterized by discontinuous permafrost which acts as
a powerful control on the energy and water balance, the carbon cycle, and vegetation
distribution. This underlying, ice-rich, and nearly impermeable layer of permafrost can
elevate the water table resulting in saturation of root-zone soils. At the same time, a region
of the soil that has developed a hole in the permafrost, or talik, can drain water rapidly to
deeper soil layers. Remote sensing tools such as drones, planes, and satellites struggle to
observe the presence and depth of permafrost, however, large spatial heterogeneity in soil
moisture can be observed.
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Figure 1. The main map illustrates the two footprints of the P-band SAR flight swaths over the Sew-
ard Peninsula (outlined in red). Shown within the flight footprints are dominant land cover types 
from the 2016 Alaska NLCD. The Teller Site, located at mile marker 27 of the Nome-Teller Highway, 
is highlighted in black. Inset shows all 2017 AirMOSS (P-Band) SAR footprints flown by the NASA 
ABoVE campaign over Alaska and Canada. 
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Figure 1. The main map illustrates the two footprints of the P-band SAR flight swaths over the
Seward Peninsula (outlined in red). Shown within the flight footprints are dominant land cover types
from the 2016 Alaska NLCD. The Teller Site, located at mile marker 27 of the Nome-Teller Highway,
is highlighted in black. Inset shows all 2017 AirMOSS (P-Band) SAR footprints flown by the NASA
ABoVE campaign over Alaska and Canada.

2.2. The Response Feature: SAR-Derived Root-Zone Soil Moisture

The AirMOSS instrument provides high-resolution observations of root-zone soil
moisture (RZSM) using polarimetric P-band (420–440 MHz) backscatter [43]. The design
for the AirMOSS instrument is leveraged from the L-band Uninhabited Aerial Vehicle
Synthetic Aperture Radar (UAVSAR), which has been in use since 2007 [44,45]. The
AirMOSS instrument can penetrate deeper into the root zone of vegetation due to its longer
wavelength. With a spatial resolution of 10 m and a penetration depth of 0.4–0.6 m, it
is ideal for creating regional root-zone soil moisture products at 30 m resolutions [41,46].
In permafrost regions, the AirMOSS instrument has acquired data during four phases
of permafrost thaw: thaw onset (late May to early June), maximum thaw (late August),
partially frozen (early October), and fully frozen (early-mid April).

To derive soil moisture from the polarimetric radar backscatter collected by AirMOSS,
Chen et al. (2019) used a three-layer dielectric forward inversion model. The major
challenge presented by this retrieval is the simultaneous estimation of multiple geophysical
parameters, which are often ambiguous in the radar backscatter. A time-series approach
resolves this ambiguity by assuming vegetation, surface roughness, and the change in
thaw depth do not vary significantly between observations. For the Seward Peninsula
dataset, the AirMOSS instrument was flown near the maximum thaw (17 August 2017) and
partially frozen (10 October 2017) time periods. Between late August and early October,
it is assumed that the upward freezing of the active layer is minimal because heat input
to the subsurface is limited, therefore it can be approximated to represent the maximum
active layer depth [47]. Surface air temperatures and soil temperatures at 5 cm below the
ground surface at a meteorological station within the ROI (Teller Site MM27 as shown in
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Figure 1) indicate that the onset of freezing occurs after 15 October 2017 and should not
interfere with the retrieval of the root-zone soil moisture product. Additionally, snow does
not present a major concern because the dielectric constant of snow is similar to that of
frozen soils and is lumped into the retrieval of the surface layer dielectric (ε1) [41]. Snow at
the meteorological stations Teller Site MM27 indicate that snow cover on 15 October 2017
(earliest measurement) is <2 cm.

The Chen et al. (2019) product [48] models the dielectric properties of three soil
layers: the unsaturated surface active layer, the saturated active layer, and the underlying
permafrost (Figure 2). Using empirical calibrations based on Alaskan soils, we convert soil
dielectric constants into volumetric water contents (VWC) at three depths (6 cm, 12 cm,
and 20 cm) that can be compared directly against in situ observations of the VWC at the
same depths using time-domain reflectometry [49]. To facilitate comparison, SAR-derived
dielectric constants were converted to VWC using Equations (1) and (2) which converts the
real dielectric constant to τ, the time period of returned signal for the in situ TDR devices.

τ = τ0 +
2L
cL

Re{√εr}
⇒ Re{

√
εr} ≈

√
ε′r =

c0

2L
(τ − τ0) (1)

where c0 is the speed of light in free space, εR is the relative permittivity/dielectric constant
(εr = ε′r + iε′′ r), τ is the time period of the returned signal, τ0 is the time delay due to
internal circuits, and L is the length of the waveguide (probe rods). In-situ measurements
for 6 cm, 12 cm and 20 cm soil depths were taken with different Hydrosense II probe (CS620)
rod lengths (6 cm and 12 cm w/CS659, 20 cm w/CS658), which requires two quadratic
calibration equations that are used in a weighted average to get the SAR-derived VWC.

