Monitoring of Wheat Height Based on Multi-GNSS Reflected Signals
Abstract
:1. Introduction
2. Methods
2.1. SNR Characteristics
2.2. Wheat Height Retrieval
2.3. Retrieval Steps
2.3.1. Quality Control
2.3.2. Segmented Processing
2.3.3. Multi-Frequency and Multi-System Fusion Retrieval
3. Results
3.1. Experiments
3.2. Wheat Height Retrieval Results
3.2.1. Single Frequency
3.2.2. Segmented Processing
3.2.3. Multi-Frequency and Multi-System Fusion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, Y.; Mao, L.; Zhou, G. Changes in global main crop yields and its meteorological risk assessment. Trans. CSAE 2016, 32, 226. [Google Scholar]
- Zhang, M.; Zhou, Q.; Chen, Z.; Jia, L.; Zhou, Y.; Cai, C. Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 476–485. [Google Scholar]
- Kumar, P.; Prasad, R.; Gupta, D.K.; Mishra, V.N.; Vishwakarma, A.K.; Yadav, V.P.; Bala, R.; Choudhary, A.; Avtar, R. Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data. Geocarto Int. 2018, 33, 942–956. [Google Scholar] [CrossRef]
- Yuan, W.; Li, J.; Bhatta, M.; Shi, Y.; Baenziger, P.S.; Ge, Y. Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS. Sensors 2018, 18, 3731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.; Wang, J.; Shang, J.; Huang, X.; Liu, J.; Huffman, T. Sensitivity study of Radarsat-2 polarimetric SAR to crop height and fractional vegetation cover of corn and wheat. Int. J. Remote Sens. 2017, 39, 1475–1490. [Google Scholar] [CrossRef]
- Hall, C.D.; Cordey, R.A. Multistatic Scatterometry. In Proceedings of the International Geoscience & Remote Sensing Symposium, Edinburgh, UK, 12–16 September 1988. [Google Scholar]
- Alonso-Arroyo, A.; Camps, A.; Park, H.; Pascual, D.; Onrubia, R.; Martín, F. Retrieval of Significant Wave Height and Mean Sea Surface Level Using the GNSS-R Interference Pattern Technique: Results From a Three-Month Field Campaign. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3198–3209. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Du, H.; Cheong, J.; Southwell, B.A.G. Dempster. GNSS-R Wind Speed Retrieval of Sea Surface Based on Particle Swarm Optimization Algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4202414. [Google Scholar] [CrossRef]
- Mashburn, J.; Axelrad, P.; Zuffada, C.; Loria, E.; O’Brien, A.; Haines, B. Improved GNSS-R Ocean Surface Altimetry with CYGNSS in the Seas of Indonesia. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6071–6087. [Google Scholar] [CrossRef]
- Ozafrain, S.; Roncagliolo, P.; Muravchik, C. Likelihood Map Waveform Tracking Performance for GNSS-R Ocean Altimetry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5379–5384. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results From the U.K. TechDemoSat-1 Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4795–4801. [Google Scholar] [CrossRef]
- Strandberg, J.; Hobiger, T.; Haas, R. Coastal Sea Ice Detection Using Ground-Based GNSS-R. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1552–1556. [Google Scholar] [CrossRef]
- Small, E.E.; Larson, K.M.; Chew, C.C.; Dong, J.; Ochsner, T.E. Validation of GPS-IR Soil Moisture Retrievals: Comparison of Different Algorithms to Remove Vegetation Effects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4759–4770. [Google Scholar] [CrossRef]
- Vey, S.; Güntner, A.; Wickert, J.; Blume, T.; Ramatschi, M. Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: A case study for Sutherland, South Africa. GPS Solut. 2016, 20, 641–654. [Google Scholar] [CrossRef]
- Zhu, Y.; Shen, F.; Sui, M.; Cao, X. Effects of Parameter Selections on Soil Moisture Retrieval Using GNSS-IR. IEEE Access 2020, 8, 211784–211793. [Google Scholar] [CrossRef]
- Chen, K.; Cao, X.; Shen, F.; Ge, Y. An Improved Method of Soil Moisture Retrieval Using Multi-Frequency SNR Data. Remote Sens. 2021, 13, 3725. [Google Scholar] [CrossRef]
