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Abstract: The quantitative retrieval of the chlorophyll-a concentration is an important remote sensing
method that is used to monitor the nutritional status of water bodies. The high spatial resolution
of the Sentinel-2 MSI and its subdivision in the red-edge band highlight the characteristics of water
chlorophyll-a, which is an important detection tool for assessing water quality parameters in plateau
lakes. In this study, the Nine Plateau Lakes in the Yunnan-Kweichow Plateau of China were selected as
the study area. Using Sentinel-2 MSI transit images and in situ measured chlorophyll-a concentration
as the data source, the chlorophyll-a concentrations of plateau lakes (CCAPLs) were investigated,
and the surface temperatures of plateau lakes (STPLs) were retrieved to verify the hypothesis that
the lake surface temperature could increase the chlorophyll-a concentration. By comparing feature
importance using a random forest (RF), the Sentinel-2 MSI surface reflectance and in situ data were
linearly fitted using four retrieval spectral indices with high feature importance, and the accuracy of
the estimated concentration of chlorophyll-a was evaluated by monitoring station data in the same
period. Then, Landsat-8 TIRS Band 10 data were used to retrieve the STPL with a single-channel
temperature retrieval algorithm and to verify the correlation between the STPL and the CCAPL.
The results showed that the retrievals of the CCAPL and the STPL were consistent with the actual
situation. The root-mean-square error (RMSE) of the fifteenth normalized difference chlorophyll-a
index (NDCI15) was 0.0249. When the CCAPL was greater than 0.05 mg/L and the STPL was within
28–34 ◦C, there was a positive linear correlation between the CCAPL and the STPL. These results
will provide support for the remote sensing monitoring of eutrophication in plateau lakes and will
contribute to the scientific and effective management of plateau lakes.

Keywords: chlorophyll-a; Landsat-8; plateau lakes; Sentinel-2; surface temperature

1. Introduction

In recent years, the water quality of plateau lakes has been a topic of concern for
the government and the public. Chlorophyll-a is an important indicator that reflects the
nutritional status of plateau water and is used to monitor the outbreak of cyanobacteria
blooms. Monitoring the chlorophyll-a concentration can help to prevent further deteriora-
tion of the water quality [1]. Traditional chlorophyll-a-concentration-monitoring methods
are inconvenient, complicated and time-consuming [2]. Using an in-depth study of water
spectral characteristics and the improvement of chlorophyll-a retrieval model, remote
sensing images can more accurately simulate chlorophyll-a content, combined with the
hydrological parameters, geographical location, natural resources and other information,
water pollution and water quality change trends can be found effectively [3–5]. In the early
stage, the retrieval of chlorophyll-a concentration using remote sensing was mainly carried

Remote Sens. 2022, 14, 4950. https://doi.org/10.3390/rs14194950 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14194950
https://doi.org/10.3390/rs14194950
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9499-7029
https://orcid.org/0000-0002-1918-5346
https://orcid.org/0000-0002-4150-4104
https://orcid.org/0000-0001-6667-759X
https://orcid.org/0000-0002-8027-4866
https://orcid.org/0000-0001-5866-6321
https://orcid.org/0000-0003-3772-6908
https://doi.org/10.3390/rs14194950
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14194950?type=check_update&version=2


Remote Sens. 2022, 14, 4950 2 of 19

out around a class of water bodies, such as the ocean, and was generally based on the ratio
of blue and green bands, which achieved good results. However, the application of such
algorithms in plateau lakes with complex optical properties is limited [6,7]. An updated
chlorophyll-a retrieval model for plateau lakes needs to account for the differences in the
water, the significant influence of humans, the distinct regional characteristics, the compo-
nents of water being extremely complex, the difficulty of the retrieval of the chlorophyll-a
concentration and the poor portability of the retrieval model [8,9]. In addition, due to the
uneven distribution of plateau lakes, the spatial resolution of satellite data is required to be
high, and the amount of available data is lower; therefore, the retrieval of the chlorophyll-a
concentration of plateau lakes (CCAPL) has always been the focus and difficulty in the
research [10–12]. Although researchers have recently developed a “reflection peak”, a
“band algorithm”, an “index algorithm” and “machine learning”, as well as a series of
calculation methods to determine the chlorophyll-a concentration, this mainly involves
the chlorophyll-a fluorescence peak and other sensitive bands of near-infrared and red
bands, but it cannot achieve high precision and strong universality in plateau lakes [13–15].
The random forest (RF) algorithm can reduce the error and reflect the feature importance
using the Gini coefficient [16]. It is now applied in the field of water quality remote sens-
ing [17,18]. Based on plateau lakes and the inherent optical properties of chlorophyll-a,
band combinations were established. The Gini coefficient is used to calculate the feature
importance in RF, which is good at selecting the optimal retrieval model and achieves the
high-precision retrieval of the CCAPL.

Studies showed that within a certain temperature range, the lake surface temperature
contributes to the growth of algae, and there is often a positive correlation between the
STPL and the distribution of the CCAPL, but this has not been verified in many lakes.

In this study, the Sentinel-2 MSI surface reflectance data and in situ data were used
to compare the importance of different bands and band combinations according to the
feature importance of the RF algorithm. The retrieval model of CCAPL was selected and
the accuracy of retrieval results was evaluated. Based on the single-channel algorithm,
the STPL was retrieved using the Landsat-8 TIRS data, and the correlation between the
STPL and the CCAPL distribution was verified. Section 2 presents the study area and data,
including the satellite data and ground observation site data. The retrieval theory of the
CCAPL and STPL is introduced in Section 3. Section 4 presents the retrieval results of the
CCAPL and STPL and their correlation analysis. In the fifth section, the shortcomings of
the experiment are discussed, and the future development trend is discussed. The sixth
part summarizes the selection of the chlorophyll-a retrieval model, the retrieval results of
chlorophyll-a concentration in nine plateau lakes, and the correlation between the lake
surface temperature and the chlorophyll-a concentration.