θ = Aτ2 + Bτ + C (2)

where θ is the volumetric water content, τ is the period in microseconds, and A, B and C
are derived from calibration data based on gravimetric moisture observations from soils
collected in the Northwest Territories, Canada [49]. Coefficients used can be found in the
Appendix A in Table A1.

2.3. Predictor Features

Models of soil moisture commonly incorporate three complex and overlapping envi-
ronmental controls: local topography, soil conditions, and vegetation cover [10–13]. We
exclude soil conditions due to a lack of comprehensive soil information on the Seward
Peninsula. Instead, we focus on a mixture of proven and easily accessible topographic,
vegetation, and meteorological features to predict the SAR-derived root-zone soil moisture.
By doing so, this method can be applied to a broader array of environments and regions to
increase its application external to this work.

2.3.1. Topographic Features

Topographic features were derived from an Interferometric Synthetic Aperture Radar
(IfSAR) Digital Terrain Model (DTM) of Alaska with a 5 m spatial resolution (data available
from http://ifsar.gina.alaska.edu/ accessed on 29 October 2021) The DTM differs from its
accompanying data product, a Digital Surface Model (DSM), by the removal of vegetation
and man-made feaures resulting in bare earth elevations. Using ArcGIS 10.8, we created
rasters for elevation, slope, curvature, and topographic position index (TPI). Additionally,
we calculate the SAGA (System for Automated Geoscientific Analyses) wetness index (SWI)
using QGIS. Each of these indices is described below. The reason for using both programs
is because the mapping of points to raster values is more efficient in QGIS and the SAGA
tools were easier to implement. However, the same results can be achieved by both.

http://ifsar.gina.alaska.edu/
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Figure 2. An example soil profile for a given pixel of the Chen et al. (2019) product. Each pixel
has a surface roughness h, which is constant between the August and October SAR backscatter
retrievals. The saturated active layer has a consistent dielectric (ε2) constant that depends only on
the soil porosity. Between retrievals of the SAR instrument, the depth of the unsaturated surface
layer (Z1) and the dielectric constant of the unsaturated surface layer(ε1) change. Z2 is the depth of
the active layer which is assumed to not vary substantially between maximum thaw (August) and
partially frozen (October) in which most of the freezing occurs from the top down. The square labeled
‘TL_SAR_4’ is a ground-truthing plot established by the Next Generation Ecosystem Experiment
Arctic (NGEE Arctic) with labeled points representing in situ soil moisture observations. Figure is
adapted from Chen et al., 2019, Figure 3 [41].

In Arctic regions, spatially extensive soil moisture measurements are challenging and
expensive to obtain, thus terrain-based surrogates, such as wetness indices are commonly
used. Thus, TPI and SWI reflect topographic controls on the spatial variation of soil
moisture, and do not consider precipitation events, vegetation, or soil conditions [50].
These indices generally represent spatial distributions of soil moisture based on the flow of
water over the landscape and have been shown to work best for predicting soil moisture
deeper (>0.4 m) in the land surface [50–52].

TPI measures the relative topographic position of a central pixel as the difference be-
tween the elevation of the central pixel and the mean elevation of the neighboring pixels [53].
Positive and negative values correspond to ridges and valleys, respectively, while zero
values correspond generally to flat areas. TPI has been used to classify morphological
landscapes for environmental analysis [54,55].

The SAGA Wetness Index (SWI) is a modification of the commonly used topographic
wetness index (TWI) [56], adapted to detect small changes in elevation in regions with low
relief by using an iterative modification of the specific catchment area [57]. SWI is applied
as a proxy for soil water accumulation (Equation (3)) [58,59].

SCAM = SCAmax

(
1

15

)βexp (15β)
for SCA < SCAmax

(
1

15

)βexp(15β)

SWI = ln( SCAM
tanβ )

(3)

where β is the slope angle, SCA is the specific catchment area, SCAM is the modified specific
catchment area, and tan (β) is the local slope [60].
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2.3.2. Vegetation Features

Using the Google Earth Engine (GEE) Code Editor and the GEE Data Catalog, we
downloaded Landsat 8 Collection 2 (Analysis Ready Data, ARD) imagery for the ROI to
estimate vegetation features [61]. Using a cloud threshold of 80%, we took the median of
images collected within one week (before/after) of the flights for years 2016, 2017, and
2018. Clouds were then masked using the FMask v3.3.1 algorithm [62] as well as the
simpleCloudScore function (<20% cloud probability accepted) in GEE. We took the median
pixel value from images that covered more than 50% of the region of interest to get a
complete cloud-free mosaic

