Remote Sensing on Alfalfa as an Approach to Optimize Production Outcomes: A Review of Evidence and Directions for Future Assessments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Content Analysis
3. Results
3.1. Overview of Remote Sensing Platforms Used to Assess Alfalfa Biomass and Quality
3.2. Assessing the Performance Prediction of Approaches for Alfalfa Biomass and Quality
3.3. Potential Wavelengths and Vegetation Indices for Assessing Alfalfa Biomass and Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Production and quality indicators | |
DB | Dry biomass |
WB | Wet biomass |
CP | Crude protein |
NDF | Neutral detergent fiber |
NDFd | Neutral detergent fiber digestibility |
aNDF | Ash-corrected neutral detergent fiber |
ADF | Acid detergent fiber |
Methods for prediction or estimation | |
ANN | Artificial neural networks |
BRT | Boosted regression trees |
GPR | Gaussian process regression |
KNNR | K-nearest neighbor regression |
LASSO | Least absolute shrinkage and selection operator |
LR | Linear regression |
MLR | Multiple linear regression |
MPLSR | Modified partial least squares regression |
MTL | Multi-target learning |
NLR | Non-linear regression |
PLSR | Partial least squares regression |
RFR | Random forest regression |
RIDGE | Ridge regression |
SLR | Stepwise linear regression |
STL | Single-target learning |
SVR | Support vector regression |
Boruta, GS, RReliefF | Feature selection method |
Non-spectral data | |
T | Temperature |
M, U and L | Indicates the measured upper limit and lower limits [32] |
GDUbase-5 and GDUALT | Cumulative growing degree units [26] |
meanG and medianG | Chromatic greenness [23] |
Remote sensing data | |
Levels of a near-infrared reflectance scalar [25] | |
Wavelength, nm | |
BNDVI | Blue normalized difference vegetation index |
BWDRVI | Blue-wide dynamic range vegetation index |
CARI | Chlorophyll absorption ratio index |
CARTE | Carter index |
CI | Curvature index |
CWSI | Crop water stress index |
DATT | Double difference index |
DCNI | Double peak canopy nitrogen index |
EVI | Enhanced vegetation index |
GITELSON | Gitelson index |
GNDVI | Green normalized difference vegetation index |
IPVI | Infrared percentage vegetation index |
MBVI | Multiple-band vegetation index |
MCARI | Modified chlorophyll absorption ratio index |
MCARI/OSAVI | Combined MCARI/OSAVI |
MND705 | Modified normalized difference vegetation index |
MNLI | Modified non-linear index |
MSR | Modified simple ratio |
MSR705 | Modified simple ratio index |
MSRI | Modified simple ratio index |
MTCI | Meris terrestrial chlorophyll index |
MTVI | Modified triangular vegetation index |
NDCI | Normalized difference cloud index |
NDLI | Normalized difference lignin index |
NDNI | Normalized difference nitrogen index |
NDRE | Normalized difference red edge |
NDSI | Normalized difference spectral index |
NDTI | Normalized difference tillage index |
NDVI | Normalized difference vegetation index |
NVI | New vegetation index |
OSAVI | Optimized soil-adjusted vegetation index |
PHORI | Photochemical reflectance index |
PHYRI | Physiological reflectance index |
RDVI | Renormalized difference vegetation index |