2. Materials
2.1. Study Area

The Yunnan-Kweichow plateau lakes area is one of China’s Five Great Lakes and
shows significant lake type diversity, including nine plateau lakes in Yunnan province;
Dianchi Lake (DCL), Erhai Lake (EHL), Fuxian Lake (FXL), Chenghai Lake (CHL), Lugu
Lake (LGL), Qilu Lake (LYL), Xingyun Lake (XYL), Yangzong Lake (YZL) and Yilong Lake
(YLL) are the main lakes in the Yunnan-Kweichow plateau lakes and are referred to as the
“Nine Plateau Lakes”. They are concentrated in the northwest and central Yunnan province
at an average elevation of over 1800 m. The unique geological features of Yunnan province
led to the creation of nine plateau lakes, of which Fuxian Lake is the deepest with a depth of
155 m. Dianchi Lake is the largest, covering 306.3 square kilometers of water. In recent years,
with the rapid development of the economy and society, the lakes’ ecological environment
deserves more attention. According to the evaluation standard of lake eutrophication in
China, when the comprehensive trophic level index (TLI) calculated using chlorophyll-a is
above 50, the lake is in a eutrophic state, where 50–60 denotes mild eutrophication, 60–70
denotes moderate eutrophication, and a TLI greater than 70 denotes severe eutrophication.
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According to the official statistics released by the Yunnan Department of Ecology and
Environment in January 2022, Qilu Lake and Yilong Lake are in a severe eutrophic state;
Xingyun Lake is in a moderate eutrophic state; and Dianchi Lake, Erhai Lake, Yangzong
Lake and Chenghai Lake are in a mild eutrophic state. In this study, the Nine Plateau Lakes
were selected as the study areas. The lake locations are shown in Figure 1. The monitoring
stations of Dianchi Lake are also shown in this figure.
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Figure 1. Satellite images of Nine Plateau Lakes, their geographical locations, and the monitoring
station of Dianchi Lake.

2.2. Data

Landsat-8, the eighth satellite launched by the National Aeronautics and Space Admin-
istration (NASA) for the land observation program, carries a thermal infrared sensor (TIRS)
with a resolution of 100 m, providing two thermal infrared channels, which can observe and
record the thermal radiation of the target well. Since the operation of the TIRS sensor began,
many temperature retrieval algorithms for TIRS Band 10 and Band 11 have been formed,
and good results have been achieved [19]. However, due to the large calibration deviation
of Band 11, Band 10 is often used for surface temperature retrieval [20]. Based on the
platform provided by the United States Geological Survey (USGS), this study downloaded
the image of the thermal infrared channel on 9 August 2020 of the Nine Plateau Lakes, and
the cloud cover of the remote sensing images was controlled to less than 10%. The band
information is shown in the following Table 1.

The multispectral imager (MSI) carried by Sentinel-2 is 786 km high, can cover
13 wavebands with an image width of 290 km and has a revisit period of 10 days. The
Sentinel-2 satellite data is the only one with three bands in the red-edge range, which is
very effective for monitoring the CCAPL. For domestic users, the ESA released the atmo-
spheric apparent reflectance product (a Level-1C data product) after ortho-rectification and
sub-pixel geometric precision correction, and also released the definition of Level-2A data
by Sen2cor, which is a plug-in specialized in producing Level-2A data. Level-2A data is
surface reflectivity data, but this Level-2A data needs to be produced by users as required.
The Google Earth Engine (GEE) platform provides Level-2A data products. Based on the
GEE platform, the MSI Sentinel-2 Level-2A remote sensing reflectance data from August
2020 were used in this study. The satellite parameters are shown in Table 2.
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Table 1. Landsat-8 band parameters.

Bands Name Wavelength (nm) Resolution (m)

Band 1 Coastal 0.433–0.453 30
Band 2 Blue 0.450–0.515 30
Band 3 Green 0.525–0.600 30
Band 4 Red 0.630–0.680 30
Band 5 NIR 0.845–0.885 30
Band 6 SWIR 1 1.560–1.660 30
Band 7 SWIR 2 2.100–2.300 30
Band 8 Pan 0.500–0.680 15
Band 9 Cirrus 1.360–1.390 30
Band 10 TIRS 1 10.60–11.19 100
Band 11 TIRS 2 11.50–12.51 100

Table 2. Sentinel-2 band parameters.

Bands Name Wavelength (nm) Resolution (m)

Band 1 Coastal aerosol 0.433–0.453 60
Band 2 Blue 0.458–0.523 10
Band 3 Green 0.543–0.578 10
Band 4 Red 0.650–0.680 10
Band 5 Vegetation red edge 1 0.698–0.713 20
Band 6 Vegetation red edge 2 0.733–0.748 20
Band 7 Vegetation red edge 3 0.773–0.793 20
Band 8 NIR 0.785–0.900 10

Band 8A Vegetation red edge 4 0.935–0.955 20
Band 9 Water vapor 1.360–1.390 60
Band 11 SWIR 1 1.565–1.655 20
Band 12 SWIR 2 2.100–2.280 20

Due to the special geographical location and uneven distribution of the plateau lakes,
it is difficult to obtain the measured chlorophyll-a concentration data on the surface of
the plateau lakes. In this study, the in situ measured chlorophyll-a concentrations in 2020
of the Nine Plateau Lakes in the Yunnan-Kweichow Plateau of China was published by
Yunnan Provincial Department of Ecology and Environment and Nanjing Institute of
Geography and Limnology, Chinese Academy of Sciences. The chlorophyll-a concentration
was measured in the laboratory using the ethanol spectrophotometer method [21]. The in
situ measurements of the chlorophyll-a concentration in some lakes were missing or the
amount of available data was lower. After the measured data were obtained, the mean
value and standard deviation of the data were calculated, and we considered the points
that were three standard deviations from the mean to be outliers and were removed. The
monitoring time and quantity of chlorophyll-a concentration obtained are shown in Table 3.