We calculated three vegetation indices using the Landsat mosaic including the Nor-
malized Difference Vegetation Index (NDVI), the Landsat Enhanced Vegetation Index (EVI),
and the Tasseled Cap Greenness (TCG) index [63,64]. The NDVI is among the most used
Landsat indices because it quantifies the greenness of vegetation. NDVI is calculated
from near-infrared light and visible wavelengths and ranges from −1 to 1, with values
closer to one representing the most dense and green leaves. NDVI has been used to assess
vegetative change in above-ground biomass and quality across landscape scales [65–70].
Landsat Enhanced Vegetation Index (EVI) reduces atmospheric influences while being
more sensitive in regions with high biomass by decoupling the atmospheric influences from
the canopy background signal [71]. TCG incorporates more bands than NDVI and has been
shown to better approximate vegetation biomass [72]. While random forest models are
well equipped to handle correlated features, we included only the single highest scoring of
the three vegetation indices in each final model [73].

2.3.3. Meteorological Features

Meteorological variables are key to soil moisture distributions on a landscape, however
fine-scale measurements over vast and remote areas of Alaska are sparse. Wind and
radiation indices based on topography (slope/aspect) help to account for these important
processes in our model and represent peak snow depth and the sum of radiation for
each pixel.

Solar radiation is distributed unevenly on north and south-facing slopes, creating
soil temperature variations that impact evapotranspiration and hence, soil moisture con-
ditions [10,74,75]. Therefore, radiation was included as a predictor feature through the
use of the Areal Solar Radiation (ASR) tool in ArcGIS 10.8, which calculates the sum solar
insolation (WH/m2) for a given digital terrain model, period of time, and latitude. In this
case, summer ASR was calculated between 1 May 2017 and 1 October 2017 to capture the
entirety of the snow-free season.

Wind is also a critical driver of evapotranspiration patterns, however local wind speed
and direction are challenging to predict over large areas with sparse data. Wind-borne
transport of snow occurs at speeds above 6 m/s where it is eroded from windward slopes
and deposited on leeward slopes [76]. A wind factor from −1 to 1 is used to show the
change in angle from a windward to a leeward slope, where leeward slopes are negative [77].
In this case, the predominant direction of the wind was from the East (90 deg), we use
Equation (4). More detail can be found in Appendix A.1.

W f (A) = −sin(A) (4)

where W f is the wind factor and A is the aspect of the slope in radians.

2.4. Modelling

A random forest model was chosen to account for the nonlinear relationships between
predictor features and the SAR-derived root-zone soil moisture product from Chen et al.,
2019. Random forests are based on decision trees composed of yes/no binary choices to
predict a dependent or response variable. Each tree considers a different combination of
questions that generate a “vote” for the class (classification) or mean prediction (regression),
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and the one with the most votes is used as the final prediction. By using an ensemble with
many trees, random forest models mitigate the errors made by individual trees to make
robust predictions.

The random forest approach is useful because it handles both categorical and con-
tinuous variables, is efficient on a large database, is less influenced by outliers, implicitly
handles collinearity of variables, and can be applied to determine feature importance [78].
Disadvantages of random forest models are that it can be hard to separate the impact of
individual variables as they are rooted deeply in various trees. Random forest models
were constructed using the RandomForestRegressor within the Python scikit-learn pack-
age. Scoring of models is assessed using the coefficient of determination (R2) because it is
normalized between 0 and 1, making it more easily interpretable as a best fit statistic.

Feature importance in random forests are commonly calculated in two ways: impurity
feature importance and permutation feature importance. Impurity importance, also known
as Mean Decrease in Impurity (MDI), is proportional to the total number of splits that
each feature divides across all trees in the random forest, where features with more splits
are more important [78]. MDI feature importance is computationally cheap but can be
biased towards features with more possible split points, thus it can suffer from overfitting.
Permutation importance, also known as Mean Decrease in Accuracy (MDA), is based on the
decrease in model performance when a single feature is randomly shuffled, more important
features result in larger decreases in performance when permuted [78]. In selecting scales
and features, we opted for MDA because it tests the impact of the variables itself rather than
using a statistical analysis of the tree structure, which may be influenced by overfitting.

Cross-validation (CV) was performed at every step of the fitting procedure to mitigate
overfitting and ensure consistent results. We use a cross-validation procedure in which a
random 80% of the dataset was selected for training and 20% withheld for testing during
each model run. This is instituted using sklearn’s ShuffleSplit function.

The fitting procedure consists of an initial resolution selection, hyperparameter tuning,
recursive feature elimination, collinearity analysis (Pearson’s Correlation, Variance Inflation
Factor, VIF), and the final resolution selection. A diagram of this procedure is shown in
Figure 3.

2.4.1. Selecting Resolutions

The initial dataset contains all ten features at six separate resolutions (30 m, 60 m,
90 m, 120 m, 180 m, 240 m). All features were normalized to a mean value of 0 and a
standard deviation of 1. Initial resolutions were selected from the highest scoring resolution
for each of the ten features based on the MDA score with a cross-validation of 30. After
tuning hyperparameters, recursive feature elimination, and eliminating features based
on collinearity, the final feature resolutions were identified using a grid search with a
cross-validation of 5.