RE | Red edge |
REIP | Red edge inflection point |
REP | Red edge position index |
SPVI | Spectral polygon vegetation index |
SRI | Simple ratio index |
TBVI | Two-band vegetation index |
TCARI | Transformed chlorophyll absorption in reflectance index |
TCARI/OSAVI | Combined TCARI/OSAVI |
TDVI | Transformed difference vegetation index |
TGI | Triangular greenness index |
VIOPT | Optimal vegetation index |
VOG | Vogelmann index |
WDRVI | Wide dynamic range vegetation index |
Appendix A
Biomass—Terrestrial Platform | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Year | Cutting Cycle | Plant Phase | Feature Input | Wavelength | Non-Spectral | Method | Performance R2 | Citation |
DB | 2005 | 2nd | 10% bloom | WDRVI = 0.1 | 770, 660 nm | - | NLR | 0.38 | [25] |
3rd | 10% bloom | BWDRVI = 0.05 | 770, 450 nm | 0.26 | |||||
4th | 25% bloom | WDRVI = 0.01 | 770, 660 nm | 0.85 | |||||
2nd, 3rd, 4th | 10–25% bloom | NDVI | 770 ± 15, 660 ± 10 nm | 0.68 | |||||
DB | 2014, 2015 | - | - | 551, 711, 712, 1073, 1077, 1087 nm | - | GDUALT | SLR | 0.85 | [26] |
DB | 2012, 2015 | - | 35 cm height and 10% bloom | NDSI RE NDSI DD | 940, 1122 nm 670, 780 nm 940, 1122 nm 749, 720, 701, 672 nm | - | NLR | 0.65 0.11 0.47 0.33 | [24] |
WB | 2011, 2012 | - | Sprouting and Flowering | 1528, 438, 499, 458, 1508 and 448 nm [First Derivative] | - | meanG and medianG | LR | 0.89 | [23] |
Biomass—UAV Platform | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Year | Cutting Cycle | Plant Phase | Feature Input | Wavelength | Non-Spectral | Method | Performance R2 | Citation |
DB | 2020 | - | - | Datt1, MCARI1, MTCI2, MCARI/OSAVI1,MTCI1, REP2, PRI[531,570], SR[675,700], NDVI[521,689], NDVI[717,732], REP1, TCARI/OSAVI1, NVI2, TCARI2, TCARI/OSAVI2 NDVI[720,820], Carte4, NDVI[734,750], VOG3, PRI[528,567], VOG2, NDRE, SRI[533,565], EVI, SRI[720,735] | 400–1000 nm | - | Ensemble | 0.87 | [30] |
WB | 2018 | 1st, 2nd | First Bloom | CSWL, MNL | 668 ± 5, 840 ± 20 nm, Tcanopy, Tair, M, U and L | - | MLR | 0.68 | [32] |
Biomass—Satellite Platform | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Year | Cutting Cycle | Plant Phase | Feature Input | Wavelength | Non-Spectral | Method | Performance R2 | Citation |
DB | 2014 | - | - | Sum(LSWI), AUC(LSWI), SumPeaks(LSWI) | 837 ± 24, 1603 ± 32 nm | - | GPR-Boruta | 0.91 | [33] |
Sum(NDVI), AUC(NDVI) | 837 ± 24, 655 ± 41 nm | ||||||||
AUC(SR), Sum+Slopes(SR) | 837 ± 24, 655 ± 41 nm | ||||||||
SumPeaks(EVI2), Sum| Slopes| (EVI2), Sum+Slopes(EVI2) | 837 ± 24, 655 ± 41 nm | ||||||||
2015 | - | - | Sum(LSWI), #Peaks(LSWI) | 837 ± 24, 1603 ± 32 nm | - | GPR-GS | 0.92 | ||
Sum(NDVI) | 837 ± 24, 655 ± 41 nm | ||||||||
AUC(EVI2), Sum + Slopes(EVI2), Sum| Slopes| (EVI2), Sum(EVI2) | 837 ± 24, 655 ± 41 nm | ||||||||
Sum(OSAVI), Sum+Slopes(OSAVI), Sum|Slopes|(OSAVI) | 837 ± 24, 655 ± 41 nm | ||||||||
2016 | - | - | AUC(LSWI), Sum(LSWI), SumPeaks(LSWI), #Peaks(LSWI) | 837 ± 24, 1603 ± 32 nm | - | GPR-RReliefF | 0.89 | ||
AUC(NDVI), Sum(NDVI) | 837 ± 24, 655 ± 41 nm | ||||||||
AUC(OSAVI), Sum(OSAVI) | 837 ± 24, 655 ± 41 nm | ||||||||
Sum(EVI2), Sum+Slopes(EVI2) | 837 ± 24, 655 ± 41 nm |