Table 3. Sampling time and the number of chlorophyll-a sampling points.

Name Monitoring Time * Number of Sampling Points

Dianchi Lake 20200623 40
Fuxian Lake 20200622 30

Chenghai Lake 20200701 19
Erhai Lake 20200625 17
Lugu Lake 20200618 25
Qilu Lake 20200629 14

Xingyun Lake 20200627 17
Yangzong Lake 20200712 16

Yilong Lake 20200625 15
* The chlorophyll-a in situ measured unit is mg/L.
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3. Methods
3.1. Water Body Extraction

At present, the commonly used methods for water body extraction include the nor-
malized difference water index (NDWI) and improved normalized difference water index
(MNDWI). The traditional normalized difference water index (NDWI) [22] is mainly cal-
culated using the green band and red band. Since water has strong absorption in the
near-infrared band and vegetation has strong reflectivity in the near-infrared band, it is
usually used to differentiate between the waterbody and shore vegetation. Although
the NDWI can suppress vegetation information to a large extent, the extracted water is
often confused with surrounding buildings and soil, resulting in an excessive extracted
waterbody area, and thus, it cannot achieve a good water extraction effect. In this study,
an improved normalized difference water index (MNDWI) was used for water extraction
based on the GEE platform [23]. The MNDWI is based on the shortwave infrared band in-
stead of the near-infrared band, which effectively suppresses building and soil information
and greatly reduces background noise, and the index significantly improves measurements
of the characteristics of The Nine Plateau Lakes water area. The efficiency of water body
extraction is greatly improved. The equation can be expressed as follows:

MNDWI =
ρ(Green) − ρ(SWIR1)

ρ(Green) + ρ(SWIR1)
(1)

where MNDWI represents the improved normalized difference water index, ρ(Green) rep-
resents the green band reflectance and ρ(SWIR1) represents the shortwave infrared band
reflectance; an MNDWI value greater than 0 signifies an area of water.

3.2. Retrieval Model Construction of the CCAPL

Chlorophyll-a in lakes has obvious bio-optic properties, and thus, many spectral
indices related to the chlorophyll-a concentration were proposed based on specific as-
sumptions, and the chlorophyll-a concentration retrieval is realized by establishing sta-
tistical relations [24]. As can be seen from the previous spectral characteristics of plateau
lakes, the absorption characteristics of chlorophyll-a are obviously different in the band
of 400~730 nm, and the reflection spectrum has obvious characteristics of wave peaks and
troughs. When the wave band is near 400–500 nm, the water reflectance is generally low
due to the strong absorption of blue light by chlorophyll-a [25]. At 500~620 nm, due to
the weak absorption of chlorophyll-a and carotin in water and the scattering effect of
suspended particles, the reflectance of water produces a wave peak, whose peak height can
be used to measure the chlorophyll-a concentration. At 620~670 nm, the strong absorption
of red by chlorophyll-a leads to a distinct trough [26]. In the vicinity of 670~730 nm, there
is another obvious reflection peak, often called the “fluorescence peak”, which is the key to
determining the chlorophyll-a concentration because the absorption coefficient of water
and chlorophyll-a reaches the minimum here [27]. According to the inherent optical prop-
erties of chlorophyll-a in plateau lakes, relevant literature of chlorophyll-a concentration
retrieval in recent years was consulted, and a spectral index of chlorophyll-a retrieval was
established based on an empirical model and a semi-analytical model.

The selected wavelengths focus on the reflection peak or absorption valley of the
chlorophyll-a reflection spectrum to construct a single band index:

Cchl-a = A + B · ρi (2)

where CChl-a represents the CCAPL, A and B are the correlation coefficients of the regression
model, and ρi (i = B2, B3, B4, B5, B6, B7, B8, B8A) is the water reflectance of a band selected
by the Sentinel-2 data sources.
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The ratio index was constructed by selecting two bands with obvious reflection spec-
trum characteristics of chlorophyll-a to enlarge the difference between the absorption valley
and reflection peak of chlorophyll-a:

Cchl-a = C + D · ρi
ρj

(3)

where CChl-a represents the CCAPL, C and D are the correlation coefficients of the regression
model, and ρi and ρj (i, j = B2, B3, B4, B5, B6, B7, B8, B8A) are the water reflectances of
two bands selected by the Sentinel-2 data sources.

Two bands with obvious spectral characteristics of chlorophyll-a reflection were se-
lected to construct the normalized chlorophyll-a index, and the comparison of the re-
flectance of the two bands was further enhanced using nonlinear stretching:

Cchl-a = E + F ·
ρi − ρj

ρi + ρj
(4)

where CChl-a represents the CCAPL, E and F are the correlation coefficients of the regression
model, and ρi and ρj (i, j = B2, B3, B4, B5, B6, B7, B8, B8A) are the water reflectances of the
two bands selected by the Sentinel-2 data sources.

Three characteristic bands were selected and combined with mathematical derivation
and statistical theory to construct the three-band index:

Cchl-a = G + H · (ρi
−1 − ρj

−1) · ρk (5)

where CChl-a represents the CCAPL; G and H are the correlation coefficients of the regression
model; and ρi, ρj and ρk (i, j, k = B2, B3, B4, B5, B6, B7, B8, B8A) are the water reflectances of
the three bands selected by the Sentinel-2 data sources.

3.3. RF Algorithm Feature Selection

The RF algorithm has excellent anti-noise ability, which makes it useful in various
fields [28,29]. The feature importance in the RF algorithm can distinguish the importance
of various bands or a combination thereof. The larger the feature importance is, the more
important the bands are, i.e., the more correlated the bands or combinations are with
chlorophyll-a. The feature importance of RF is calculated as follows [30].