2.4.2. Tuning Model Hyperparameters

Tuning a random forest involves changing parameters that define the shape of indi-
vidual decision trees. There are numerous hyperparameters that can be used to create an
efficient and accurate random forest model. These parameters include: the total number
of trees (ntrees), the maximum depth of each tree (max_depth), the minimum number
of samples required to split an internal node (min_samples_split), the minimum number
of samples required to be at a leaf node (min_samples_leaf), the number of features to
consider when looking for the best split (max_features), and whether bootstrapping is used.
To find the best hyperparameters, we perform a grid search over ranges of values for each
parameter. In total, we fit 118 different configurations with a cross-validation of 5.
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When working with random forest models, the number of trees and the maximum
depth of each tree generally required the most tuning. In Figure 4, we show that the
maximum depth of each tree (max_depth) has a more dramatic effect than the number of
trees (ntrees) in determining the score of the model.

Tuning results for all depths were very similar, so we opted to use the same hyperpa-
rameters for all three models. Final hyperparameters are provided in Table A2.

2.4.3. Recursive Feature Elimination

Feature selection was determined using a recursive feature elimination method in
which variables are eliminated one at a time based on their MDA importance until there
are just two features remaining. Resolutions used in this stage are based on results of the
previous step. We use cross-validation of 5 to eliminate the least important feature from ten
variables to two. We determine the number of variables for each fit based on where the
elimination of a variable results in a loss of >2.5% of the initial coefficient of determination
with all ten variables.

2.4.4. Pairwise Correlation and Multicollinearity

After selecting the best performing feature resolutions, we computed pairwise correla-
tion with Pearson’s coefficients as shown in Figure 5.
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Figure 5. Hierarchical clustering dendrogram based on Ward’s method (left) [79] and Pearson’s cor-
relation matrix (right) of the ten predictor features at the highest resolution considered in this study.
Four main clusters are identified: vegetation features: NDVI, EVI, and TCG; major topography fea-
tures: elevation, slope, and SWI; minor topography features: curvature and TPI, and meteorological
features: ASR and the wind factor.
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Using the Pearson’s correlation matrix as distances, Ward’s method identifies clusters
of similar variables. The clustering analysis shown on the left side of Figure 5 identifies four
groups of features: the Landsat-8 derived vegetation features, major topography, minor
topography, and meteorological factors. The major topographic cluster includes elevation,
slope, and SWI. SWI is negatively correlated with slope, which is in turn correlated with
elevation (e.g., high elevations are generally mountain peaks that are characterized by
steep slopes). The minor topographic cluster includes curvature and TPI which are both
useful in identifying ridges and valleys. They show a moderate correlation (0.39 for TPI and
curvature) with each other. The final cluster included the meteorological features: wind and
ASR. Both features address important meteorological influences on soil moisture through
the redistribution of snow and total summer radiation based upon topographic exposure.
In addition to testing for pairwise correlation, we assess the presence of multicollinearity in
the final models and between all variables using the variance inflation factor (VIF) shown
in Figures A2 and A3. All VIF values are well below the accepted threshold of five [80]
except for the vegetation features.

3. Results
3.1. AirMOSS P-Band SAR-Derived Soil Moisture Product

The SAR-derived soil moisture product for the ROI contains ~2.3 million observations
with a mean VWC and a standard deviation of 0.26 +/−0.07, 0.38 +/−0.11, 0.52 +/−0.10
(%/100) for 6 cm, 12 cm, and 20 cm soil depths, respectively. Additionally, the mean error
of the reported 6 cm, 12 cm, and 20 cm VWC values are 0.04, 0.15, and 0.25 (%/100) based
on uncertainty associated with the retrieval of the dielectric constant ε1 and the depth of
the surface layer z1. The minimum VWC value detected by the SAR instrument was 0.08
(%/100) and the maximum was 0.76 (%/100). In all cases, the soil moisture of deep layers
is greater than shallow regions because the lower active layer, which lies just above the
permafrost layer, is assumed to be saturated.

The soil moisture predictions based on random forest models compared to the SAR-
derived soil moisture for 6 cm, 12 cm, and 20 cm depths are shown in Figure 6. In each case,
the predicted soil moisture distribution is narrower than the SAR-derived values but has a
similar mean value. The predicted distributions are more normally distributed whereas the
SAR-derived values for deeper soils (12 cm, 20 cm) are broader.
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3.2. Random Forest Modeling