Biomass—Terrestrial Platform | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Year | Cutting Cycle | Plant Phase | Feature Input | Wavelength | Non-Spectral | Method | Performance R2 | Citation |
CP | 2014– 2015 | - | - | 551, 711, 712,1073, 1077, 1087 nm | - | GDUALT | SLR | 0.91 | [26] |
NDF | 2014– 2015 | - | - | 551, 711, 712, 1073, 1077, 1087 nm | - | GDUALT | SLR | 0.87 | |
2005– 2008 | - | Late bud to 10th Flower | 400–1349 nm | - | - | MPLSR | 0.77 | [27] | |
NDFd | 2014– 2015 | - | - | 551, 711, 712, 1073, 1077, 1087 nm | - | GDUALT | SLR | 0.87 | [26] |
ADF | 2005– 2008 | - | Late bud to 10th Flower | 400–1349 nm | - | - | MPLSR | 0.83 | [27] |
Biomass—UAV Platform | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Year | Cutting Cycle | Plant Phase | Feature Input | Wavelength | Non-Spectral | Method | Performance R2 | Citation |
CP | 2019 | 2nd | - | 400–1000 nm | - | - | SVR | 0.75 | [31] |
3rd | RFR | 0.81 | |||||||
4th | SVR | 0.77 | |||||||
2nd, 3rd, 4th | MTL | 0.84 | |||||||
aNDF | 2019 | 2nd | - | 400–1000 nm | - | - | SVR | 0.54 | |
3rd | RFR | 0.54 | |||||||
4th | SVR | 0.54 | |||||||
2nd, 3rd, 4th | MTL | 0.66 | |||||||
ADF | 2019 | 2nd | - | 400–1000 nm | - | - | SVR | 0.60 | |
3rd | RFR | 0.58 | |||||||
4th | SVR | 0.53 | |||||||
2nd, 3rd, 4th | MTL | 0.69 |
Appendix B
References
- Hoque, M.; Akash; Mondal, S.; Adusumilli, S. Chapter Eighteen—Way forward for sustainable livestock sector. In Emerging Issues in Climate Smart Livestock Production; Mondal, S., Singh, R.L., Eds.; Academic Press: New York, NY, USA, 2022; pp. 473–488. [Google Scholar] [CrossRef]
- Mottet, A.; Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Kayad, A.G.; Al-Gaadi, K.A.; Tola, E.; Madugundu, R.; Zeyada, A.M.; Kalaitzidis, C. Assessing the Spatial Variability of Alfalfa Yield Using Satellite Imagery and Ground-Based Data. PLoS ONE 2016, 11, e0157166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benami, E.; Jin, Z.; Carter, M.R.; Ghosh, A.; Hijmans, R.J.; Hobbs, A.; Kenduiywo, B.; Lobell, D.B. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nat. Rev. Earth Environ. 2021, 2, 140–159. [Google Scholar] [CrossRef]
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [Google Scholar] [CrossRef]
- Tao, H.; Xu, S.; Tian, Y.; Li, Z.; Ge, Y.; Zhang, J.; Wang, Y.; Zhou, G.; Deng, X.; Zhang, Z.; et al. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. Plant Commun. 2022, 100344. [Google Scholar] [CrossRef]
- Yu, H.; Kong, B.; Hou, Y.; Xu, X.; Chen, T.; Liu, X. A critical review on applications of hyperspectral remote sensing in crop monitoring. Exp. Agric. 2022, 58, e26. [Google Scholar] [CrossRef]
- Ali, A.M.; Abouelghar, M.; Belal, A.; Saleh, N.; Yones, M.; Selim, A.I.; Amin, M.E.; Elwesemy, A.; Kucher, D.E.; Maginan, S.; et al. Crop Yield Prediction Using Multi Sensors Remote Sensing (Review Article). Egypt J. Remote Sens. Space Sci. 2022, 25, 711–716. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Y.; Ma, M. Mapping Paddy Rice with Satellite Remote Sensing: A Review. Sustainability 2021, 13, 503. [Google Scholar] [CrossRef]
- Hanna, M.M.; Steyn-Ross, D.A.; Steyn-Ross, M. Estimating Biomass for New Zealand Pasture Using Optical Remote Sensing Techniques. Geocarto Int. 1999, 14, 89–94. [Google Scholar] [CrossRef]