We used the variable importance measure (VIM) to represent the feature importance.
GI represents the Gini coefficient. Assuming m features X1, X2, . . . , XC, the Gini index
score VIMj

(Gini) is calculated for each feature Xj, where the Gini coefficient GIm is expressed
as follows:

GIm = 1−
|K|

∑
k=1

p2mk (6)

where the Gini coefficient represents the probability that a randomly selected sample in
the sample set will be misclassified, K is the number of categories and pmk represents the
proportion of category k in node m.

The feature importance Xj on node m, that is, the change in Gini coefficient before and
after node m is

VIMjm
(Gini) = GIm − GIl − GIr (7)

where GIl and GIr represent the Gini coefficients of the left and right nodes, respectively.
Assuming that M is the set of nodes that appear in decision tree i, then the importance

of Xj in the ith tree is

VIMij
(Gini) = ∑

m∈M
VIMjm

(Gini) (8)
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When the number of decision trees is n, the feature importance is

VIMj
(Gini) =

n

∑
i=1

VIMij

(Gini)

(9)

In this study, the RF algorithm was constructed based on the GEE platform. The
constructed spectral index was input as the feature and sorted by the feature importance.
The larger the feature importance was, the higher the correlation with chlorophyll-a;
the spectral index with the highest correlation was selected as the spectral index of the
chlorophyll-a concentration retrieval.

3.4. CCAPL Retrieval and Evaluation Methods

First, several spectral indices with large feature importance were selected as the
retrieval models of chlorophyll-a concentration, and the chlorophyll-a concentration was
retrieved through linear fitting based on the Sentinel-2 MSI surface reflectance data and
in situ measured chlorophyll-a concentration data. Second, the root-mean-square error
(RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were
used to evaluate the accuracy of the CCAPL retrieval results.

The RMSE is the square root of the ratio of the square sum of the deviation between
the observed value and the truth value for n observations, which can represent the degree
of dispersion of data well. A small value of RMSE indicates a high accuracy. The equation
can be expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(Yi − Xi)
2 (10)

where RMSE represents the root-mean-square error, n represents the number of observed
values, and Xi and Yi represent the retrieval value and true value of the CCAPL, respectively.

The MAE is the average of the absolute error between the observed value and the real
value. The smaller the MAE value is, the closer the retrieval value is to the real value. The
equation can be expressed as follows:

MAE =
1
n

n

∑
i=1
|Yi − Xi| (11)

where MAE represents the mean absolute error; n represents the number of observed values;
and Xi and Yi represent the retrieval value and true value of the CCAPL, respectively.

The MAPE is the average absolute percentage error, where a MAPE value of 0% means
a perfect model and a MAPE greater than 100% means an inferior model. The equation can
be expressed as follows:

MAPE =
1
n

n

∑
i=1
|Yi − Xi

Yi
| × 100% (12)

where MAPE represents the mean absolute percentage error; n represents the number
of observed values; and Xi and Yi represent the retrieval value and true value of the
CCAPL, respectively.

3.5. Lake Surface Temperature Retrieval

The water surface temperature generally refers to the average surface temperature at a
depth of more than 10 cm or the average temperature of a thick water layer at 1 m. Because
water has a strong absorption effect in the thermal infrared band, the temperature of the
water surface measured by remote sensing is actually the thermal radiation brightness
of the top layer of water, which is called the “skin temperature” [31]. According to the
radiative transfer equation, the real lake temperature (physical temperature) of water can
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be obtained only after considering the specific emissivity of water. However, given that
the specific emissivity of water is 0.995 in actual observations, which is very close to that
of a black body, the temperature of a water body is often expressed using the measured
brightness temperature.

The basis for retrieving the lake surface temperature using remote sensing data is
the heat radiative transfer equation constituted by the quantization of Planck’s Law [32].
According to the sensor settings, it can be divided into a single-band method, double-band
method (split window algorithm) and multi-band method. The Landsat-8 TIRS sensor has
two thermal infrared bands, namely, Band 10 and Band 11, and thus, it can retrieve the
surface temperature through dual bands and a single band. Because the TIRS Band 10 has
a lower atmospheric absorption region and a more accurate atmospheric transmittance,
Band 10 is adopted for temperature retrieval.

The basic principle of retrieving the temperature based on a radiative transfer model is
as follows: first, estimate the influence of the atmosphere on the surface thermal radiation,
then subtract the atmospheric influence to obtain the surface thermal radiation intensity,
and finally convert the thermal radiation intensity into the surface temperature. The
radiation brightness observed by the satellite sensor consists of three parts. The first part is
the energy of the surface radiation reaching the satellite sensor through the atmosphere.
The second part is the amount of energy that is radiated upward by the atmosphere, and
the third part is the amount of energy that is radiated downward and reflected from the
Earth’s surface. The equation can be expressed as follows:

LTOA = (ε · B(TS) + (1− ε) · L↓) · τ + L↑ (13)

Blackbody radiation is obtained via transposition:

B(TS) =
[

LTOA − L↑ − τ · (1− ε) · L↓
]
/τ · ε (14)

where LTOA represents the radiation brightness, ε represents the surface-specific emissivity,
TS represents the real surface temperature, B(TS) represents the blackbody radiance, L↓

represents the downward atmospheric radiation, L↑ represents the upward atmospheric
radiation and τ represents the atmospheric transmittance in the thermal infrared band.

The radiation brightness value is determined via radiation calibration. The calculation
of the land surface emissivity is based on classifications. Vegetation coverage is first
calculated (PV) using the mixed pixel decomposition method, and the land surface is
roughly divided into water bodies, buildings and vegetation. According to the method
proposed by Qin and Duan [33,34], the emissivities of a water body, vegetation and a
building are 0.995, 0.982 and 0.967, respectively.