Through several different tests, we determined the optimal features and resolutions
used in the final models. Initial training included a fit of all 60 feature/resolution combi-
nations to determine initial resolutions for each feature using shuffled cross-validation of
30. We tuned the hyperparameters including the number of trees and the depth using a
grid search approach with 118 combinations and shuffled cross-validation of three (final
parameters can be found in Table A2). Next, we performed recursive feature elimination
based on elimination of the least important feature from ten variables to two. The number
of variables included in the final fit for each depth is determined as the point at which loss
to the model exceeds 2.5% of the coefficient of determination of the fit with all ten features
(Figure 7). Based on these criteria, the 6 cm fit should have seven variables while the 12 cm
and 20 cm fits should each have five variables.
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Figure 7. Results of a recursive feature elimination based on feature scales identified in the all-feature
model. In the left-hand plots, we show an increase in the R2 of the test scores as the number of
features increases. The dashed red line indicates a threshold of 2.5% used to identify the number
of features used in the final model for each depth. The right-hand side plots show the permutation
feature importance (MDA) for the features included in each model fitting stage. We show plots for
6 cm, 12 cm, and 20 cm soil depths.
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After identifying the number of features, we look at feature correlations and multi-
collinearity. In the 6 cm fit, we eliminated the slope feature as it was less important than
SWI. The largest pairwise correlation coefficient between features in the final models are
well below the accepted threshold of 0.7, with the exception of slope, elevation, and SWI.
SWI and slope have the highest correlation, therefore we only include the best performing
in the final model. While elevation and SWI are negatively correlated (−0.72), we chose to
include them because the variance inflation factors remain low (<5) [80], random forests
have been proven to deal well with collinearity between predictor features [81], and mod-
els performed significantly (>2.5%) better when including both SWI and elevation in the
same model.

The final step was to determine the final feature resolutions through a grid search
approach with shuffled cross-validation of five. Final model predictions and feature
importances (MDA) for 6 cm, 12 cm, and 20 cm VWC are shown in Figure 8.
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Figure 8. Relationship between SAR-derived soil moisture and random forest soil moisture predic-
tions at 6 cm, 12 cm, and 20 cm. The dashed black line is the 1:1, the solid red line is the result of a
robust linear regression (Huber), distributions for both the predicted and SAR-derived soil moisture
are shown on the sides of the plot. On the right side of the figure are feature importances (MDA) for
input features for the final fits at each depth in the soil column.
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Training and test scores for each model are given in Table 1. The 6 cm model captured
45% of the variance in VWC and has an RMSE of 5.0% on the test set. The 12 cm model
captured 52% of the variance in VWC and has an RMSE of 7.6% on the test set. The 20 cm
model captured 58% of the variance in VWC and has an RMSE of 6.6% on the test set.

Table 1. Final random forest model parameters and scores.

Depth Features (In Order of Decreasing
Permutation Importance) Train R2 Test R2

6 cm
NDVI @240 m, SAGA Wetness Index @240 m,
Elevation @30 m, Curvature @240 m, Areal

Solar Radiation @120 m, Wind Factor @60 m
0.654 0.447

12 cm
Elevation @240 m, Areal Solar Radiation

@240 m, SAGA Wetness Index @240 m, Wind
Factor @120 m, Curvature @240 m

0.587 0.517

20 cm
Elevation @240 m, SAGA Wetness Index
@240 m, Areal Solar Radiation @120 m,
Curvature @240 m, Wind Factor @60 m

0.713 0.576

3.3. Feature Importance

Figure 8 shows the permutation feature for the final models. At the shallowest depth
(6 cm), vegetation is the most important feature, but in the deeper models its importance
becomes insignificant. Overall, elevation and SWI are the important features for predicting
VWC distributions across these regions of the Seward Peninsula. In the 12 cm and 20 cm
layers, ASR joins elevation and SWI as the three most important features. TPI did not have
a significant effect on any of the final models.

4. Discussion

The fate of permafrost in Earth System Models (ESMs) remains highly uncertain as
estimates of permafrost carbon-climate feedbacks vary greatly [82]. Soil moisture in the
changing Arctic has important implications for land-atmosphere carbon exchange, vegeta-
tion distribution, local hydrology, and the thermal regime of underlying permafrost [4–6,10].
Field studies indicate that warming and drying lead to higher soil respiration and laboratory
studies indicate that carbon losses increase with increased hydrologic drainage [8,83,84].
In the presence of increased saturation of Arctic soils (due either to projected increases
in precipitation or ponding caused by thermokarst), microbial decomposition is likely to
emit a higher proportion of methane (CH4) to carbon dioxide (CO2) than in dry environ-
ments [85]. These local-scale changes, in turn, will have dramatic influence on the global
carbon cycle and contribute to climate change [86]. The inclusion of remotely sensed soil
moisture products in ESMs has been shown to improve the estimation of soil tempera-
ture for permafrost regions [87]. Further understanding of environmental controls on soil
moisture at larger scales is critical to improving future studies and models in regions with
discontinuous permafrost.