- Schut, A.G.T.; Ketelaars, J.J.M.H. Monitoring grass swards using imaging spectroscopy. Grass Forage Sci. 2003, 58, 276–286. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Moran, E. Satellite Estimation of Aboveground Biomass and Impacts of Forest Stand Structure. Photogramm. Eng. Remote Sens. 2005, 71, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Calvão, T.; Palmeirim, J.M. Mapping Mediterranean scrub with satellite imagery: Biomass estimation and spectral behaviour. Int. J. Remote Sens. 2004, 25, 3113–3126. [Google Scholar] [CrossRef]
- Elfanssi, S.; Ouazzani, N.; Mandi, L. Soil properties and agro-physiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater. Agric. Water Manag. 2018, 202, 231–240. [Google Scholar] [CrossRef]
- Wang, S.; Guo, K.; Ameen, A.; Fang, D.; Li, X.; Liu, X.; Han, L. Evaluation of Different Shallow Groundwater Tables and Alfalfa Cultivars for Forage Yield and Nutritional Value in Coastal Saline Soil of North China. Life 2022, 12, 217. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Pang, X.P.; Xu, H.P.; Wang, J.; Zhang, W.N.; Guo, Z.G. Effect of partial root-zone drying irrigation (PRDI) on the biomass, water productivity and carbon, nitrogen and phosphorus allocations in different organs of alfalfa. Agric. Water Manag. 2021, 243, 106525. [Google Scholar] [CrossRef]
- Diatta, A.A.; Min, D.; Jagadish, S.K. Advances in Agronomy. Chapter Two—Drought Stress Responses in Non-Transgenic and Transgenic Alfalfa—Current Status and Future Research Directions; Academic Press: New York, NY, USA, 2021; Volume 170, pp. 35–100. [Google Scholar] [CrossRef]
- Gou, J.; Debnath, S.; Sun, L.; Flanagan, A.; Tang, Y.; Jiang, Q.; Wen, J.; Wang, Z.Y. From model to crop: Functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnol. J. 2018, 16, 951–962. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, C.D.; García-Gagliardi, P.; Antonietti, M.S.; Sánchez-Lamas, M.; Mancini, E.; Dezar, C.A.; Vazquez, M.; Watson, G.; Yanovsky, M.J.; Cerdán, P.D. Improvement of alfalfa forage quality and management through the down-regulation of MsFTa1. Plant Biotechnol. J. 2020, 18, 944–954. [Google Scholar] [CrossRef]
- Jiang, X.G.; Zhang, F.; Wang, Z.; Long, R.C.; Li, M.N.; He, F.; Yang, X.J.; Yang, C.F.; Jiang, X.; Yang, Q.C.; et al. Detection of quantitative trait loci (QTL) associated with spring regrowth in alfalfa (Medicago sativa L.). J. Integr. Agric. 2022, 21, 812–818. [Google Scholar] [CrossRef]
- Beeri, O.; Tarshish, R.; Pelta, R.; Shilo, T. Utilizing Optical Satellite Imagery to Monitor Temporal and Spatial Changes of Crop Water Stress: A Case Study in Alfalfa. Water 2022, 14, 1676. [Google Scholar] [CrossRef]
- Marshall, M.; Thenkabail, P. Developing in situ Non-Destructive Estimates of Crop Biomass to Address Issues of Scale in Remote Sensing. Remote Sens. 2015, 7, 808–835. [Google Scholar] [CrossRef] [Green Version]
- Garriga, M.; Ovalle, C.; Espinoza, S.; Lobos, G.A.; Pozo, A. Use of Vis–NIR reflectance data and regression models to estimate physiological and productivity traits in lucerne (Medicago sativa). Crop Pasture Sci. 2020, 71, 90. [Google Scholar] [CrossRef]