The equation of the water-specific emissivity and vegetation coverage can be expressed
as follows:

ε = 0.004PV + 0.995 (15)

PV = (NDVI − NDVIS)/(NDVIV − NDVIS) (16)

where ε represents the land surface emissivity, PV represents the vegetation coverage,
NDVI is the normalized vegetation index, NDVIS is the NDVI value of the area without
vegetation coverage and NDVIV represents the NDVI value of a pixel completely covered
by vegetation. The classification of vegetation coverage is based on an empirical coefficient,
and an NDVI below 0.03 is regarded as pure bare soil, while an NDVI above 0.35 is regarded
as pure vegetation.

Due to the different atmospheric parameters at different altitudes, the atmospheric
radiation brightness is also different. In the study of the radiative transfer equation algo-
rithm, the most important parameters are the values of the atmospheric upward radiation,
atmospheric downward radiation and atmospheric transmittance. At present, the Atmo-
spheric Correction Parameter Calculator (ACPC) can be used to simulate the process of
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radiative transfer from the surface to the atmosphere to calculate the atmospheric upward
radiation, atmospheric downward radiation and atmospheric transmittance.

The surface temperature can be calculated when the surface emissivity is known. The
surface temperature of TS in the formula can be obtained through the Planck function
formula, which is as follows:

TS = k2/ln
(

k1

B(TS)
+ 1
)

(17)

where TS is the surface temperature, B(Ts) is the blackbody radiation brightness, and k1 and
k2 are the calibration constants of the Landsat-8 TIRS sensor (k1 = 774.89, k2 = 1321.08).

4. Results
4.1. Extraction Results of Water Bodies

The improved normalized differential water index was used to extract the water
boundary. When the threshold value was greater than 0, the water boundary was extracted;
the obtained results are shown in Figure 2, where the orange parts represent water bodies.
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Figure 2. Nine plateau lake boundaries: (a) DCL, (b) ERL, (c) FXL, (d) YZL, (e) CHL, (f) XYL,
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4.2. CCAPL Model and Accuracy Evaluation

The RF algorithm was constructed in the GEE platform, and the in situ measured
chlorophyll-a concentration was taken as the sample point. Based on the spectral analysis
in Section 3.2, the reflection characteristics of plateau lakes are mainly located in the visible-
to-near-infrared band, and thus, the multispectral band and the red-edge band of Sentinel-2
were selected for the chlorophyll-a concentration retrieval in this study. The single band,
the band ratio, the normalized ratio index and the three-band index were calculated using
Equations (2), (3), (4) and (5), respectively. The index models were used as the features of
the random forest decision tree model. The results obtained from the calculation of the
feature importance are shown in Table 4. The higher the feature importance, the stronger
the correlation with the CCAPL.
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Table 4. Feature importance computational results.

ID Band Index Model Feature Importance

1 B2 B2 44.3066
2 B3 B3 43.9564
3 B4 B4 42.2547
4 B5 B5 43.6587
5 B6 B6 46.0333
6 B7 B7 45.0136
7 B8 B8 43.8657
8 B8A B8A 39.3531
9 B8/B4 Divd1 35.9668
10 B8/B5 Divd2 37.7500
11 B8/B6 Divd3 46.0961
12 B8/B7 Divd4 38.5882
13 B8/B8A Divd5 47.3490
14 B8A/B4 Divd6 36.2064
15 B8A/B5 Divd7 40.1768
16 B8A/B6 Divd8 44.6549
17 B8A/B7 Divd9 41.3910
18 B7/B4 Divd10 38.5530
19 B7/B5 Divd11 44.2034
20 B7/B6 Divd12 45.7065
21 B6/B5 Divd13 49.2723
22 B6/B4 Divd14 44.8093
23 B5/B4 Divd15 49.4467
24 B8 − B4/B8 + B4 NDCI1 37.6184
25 B8 − B5/B8 + B5 NDCI2 44.9984
26 B8 − B6/B8 + B6 NDCI3 46.9481
27 B8 − B7/B8 + B7 NDCI4 39.0772
28 B8 − B8A/B8 + B8A NDCI5 46.5039
29 B8A − B4/B8A + B4 NDCI6 42.8151
30 B8A − B5/B8A + B5 NDCI7 43.4148
31 B8A − B6/B8A + B6 NDCI8 45.4098
32 B8A − B7/B8A + B7 NDCI9 48.7971
33 B7 − B4/B7 + B4 NDCI10 40.1548
34 B7 − B5/B7 + B5 NDCI11 40.1852
35 B7 − B6/B7 + B6 NDCI12 44.5754
36 B6 − B5/B6 + B5 NDCI13 41.0464
37 B6 − B4/B6 + B4 NDCI14 43.2968
38 B5 − B4/B5 + B4 NDCI15 56.2430
39 (1/B4 − 1/B5)·B6 TBI1 54.1088
40 (1/B4 − 1/B5)·B7 TBI2 44.7620
41 (1/B4 − 1/B5)·B8 TBI3 55.2735
42 (1/B4 − 1/B5)·B8A TBI4 42.9489

Based on the reflection characteristics of the plateau lakes, the index models selected in
this study were correlated with chlorophyll-a, and thus, the result of the feature importance
of the difference was small. On this basis, four band combinations were selected for
comparison, which could select the optimal chlorophyll-a retrieval model well. According
to Table 4, the fifteenth normalized difference chlorophyll-a index (NDCI15), the first band
index (TBI1), the third band index (TBI3) and the fifteenth divide index (Divd15) had the
highest feature importance; therefore, they were selected as the spectral indexes of the
CCAPL retrieval. The Sentinel-2 data and the in situ measured chlorophyll-a concentration
data on the ground were used for the linear fitting of the CCAPL through four spectral
indexes, and the fitting results are shown in Table 5.