In the absence of highly localized precipitation data across regional scales, secondary
factors like topography, vegetation, and meteorological factors play an important role in
the redistribution of water through the environment. Using random forest models, we
quantify the contribution of individual features and resolutions across three soil depths in
the root-zone (6 cm, 12 cm, and 20 cm) that correspond to typical sampling depths specified
by NASA ABoVE in situ measurement protocols (see data availability section for details on
in situ sampling procedure).

Regional-scale soil moisture estimates from SAR instruments are an important step
in moving from field-based observations to global representations. Our results, based
on a regional product over discontinuous permafrost, indicate that vegetation (NDVI) is
the most important factor influencing shallow depths (6 cm). However, deeper in the
soil column, the influence of vegetation is replaced by topographic and meteorological
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controls. Thus, as shrubs expand northward in the Arctic, near-surface water availability
may decrease as these shrubs use the water for important ecohydrological functions [88].
Changes deeper in the soil column will likely be increasingly influenced by the formation
of hydrologic pathways driven by topography as permafrost thaw continues.

Drivers of soil moisture distributions in regions underlain by permafrost are under-
studied when compared to lower latitude regions. There have been in situ studies of
individual drivers of soil moisture in permafrost regions [10,14–16], but few studies ad-
dress how these drivers compare to one another [89]. No other study we are aware of
attempts to quantify the role of individual features in soil moisture distributions in regions
with discontinuous permafrost using P-band SAR that is capable of covering regions neces-
sary for the validation of ESMs. Our study presents a novel approach to understanding
the importance of individual drivers across the root zone of regions with discontinuous
permafrost. These findings are critical to improving ESMs and regional datasets used in
their validation. Additional studies of the in-situ data associated with the NASA ABoVE
campaign would greatly contribute to these findings.

4.1. Decreasing Importance of Vegetation in The Soil Column

As depth in the soil column increases, the importance of vegetation in the model
decreases. In these modeling efforts, we use only continuous measures of vegetation:
NDVI, EVI, and TCG. Coarse-scale NDVI is the most important variable explaining the
variance of soil moisture at 6 cm across the landscape. However, no vegetation features are
included in the final 12 cm and 20 cm models. This is reflective of the shallow rooting depth
of many Arctic tundra species, where the average rooting depth in tundra environments is
just 0.5 +/−0.1 m [90].

In the Arctic, increases in NDVI have been attributed to the expansion of decidu-
ous shrubs [65]. Areas dominated by tall willow and alders, trap snow readily creating
both a greater availability of water as well as moisture demand during the growing sea-
son [18,90–92]. Binning of the interaction between NDVI at 240 m and VWC at 6 cm, shows
a peak at an NDVI value of ~0.5 and a local minimum at ~0.8 as shown in Figure A4. High
NDVI values are associated with dense patches of alder/willow shrubs [65,88,93,94]. This
suggests that alder/willow shrublands deplete the water available in the upper layer of
soil by this mid-August observation and therefore are a dominant factor in the final fit for
6 cm. The expansion of alders shrubs is correlated with a deepening of the active layer
and increased evapotranspiration, both of which lead to lower soil moisture [95]. This
conclusion is corroborated by field observations in the region showing that soil moisture
at 15 cm in low-lying alder savannas was much greater than in taller alder shrublands
(51.1% vs. 30.4%, p = 0.01, [96]) [97]. It is worth noting that elevation becomes the most
important feature in the model for fits at 12 cm and 20 cm. This could be due to a variety
of factors including increased precipitation at high elevations [98,99], higher wind speeds
leading to an increased redistribution of snow [99–101], and the draining of water to lower
elevations [102,103].

4.2. Increasing Accuracy of Models at Greater Depths in The Soil Column

As depth in the soil column increased, the performance of our random forest models
increased, while requiring fewer predictive features. This may be because subsurface
hydrologic pathways are controlled by frost table topography and broad-scale topogra-
phy [104,105]. This is supported by the resulting importance of elevation, SAGA Wetness
Index (SWI), and Curvature at 240 m scale in the 12 cm and 20 cm models. The resolution
of the initial SAR-derived soil moisture dataset (30 m) may not be fine enough to identify
localized changes in hydrology caused by the development of taliks, which allow hydro-
logic drainage to sub-permafrost layers. With a finer resolution, the presence and state of
permafrost could be inferred through study of soil moisture patterns in discontinuous per-
mafrost regions. Our results demonstrate that controls on soil moisture spatial distribution,
in a discontinuous permafrost landscape, differ based on depth in the soil column, with
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varying importance of factors that also depend on depth. An analysis of controls on in situ
soil moisture measurements in this region would bolster this result but is outside the scope
of the current work.