- Hancock, D.W.; Dougherty, C.T. Relationships between Blue- and Red-based Vegetation Indices and Leaf Area and Yield of Alfalfa. Crop Sci. 2007, 47, 2547–2556. [Google Scholar] [CrossRef]
- Noland, R.L.; Wells, M.S.; Coulter, J.A.; Tiede, T.; Baker, J.M.; Martinson, K.L.; Sheaffer, C.C. Estimating alfalfa yield and nutritive value using remote sensing and air temperature. Field Crop. Res. 2018, 222, 189–196. [Google Scholar] [CrossRef]
- Starks, P.J.; Brown, M.A.; Turner, K.E.; Venuto, B.C. Canopy Visible and Near-infrared Reflectance Data to Estimate Alfalfa Nutritive Attributes Before Harvest. Crop Sci. 2016, 56, 484–496. [Google Scholar] [CrossRef]
- Pittman, J.; Arnall, D.; Interrante, S.; Moffet, C.; Butler, T. Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors. Sensors 2015, 15, 2920–2943. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, A.B.; Shah, K.; Trammell, T.; Komp, M.; Hoffman, J.; Motes, C.M.; Monteros, M.J. High-Throughput Approaches for Phenotyping Alfalfa Germplasm under Abiotic Stress in the Field. Plant Phenome J. 2019, 2, 1–13. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Sun, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Multitask Learning of Alfalfa Nutritive Value From UAV-Based Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Chandel, A.K.; Khot, L.R.; Yu, L.X. Alfalfa (Medicago sativa L.) crop vigor and yield characterization using high-resolution aerial multispectral and thermal infrared imaging technique. Comput. Electron. Agric. 2021, 182, 105999. [Google Scholar] [CrossRef]
- Azadbakht, M.; Ashourloo, D.; Aghighi, H.; Homayouni, S.; Shahrabi, H.S.; Matkan, A.; Radiom, S. Alfalfa yield estimation based on time series of Landsat 8 and PROBA-V images: An investigation of machine learning techniques and spectral-temporal features. Remote Sens. Appl. Soc. Environ. 2022, 25, 100657. [Google Scholar] [CrossRef]
- Jain, M.; Balwinder-Singh; Rao, P.; Srivastava, A.K.; Poonia, S.; Blesh, J.; Azzari, G.; McDonald, A.J.; Lobell, D.B. The impact of agricultural interventions can be doubled by using satellite data. Nat. Sustain. 2019, 2, 931–934. [Google Scholar] [CrossRef]
- Ashapure, A.; Jung, J.; Yeom, J.; Chang, A.; Maeda, M.; Maeda, A.; Landivar, J. A novel framework to detect conventional tillage and no-tillage cropping system effect on cotton growth and development using multi-temporal UAS data. ISPRS J. Photogramm. Remote Sens. 2019, 152, 49–64. [Google Scholar] [CrossRef]
- Cavalaris, C.; Karamoutis, C.; Markinos, A. Efficacy of cotton harvest aids applications with unmanned aerial vehicles (UAV) and ground-based field sprayers – A case study comparison. Smart Agric. Technol. 2022, 2, 100047. [Google Scholar] [CrossRef]
- Mishra, P.; Asaari, M.S.M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.; Scheunders, P. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. 2017, 164, 49–67. [Google Scholar] [CrossRef]
- Zhou, Y.; Flynn, K.C.; Gowda, P.H.; Wagle, P.; Ma, S.; Kakani, V.G.; Steiner, J.L. The potential of active and passive remote sensing to detect frequent harvesting of alfalfa. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102539. [Google Scholar] [CrossRef]