As can be seen from Table 5, all four spectral indexes showed good retrieval effects for
different plateau lakes. The R-squared value of Yangzong Lake with the NDCI15 model was
the highest (0.8155), and that of Qilu Lake with the TBI3 model was the lowest (0.2313). The
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linear fitting results of the four models of the Dianchi Lake area are shown in Figure 3. The
CCAPL was predicted using four spectral index models, and the accuracy of the retrieval
results was evaluated using the relative error, RMSE, MAE, MAPE and other accuracy
verification indexes based on the data of 31 monitoring sites published by the Ministry of
Ecology and Environment, as shown in Tables 6 and 7.

The NDCI15\TBI3\TBI1\Divd15 model had a good effect on the retrieval of the
CCAPL through the error analysis and precision statistics results. Among them, NDCI15’s
RMSE, MAE and MAPE were 0.0249, 0.0142 and 26.30%, respectively. Compared with
the three other spectral indexes, the NDCI15 model had the advantage of higher accuracy.
This was because NDCI15 further improved the reflectance ratio of the two bands via the
nonlinear stretching of Band 5 and Band 4, and had good stability and robustness to the
difference between the spectral characteristics of the lakes in the plateau area.

Table 5. Linear fitting results.

Name Model Linear Fitting R-Squared

Dianchi Lake

NDCI15 y = 0.0347 + 0.2832x 0.7246
Divd15 y = −0.0408 + 0.0873x 0.7467

TBI1 y = 0.0466 + 0.1435x 0.7298
TBI3 y = 0.0453 + 0.1715x 0.7164

Erhai Lake

NDCI15 y = 0.0056 + 0.2084x 0.7631
Divd15 y = −0.0944 + 0.1001x 0.7584

TBI1 y = 0.0055 + 0.1204x 0.7539
TBI3 y = 0.0056 + 0.1317x 0.7391

Fuxian Lake

NDCI15 y = 0.0019 + 0.0485x 0.7626
Divd15 y = −0.0211 + 0.023x 0.766

TBI1 y = 0.0019 + 0.0232x 0.7534
TBI3 y = 0.0019 + 0.0257x 0.7504

Chenghai Lake

NDCI15 y = 0.0108 + 0.0367x 0.663
Divd15 y = −0.0077 + 0.0184x 0.6614

TBI1 y = 0.0107 + 0.0328x 0.6143
TBI3 y = 0.0106 + 0.041x 0.6097

Lugu Lake

NDCI15 y = 0.0012 + 0.0058x 0.7093
Divd15 y = −0.0004 + 0.0018x 0.6186

TBI1 y = 0.0012 + 0.0039x 0.5177
TBI3 y = 0.0014 + 0.0037x 0.2363

Qilu Lake

NDCI15 y = −0.0231 + 0.8493x 0.6342
Divd15 y = −0.242 + 0.2593x 0.6349

TBI1 y = 0.0488 + 0.2932x 0.3412
TBI3 y = 0.0499 + 0.3327x 0.2313

Xingyun Lake

NDCI15 y = 0.0708 + 0.2692x 0.5455
Divd15 y = −0.0071 + 0.0871x 0.5398

TBI1 y = 0.0757 + 0.15x 0.5748
TBI3 y = 0.0754 + 0.1734x 0.5476

Yangzong Lake

NDCI15 y = 0.0087 + 0.1689x 0.8155
Divd15 y = −0.067 + 0.0759x 0.7878

TBI1 y = 0.0091 + 0.0725x 0.7439
TBI3 y = 0.0092 + 0.0718x 0.7257

Yilong Lake

NDCI15 y = 0.1193 + 0.6661x 0.6822
Divd15 y = −0.0855 + 0.2255x 0.6861

TBI1 y = 0.1285 + 0.4169x 0.6528
TBI3 y = 0.0996 + 0.6013x 0.4051
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Table 6. Relative error of the CCAPL retrieval model.

Lakes Monitor Name In Situ
Value (mg/L)

Retrieved Value (mg/L) Relative Error
Divd15 NDCI15 TBI1 TBI3 Divd15 NDCI15 TBI1 TBI3

Dianchi
Lake

Huiwan 0.0752 0.1010 0.0992 0.0945 0.0931 34.29% 31.90% 25.70% 23.86%
Luojiaying 0.0632 0.0946 0.0945 0.0965 0.0969 49.61% 49.57% 52.63% 53.34%

Guanyinshan West 0.0594 0.0758 0.0753 0.0767 0.0765 27.54% 26.84% 29.09% 28.82%
Guanyinshan

Middle 0.0525 0.0902 0.0914 0.0889 0.0904 71.86% 74.13% 69.36% 72.23%

Guanyinshan East 0.0670 0.1074 0.1044 0.1101 0.1080 60.29% 55.82% 64.40% 61.22%
Baiyukou 0.0643 0.0886 0.0889 0.0882 0.0882 37.72% 38.21% 37.23% 37.25%

Haikou West 0.0511 0.0638 0.0601 0.0671 0.0675 24.83% 17.63% 31.29% 32.03%
Dianchi South 0.0582 0.0744 0.0737 0.0743 0.0739 27.87% 26.63% 27.67% 26.94%

Erhai
Lake

Lake Center 1 0.0072 0.0063 0.0062 0.0061 0.0062 12.14% 13.21% 14.62% 14.06%
Shuanglang 0.0095 0.0134 0.0133 0.0123 0.0118 41.05% 40.19% 29.67% 23.99%

Xizhou 0.0093 0.0098 0.0098 0.0090 0.0088 5.52% 5.33% 2.71% 5.71%
Lkae Center 2 0.0081 0.0119 0.0119 0.0115 0.0114 46.87% 46.38% 41.76% 40.90%