4.3. Importance of Winter Snow Accumulation on Soil Moisture

Snow plays a fundamental role in controlling water availability, soil temperature, and
moisture, which in turn affects all components of Arctic ecosystems [106,107]. As snow
melts in spring and summer, localized regions of deep snow, driven by curvature, wind
(slope/aspect), elevation, and microtopography, maintain cold temperatures and increase
water availability into the growing season. In a positive feedback loop, this can lead to
increased growth of deciduous shrubs that are known to trap snow during wind redistri-
bution [76,108,109]. Fine-scale (10–100 m) snow water equivalent (SWE) distributions at
regional scales would improve our understanding of summer soil moisture distribution.
However, in its absence, we include a wind factor to account for the redistribution of snow
in predicting soil moisture. It is well documented that snow is blown off windward facing
slopes and accumulates on leeward slopes [106,110,111]. Wind proved to be a significant
variable at all depths, however, it generally was one of the least important in predicting the
soil moisture distribution. This could be due to the complicated interaction between the
trapping of snow by tall shrubs and their increased water uptake, or the capacity of our
simple wind index to capture wind effects.

4.4. Mitigating Collinearity and Overfitting in Random Forest Modelling

De-correlation effects from bootstrapping make predictions from the random forest
robust to collinearity between features [81]. This is very important because collinearity is
inherent to topographic, vegetation, and meteorological features that are often driven by
their interaction. We test for both collinearity and multicollinearity before finalizing the
model results. Thus, we eliminate highly correlated features in the final model [81]. We
also assess for multicollinearity using the VIF between predictor features.

We reduce overfitting throughout the fitting process by cross-validating results and
tuning hyperparameters that dictate the number and depth of trees. Random forest models
leveled out with a maximum depth of 30 and 50 trees, but parameters min_samples_leaf
and min_samples_split had less dramatic influences on the final scores of each model.

Throughout the fitting process, the importance of selected features are highly stable
because of the very large number of observations in the P-Band SAR product. For each stage
of testing, the dataset was separated into training (80%) and testing (20%) sets to ensure
that we have an adequate sample for both. With nearly 2.4 million pixels, training sets
of 80% can represent many different environments. In addition, to separate training and
testing data, we also used bootstrapping for each model and tested the Out Of Bag (OOB)
error and found that values were comparable with the cross-validated test scores (R2).

While the final R2 values could be considered low when compared with more con-
strained problems, here we purposefully do not include the key input to soil moisture,
precipitation, to better constrain secondary features. These secondary features, topography,
vegetation, and derived meteorological indices, are responsible for the redistribution of
water throughout the ecosystem. By fitting for secondary features, we help global scale
models identify critical variables for predicting future soil moisture distributions and in
turn greenhouse gas emissions in regions underlain by permafrost. However, the p-values
associated with our random forest model are very low because of the high number of
observations and give us confidence in the significance of these results.

4.5. Other Key Controls on Soil Moisture

To increase the accuracy of our soil moisture predictions we need to account for fine-
scale microtopography and improved soil texture data in the region. Near-surface soil
moisture has been shown to be influenced by local microtopography that allows for the
accumulation of precipitation in Alaskan permafrost environments [112]. Due to the scale
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of the SAR-derived soil moisture product, the direct impact of fine-scale microtopography
is unable to be confirmed in our modelling efforts. Heterogeneity of soil moisture over
short scales (<10 m) are below the grid size for many modern remote sensing techniques
as well as modelling efforts. With improved resolution, future SAR missions may become
capable of monitoring fine-scale soil moisture in hydrologically complex regions such as
the sites described in this work.

In Arctic regions, soil texture data is limited and sparsely distributed resulting in
coarse spatial distributions of soil properties that would not aid in the derivation of the
soil dielectric constant from radar backscatter. Physical properties of soil including grain
size, bulk density, temperature, and organic matter content dictate the water storage
capacity [10,28,113], therefore there is a great need for improved soil classifications across
Western Alaska. The derivation of soil moisture from P-Band SAR backscatter employed
in Chen et al. 2019, uses a constant ratio of the imaginary to the real part of the soil
dielectric constant (ε”/e’) of 0.15. For the purpose of this study, we were advised to use
the general soil parameters for calibrating our in-situ Time Domain Reflectometry (TDR)
soil moisture probes (HydroSense CS620), thus the SAR-Derived soil moisture product was
also calibrated using the general soil calibration parameters [49]. These general calibration
parameters seem to overestimate the capacity of these soils to store water as evidenced by
the maximum volumetric water content recording of 0.76 (%/100).

4.6. Inherent Limitations of The SAR-Derived Soil Moisture Product

All of this work is based on training a P-Band SAR product that has inherent as-
sumptions. The product as described in Chen et al. (2019), assumes a two-layer (surface
and saturated layers) dielectric model for the active layer that approximates the actual
soil dielectric profile that in reality could be influenced by soil organic matter and soil
texture. As previously stated, we used the general calibration coefficients based on Alaskan
soils [49]. The P-Band product only covers areas that are bare soil or lightly vegetated
because the forward scattering model used does not apply to forested pixels.