- Malik, W.; Boote, K.J.; Hoogenboom, G.; Cavero, J.; Dechmi, F. Adapting the CROPGRO Model to Simulate Alfalfa Growth and Yield. Agron. J. 2018, 110, 1777–1790. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Kang, S.; Ding, R.; Zhao, Q. A crude protein and fiber model of alfalfa incorporating growth age under water and salt stress. Agric. Water Manag. 2021, 255, 107037. [Google Scholar] [CrossRef]
- HAJJ, M.E.; Baghdadi, N.; Cheviron, B.; Belaud, G.; Zribi, M. Integration of remote sensing derived parameters in crop models: Application to the PILOTE model for hay production. Agric. Water Manag. 2016, 176, 67–79. [Google Scholar] [CrossRef]
- Kasampalis, D.; Alexandridis, T.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of Remote Sensing on Crop Models: A Review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef]
Year | Citation | Study Region | Platform | Article Title | Source Title |
---|---|---|---|---|---|
2007 | [25] | Kentucky, USA | Terrestrial | Relationships between Blue- and Red-based vegetation indices and leaf area and yield of alfalfa | Crop Science |
2015 | [23] | California, USA | Terrestrial | Developing in situ non-destructive estimates of crop biomass to address issues of scale in remote sensing | Remote Sensing |
2015 | [28] | Oklahoma, USA | Terrestrial | Estimation of biomass and canopy height in bermudagrass, alfalfa, and wheat using ultrasonic, laser, and spectral sensors | Sensors |
2016 | [27] | Oklahoma, USA | Terrestrial | Canopy visible and near-infrared reflectance data to estimate alfalfa nutritive attributes before harvest | Crop Science |
2016 | [4] | Eastern Province of Saudi Arabia | Satellite | Assessing the spatial variability of alfalfa yield using satellite imagery and ground-based data | Plos One |
2018 | [26] | Minnesota, USA | Terrestrial | Estimating alfalfa yield and nutritive value using remote sensing and air temperature | Field Crops Research |
2019 | [29] | Oklahoma, USA | Terrestrial and UAV | High-throughput approaches for phenotyping alfalfa germplasm under abiotic stress in the field | Plant Phenome Journal |
2020 | [30] | Wisconsin, USA | UAV | Alfalfa yield prediction using uav-based hyperspectral imagery and ensemble learning | Remote Sensing |
2020 | [24] | Mediterranean central-south, Chile | Terrestrial | Use of Vis-NIR reflectance data and regression models to estimate physiological and productivity traits in lucerne (Medicago sativa) | Crop and Pasture Science |
2021 | [32] | Washington, USA | UAV | Alfalfa ( L.) crop vigor and yield characterization using high-resolution aerial multispectral and thermal infrared imaging technique | Computers and Electronics in Agriculture |
2022 | [31] | Wisconsin, USA | UAV | Multitask learning of alfalfa nutritive value from uav-based hyperspectral images | IEEE Geoscience and Remote Sensing Letters |
2022 | [33] | Oklahoma, USA | Satellite | Alfalfa yield estimation based on time series of Landsat 8 and PROBA-V images: An investigation of machine learning techniques and spectral-temporal features | Remote Sensing Applications: Society and Environment |