Longkan 0.0079 0.0096 0.0096 0.0086 0.0084 21.65% 21.42% 9.01% 6.63%
Lake Center 3 0.0068 0.0057 0.0056 0.0055 0.0056 16.18% 17.65% 19.12% 17.65%

Fuxian
Lake

Xinhekou 0.0038 0.0034 0.0035 0.0034 0.0035 9.47% 8.66% 10.77% 8.32%
Luchong 0.0044 0.0035 0.0035 0.0034 0.0035 20.74% 20.10% 21.84% 21.16%
Haikou 0.0032 0.0026 0.0026 0.0026 0.0026 19.33% 18.56% 19.52% 19.96%
Gushing 0.0037 0.0029 0.0029 0.0029 0.0029 21.90% 21.04% 22.04% 20.51%

Chenghai
Lake

Lake Center 0.0094 0.0112 0.0113 0.0112 0.0111 19.12% 20.10% 19.19% 18.16%
Banhaizi 0.0088 0.0104 0.0105 0.0104 0.0103 17.77% 18.88% 18.37% 17.28%

Dongyanzi 0.0076 0.0095 0.0096 0.0097 0.0094 25.42% 26.27% 27.48% 23.99%

Lugu
Lake

Lake Center North 0.0015 0.0017 0.0016 0.0018 0.0019 12.20% 8.18% 19.79% 26.40%
Lake Center South 0.0018 0.0022 0.0022 0.0030 0.0027 20.92% 23.84% 68.23% 51.87%

Qilu
Lake

Lake Center 0.1432 0.1670 0.1671 0.1616 0.1588 16.59% 16.68% 12.88% 10.89%
Majiawan 0.1322 0.1573 0.1575 0.1572 0.1581 19.01% 19.11% 18.88% 19.58%

Xingyun
Lake

Lkae Center 0.1298 0.1340 0.1345 0.1344 0.1314 3.20% 3.58% 3.56% 1.23%
Haimen 0.1384 0.1573 0.1535 0.1609 0.1531 13.63% 10.92% 16.29% 10.61%

Yangzong
Lake

Lake center 0.0138 0.0137 0.0139 0.0135 0.0134 0.41% 0.88% 2.01% 3.12%
Tangchi 0.0099 0.0122 0.0123 0.0119 0.0118 23.29% 24.18% 19.97% 18.72%

Yilong
Lake

Lake Center 0.1352 0.2251 0.2250 0.2269 0.2231 66.46% 66.41% 67.83% 65.01%
Dam Center 0.1464 0.2106 0.2094 0.2220 0.2277 43.82% 43.04% 51.65% 55.52%
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Figure 3. Scatter plot of the retrieved and measured chlorophyll-a concentrations in Dianchi Lake.
Subfigures (a–d) show the 1:1 line between the simulated chlorophyll-a concentration and the mea-
sured chlorophyll-a concentration by Divd15, NDCI15, TBI1 and TBI3, respectively.
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Table 7. Total accuracy statistics of the CCAPL retrieval model.

Accuracy Assess Divd15 NDCI15 TBI1 TBI3

RMSE 0.0253 0.0249 0.0265 0.0263
MAE 0.0146 0.0142 0.0150 0.0145

MAPE 26.80% 26.30% 28.21% 27.00%

4.3. Retrieval of the CCAPL

The retrieval model of the CCAPL was selected according to the results of the RF
algorithm feature importance, and the accuracy of the model could meet the requirements
of the CCAPL retrieval. The CCAPL was retrieved from the Sentinel-2 images of nine
plateau lakes in Yunnan Province, and the obtained distribution of the CCAPL is shown in
Figure 4.
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Figure 4. Retrieval of the chlorophyll-a concentrations in nine plateau lakes on 22 and 24 June 2020.
(a) DCL, (b) ERL, (c) FXL, (d) YZL, (e) CHL, (f) XYL, (g) LGL, (h) QLL and (i) YLL.

According to the retrieval results of the CCAPL, the green and yellow parts were the
regions with high CCAPLs. From the spatial distribution of the CCAPL, the chlorophyll-
a concentrations in Erhai Lake, Fuxian Lake, Lugu Lake and Yangzong Lake were low
and evenly distributed, and the chlorophyll-a concentrations in the whole lakes were
below 0.02 mg/L, indicating good water quality. The chlorophyll-a concentrations were
low in the central and northern parts of Chenghai Lake, but high in the southern part of
Chenghai Lake. The chlorophyll-a concentration in the northeastern part of Dianchi Lake
was high, while the chlorophyll-a concentrations in the southern and western parts of
Dianchi Lake were low, and the mean value of chlorophyll-a concentration in Dianchi Lake
was 0.08 mg/L. In the northern part of Xingyun Lake, Qilu Lake and the southeastern part
of Yilong Lake, the chlorophyll-a concentrations were high at more than 0.1 mg/L.
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4.4. Retrieval of the STPL

Based on the water surface temperature retrieval method, (14) was used for the
radiative transfer process and the Landsat-8 TIRS sensor Band 10 was used to invert the
lake surface temperature through the single-channel method. The radiation brightness was
obtained via radiative calibration. The land surface emissivity was determined based on
the normalized difference vegetation index (NDVI) threshold classification.

The vegetation coverage was calculated using (16), and then the land surface emissivity
was calculated using (15). The atmospheric upward radiation, atmospheric downward
radiation and atmospheric transmittance were derived by simulating the radiation transport
from the ground to the atmosphere using ACPC input parameters on the NASA website.
The atmospheric transmittance of the nine plateau lakes simulated using ACPC was 0.55,
the atmospheric upward radiation was 3.32 and the atmospheric downward radiation was
5.10. The water surface temperature was calculated using (17), and the retrieval results are
shown in Figure 5.
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Figure 5. Retrieval of the water surface temperatures in nine plateau lakes on 22 and 24 June 2020.
(a) DCL, (b) ERL, (c) FXL, (d) YZL, (e) CHL, (f) XYL, (g) LGL, (h) QLL and (i) YLL.