The dielectric model also assumes that certain characteristics remain constant between
August and October observations, including the surface roughness and the depth of the
active layer. The freezing of the active layer occurs from the top down as well as from
the bottom up. Freeze-up of the active layer occurs gradually while the ground surface
temperature is below 2 ◦C but above 0 ◦C [114,115]. At a meteorologic station situated
within the ROI surface (1.5 m) air temperatures and soil temperatures at a depth of 5 cm do
not go below 2 ◦C consistently until 15 October 2017. Thus we assume that freezing from
the top and from the bottom of the active layer does not begin until after the 10 October
2017 data collection date.

While Chen et al. (2019), provides ground-based validation for the derived active
layer thickness using measurements from Circumpolar Active Layer Monitoring sites,
they do not address validation of the root-zone soil moisture within the paper. However,
researchers have validated the retrieval of root-zone soil moisture from P-band SAR in
sub-arctic environments [116]. In-situ measurements taken coincident with SAR flights
at three NGEE-Arctic field sites within the ROI are presently insufficient to validate this
particular swath and further effort to provide in-depth validation measures is outside the
scope of this study.

The dielectric model assumes that the lower layer of the active layer is saturated as
it lies just above the nearly impermeable permafrost layer. However, due to the presence
of taliks, and other subsurface permafrost drainage features, lower layers of permafrost
may not always be wetter than the surface layers. This assumption in the model may
apply better in regions of continuous permafrost than in more complex regions such as the
Seward Peninsula. Talik features may be present at sub-pixel scales, but their impact on
hydrologic drainage could extend beyond the bounds of a single pixel.
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5. Conclusions

Root-zone soil moisture is a dominant control on the surface energy balance, carbon
fluxes, and vegetation distribution in permafrost landscapes. However, soil moisture pre-
dictions in earth system models which rely heavily on soil moisture to approximate carbon
fluxes in permafrost environments, vary greatly between different models [117]. The devel-
opment of P-Band synthetic aperture radar as a tool for estimating active layer properties,
including its thickness and soil moisture, is an opportunity to understand complex interac-
tions between vegetation, soil, and water. Until recently, soil moisture studies in remote
regions of Alaska have been limited to either discrete in-situ measurements limited in both
time and space, or very coarse surface soil moisture measurements. Regional soil moisture
products (such as Chen et al. 2019) are bridging the gap by estimating soil moisture within
the root zone at finer (10–100 m) resolutions for permafrost regions. In this work, we used
random forest models trained on common topographic, vegetation, and meteorologically
based features to predict soil moisture distributions based on training datasets with these
SAR-derived observations. By doing so, we hope to improve the accuracy with which
ESMs approximate soil moisture in regions with discontinuous permafrost.

Results of our work indicate that the primary variables impacting the distribution
of soil moisture differ throughout the soil column. At 6 cm, NDVI is the most important
variable in determining the soil moisture, however, deeper in the soil column (12 cm and
20 cm) we observe a decay in the importance of vegetation features. Vegetation control
on shallow soil moisture is likely due to increased water uptake by willow/alder shrub
complexes, leaving these sites drier by the mid-August observation used in this project. At
12 cm and 20 cm soil depths, the most important features are coarse resolution topography
and proxies for meteorology (radiation + wind). Additionally, both the 12 and 20 cm depths
are easier to predict owing to greater insulation from surface features and processes that
increase soil moisture variability, including vegetation and evapotranspiration.
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Appendix A

Appendix A.1. Wind Factor Derivation

To derive predominant wind direction, we downloaded weather station data from
nearby airports [Teller (PATE), Nome (PAOM), and White Mountain (PAWM)] to obtain
the wind directions between 1 October to 1 May for winds in excess of the snow transport
threshold (i.e., 6 m/s) [76]. The average wind speed for the stations were: 3.75 m/s (PAOM),
5.1 m/s (PATE), and 4.1 m/s (PAWM). The average wind direction (>6 m/s) were: 80.7 deg
(PAOM), 91.2 deg (PATE), and 53.4 deg (PAWM). Based on this we use Equation (4) based
on an easterly wind as shown in Figure A1 [77].
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Figure A4. Boxplots of the VWC at 6 cm binned by the most predictive feature (NDVI @ 240 m)
showing a peak at ~0.5 and a local minima at ~0.8.

Table A1. Coefficients used to calibrate in situ and SAR-derived volumetric water contents for general
Alaskan soil types [49].

Group Probe Probe Depth A B C R2 Standard
Error

General Hydrosense II 20 cm 7.693 1.641 −12.341 0.8873 5.773

General Hydrosense II 12 cm −24.28 134.55 −110.245 0.8294 7.102

Table A2. Final hyperparameters for the random forest model runs after the grid search selection.

Model Number of
Trees Max Depth Max

Samples Min_Samples_LeafMin_Samples_SplitBootstrap Max
Features

6 cm 50 30 0.8 1 10 True sqrt

12 cm 50 30 0.8 1 10 True sqrt

20 cm 50 30 0.8 1 10 True sqrt
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