Production Indicator | Quality Indicator | Cutting Cycle | Plant Phase | Platform | Spectral Inputs | Non-Spectral Inputs | Method | Citation |
---|---|---|---|---|---|---|---|---|
DB | - | 1st, 2nd, 3rd, 4th | 10% bloom, 25% bloom | Terrestrial | NDVI, BNDVI, WDRVI, BWDRVI, = 0.1, 0.05 and 0.01 | - | NLR | [25] |
WB | - | - | Sprouting and Flowering | Terrestrial | MBVI, TBVI, 1528, 438, 499, 458, 1508, 448 nm | meanG, medianG | LR | [23] |
DB | - | - | 10% bloom | Terrestrial | NDVI, 450, 520, 530, 570, 590, 650, 690, 710, 780, 900 nm | - | Correlation | [28] |
- | NDF, ADF | - | Late bud to 10th flower | Terrestrial | 400–1349 nm | - | MPLSR | [27] |
DB | - | 8th, 9th, 10th, 11th | 10% bloom, 30% bloom, 50% bloom | Satellite | EVI, GNDVI, GRVI, LSWI, NDVI, NIR, SAVI, 865 ± 30 nm | Yield Monitor | Correlation | [4] |
DB | CP, NDF, NDFd | - | - | Terrestrial | NDVI, GNDVI, REIP, MTCI, PHORI, CARI, NDLI, NDNI, 460, 550, 551, 650, 711, 712, 780, 1073, 1077, 1087 nm | GDUBASE-5, GDUALT | SLR | [26] |
DB,WB | - | - | - | Terrestrial UAV | CCC,
IRVI, NDVI, NDRE, 670, 730, 780 nm NDVI | - | Correlation | [29] |
DB | - | - | 35 cm height and 10% bloom | Terrestrial | NDSI, NDTI, DATT, RE, DD | - | NLR | [24] |
DB | - | - | - | UAV | NDVI, PHYRI, NDRE, MND705 nm, GNDVI, RDVI, NDCI, CI, DATT, DD, DCNI, GITELSON, CARTE, SRI, MSRI, MSR705, MSR, NVI, EVI, TCARI, MCARI, OSAVI, TGI, TCARI/OSAVI, MCARI/OSAVI, MTVI, MTCI, SPVI, REP, VOG, VIOPT | - | SVR, KNNR, RFR, Ensemble | [30] |
WB | - | 1st, 2nd | 1st bloom | UAV | NDVI, IPVI, MSR, OSAVI, GNDVI, TDVI, EVI, MNLI, CWSI | Tcanopy, Tair, M, U, L | LR, MLR, SLR, PLSR, LASSO | [32] |
- | CP, aNDF, ADF | 2nd, 3rd, 4th | - | UAV | 400–1349 nm | - | SVR, RFR, ANN, STL, MTL | [31] |
DB | - | - | - | Satellite | SR, NDVI, EVI2, OSAVI, LSWI | - | BRT, GPR, RFR, SVR, RIDGE, LASSO | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tedesco, D.; Nieto, L.; Hernández, C.; Rybecky, J.F.; Min, D.; Sharda, A.; Hamilton, K.J.; Ciampitti, I.A. Remote Sensing on Alfalfa as an Approach to Optimize Production Outcomes: A Review of Evidence and Directions for Future Assessments. Remote Sens. 2022, 14, 4940. https://doi.org/10.3390/rs14194940
Tedesco D, Nieto L, Hernández C, Rybecky JF, Min D, Sharda A, Hamilton KJ, Ciampitti IA. Remote Sensing on Alfalfa as an Approach to Optimize Production Outcomes: A Review of Evidence and Directions for Future Assessments. Remote Sensing. 2022; 14(19):4940. https://doi.org/10.3390/rs14194940
Chicago/Turabian StyleTedesco, Danilo, Luciana Nieto, Carlos Hernández, Juan F. Rybecky, Doohong Min, Ajay Sharda, Kevin J. Hamilton, and Ignacio A. Ciampitti. 2022. "Remote Sensing on Alfalfa as an Approach to Optimize Production Outcomes: A Review of Evidence and Directions for Future Assessments" Remote Sensing 14, no. 19: 4940. https://doi.org/10.3390/rs14194940
APA StyleTedesco, D., Nieto, L., Hernández, C., Rybecky, J. F., Min, D., Sharda, A., Hamilton, K. J., & Ciampitti, I. A. (2022). Remote Sensing on Alfalfa as an Approach to Optimize Production Outcomes: A Review of Evidence and Directions for Future Assessments. Remote Sensing, 14(19), 4940. https://doi.org/10.3390/rs14194940