In Figure 5, the gray part represents the cloud, and the data was missing. The green
part represents the low surface temperature of the lakes. The red parts represent high
lake surface temperatures. Because the study was undertaken in summer, the surface
temperatures of the nine plateau lakes were above 20 degrees Celsius, among which the
average temperature of Yilong Lake was 31.86 ◦C and Lugu Lake was 22.41 ◦C. From the
perspective of the distribution of temperature, the temperatures of the lakes near the shore
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area rose obviously and the temperature decreased in the lakes area. This was because
the lakes had a strong heat capacity, a water supply, and a large area, causing the average
temperatures near the lakes to remain significantly lower; this result in meteorology is often
referred to as the “lake effect” [35]. To sum up, the lake temperature retrieval basically met
the requirements.

4.5. Spatial Correlation Analysis

Based on the CCAPL and STPL retrieval results, the lake temperatures and correspond-
ing chlorophyll-a contents were extracted. The relationship between the lake temperature
and chlorophyll-a content is shown in Figure 6. When the chlorophyll-a content was
very low, there was no correlation between them; when the content of chlorophyll-a was
larger than 0.05 mg/L, with the increase in temperature, chlorophyll-a had a good linear
correlation with lake temperature.
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5. Discussion 

Figure 6. Linear correlation between the CCAPL and the STPL.

In addition, the spatial superposition analysis was carried out on nine plateau lakes,
and the temperatures and chlorophyll-a concentrations were taken as the influencing
factors, with weights of 0.4 and 0.6, respectively. The resulting images are shown in
Figure 7. These images show the regions associated with the STPL and CCAPL, where
the dark yellow regions show the highest increase in chlorophyll-a concentration at lake
temperatures between 20 and 35 ◦C.
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5. Discussion

First, from the abovementioned experimental results, it can be seen that the Sentinel-2
red-edge bands produced good results regarding the CCAPL retrieval. However, due
to the plateau lakes’ chlorophyll-a-concentration-monitoring satellites having low tem-
poral and spectral resolutions, it is difficult for the measurements of the multi-spectral
satellites to satisfy the monitoring of chlorophyll-a in plateau lakes. Considering that
hyperspectral satellites will be launched later, the monitoring capability is expected to be
improved through multi-satellite networking in the future. Second, the Landsat-8 TIRS
single-channel algorithm based on the retrieval of land surface temperature achieved good
results. However, due to the large deviation of the Landsat-8 Band 11 calibration, the USGS
does not encourage the use of dual-channel temperature retrieval. With the advent of
Landsat-9, in the future, a dual-channel algorithm based on Landsat-9 TIRS data can be
developed for temperature retrieval. Third, although the correlation between the STPL and
the CCAPL was verified in this study, the temperature retrieval data selected in this study
was from June 2022, which is one of the highest summer temperature months in Yunnan
Province. Limited by the time range of the measured chlorophyll-a concentration data and
remote sensing satellite imagery data, the results of this study can only be used during the
period of the summer temperature rise, which provides little convenience when studying
the correlation between the two. We plan to obtain more chlorophyll-a data in future
studies and explore the temperature pattern of the plateau lakes in different months, as
well as the correlations between temperature and chlorophyll-a in different months. Finally,
although the image-based remote sensing reflectance estimation method for the water
surface achieved good results, more accurate remote sensing reflectance acquisition can
further improve the accuracy of the CCAPL retrieval. Therefore, it is necessary to further
develop atmospheric correction methods for remote sensing data, such as the near-infrared
dark target method for clean water and the shortwave infrared dark target method for
turbid water.
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6. Conclusions

In this study, based on in situ measured data and Sentinel-2 satellite reflectance data,
we used the feature importance of the RF algorithm screening model and selected four
models to conduct the retrieval experiment for the CCAPL. The applicability and retrieval
accuracy of the four models in the Sentinel-2 images were analyzed. In addition, the
Landsat-8 TIRS single-channel algorithm was used for the STPL retrieval of the plateau
lakes, and the correlation between the STPL and the CCAPL was also analyzed. The main
conclusions were as follows:

(1) According to the ranked RF feature importance, the spectral indexes that strongly
correlated with the chlorophyll-a concentration were selected for the CCAPL retrieval.
We analyzed the relative error and accuracy. Among the four models, NDCI15 had
the best accuracy, with an RMSE of 0.0249, an MAE of 0.0142 and a MAPE of 26.30%.

(2) The lakes with chlorophyll-a concentrations of less than 0.03 mg/L were Cheng-
hai Lake, Yangzong Lake, Erhai Lake, Fuxian Lake and Lugu Lake, among which
the chlorophyll-a concentrations of Erhai Lake, Fuxian Lake and Lugu Lake were
less than 0.01 mg/L. The lakes with chlorophyll-a concentrations between 0.03 and
0.1 mg/L were Dianchi Lake and Xingyun Lake. The average value of the chlorophyll-
a concentration in the northeast of Dianchi Lake and the north of Xingyun Lake was
0.085 mg/L. The lakes with chlorophyll-a concentrations greater than 0.1 mg/L were
Yilong Lake and Qilu Lake, among which the chlorophyll-a concentration in Qilu
Lake was greater than 0.14 mg/L.

(3) When the STPL was within 28–34 ◦C, it had an obvious correlation with the chlorophyll-
a concentration, and the correlation increased gradually from the lakes’ center to the
shore. When the lakes’ temperatures rise, this provides a key monitoring area for
managers. Considering the relatively limited surface monitoring data, the next plan is
to accumulate more surface experimental data for the plateau lakes, conduct seasonal
analysis or add other hydrological factors to explore the coupling mechanism of the
CCAPL and other impurities in the water.
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