- Shen, F.; Sui, M.; Zhu, Y.; Cao, X.; Ge, Y.; Wei, H. Using BDS MEO and IGSO Satellite SNR Observations to Measure Soil Moisture Fluctuations Based on the Satellite Repeat Period. Remote Sens. 2021, 13, 3967. [Google Scholar] [CrossRef]
- Wan, W.; Larson, K.M.; Small, E.E.; Chew, C.C.; Braun, J.J. Using geodetic GPS receivers to measure vegetation water content. GPS Solut. 2015, 19, 237–248. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, S.; Yue, L.; Li, T.; Shen, H.; Zhang, L. Monitoring the Variation of Vegetation Water Content with Machine Learning Methods: Point–Surface Fusion of MODIS Products and GNSS-IR Observations. Remote Sens. 2019, 11, 1440. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Gutmann, E.D.; Zavorotny, V.U.; Braun, J.J.; Williams, M.W.; Nievinski, F.G. Can we measure snow depth with GPS receivers? Geophys. Res. Lett. 2012, 36, L17502. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Najibi, N. Sensing snow height and surface temperature variations in Greenland from GPS reflected signals. Adv. Space Res. 2014, 53, 1623–1633. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E.; Gutmann, E.; Bilich, A.; Axelrad, P.; Braun, J. Using GPS Multipath to Measure Soil Moisture Fluctuations: Initial Results. GPS Solut. 2008, 12, 173–177. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E.; Larson, K.M.; Zavorotny, V.U. Effects ofnear-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture. IEEE Trans. Geosci. Remote Sens. 2014, 52, 537–543. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E.; Larson, K.M. An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil. GPS Solut. 2016, 20, 525–537. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E.; Smith, W.K. Normalized microwave reflection index: Validation of vegetation water content estimates from Montana grasslands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1512–1521. [Google Scholar] [CrossRef]
- Evans, S.G.; Small, E.E.; Larson, K.M. Comparison of vegetation phenology in the western USA determined from reflected GPS microwave signals and NDVI. Int. J. Remote Sens. 2014, 35, 2996–3017. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, R.; Tu, J.; Liao, M.; Pang, J.; Yu, B.; Li, K.; Xiang, W.; Fu, Y.; Liu, G. A GNSS-IR Method for Retrieving Soil Moisture Content from Integrated Multi-Satellite Data That Accounts for the Impact of Vegetation Moisture Content. Remote Sens. 2021, 13, 2442. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, N.; Qi, Y.; Chen, S. Inversing of Vegetation Biomass Based on GPS-R. Bull. Surv. Mapp. 2018, 129–132. [Google Scholar] [CrossRef]
- Alonso-Arroyo, A.; Querol, J.; Camps, A.; Onrubia, R.; Park, H.; Pascual, D. Can we measure vegetation water content and vegetation opacity at L-band with a single GPS receiver? In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1985–1988. [Google Scholar]
- Humphrey, V.; Frankenberg, C. Continuous ground monitoring of vegetation optical depth and water content with GPS signals. Biogeosci. Discuss. 2022. in review. [Google Scholar] [CrossRef]
- Zhang, S.; Roussel, N.; Boniface, K.; Ha, M.; Frappart, F.; Darrozes, J.; Baup, F.; Calvet, J. Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop. Hydrol. Earth Syst. Sci. 2017, 21, 4767–4784. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, T.; Wang, L.; Zhang, J.; Peng, J.; Liu, Q. Evaluation of GNSS-IR for Retrieving Soil Moisture and Vegetation Growth Characteristics in Wheat Farmland. J. Surv. Eng. 2021, 147, 04021009. [Google Scholar] [CrossRef]
- Li, Y.; Yu, K.; Chang, X.; Jin, T.; Li, J. Estimation of Wheat Height with SNR Observations Collected by Low-Cost Navigational GNSS Chip and RHCP Antenna. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8024905. [Google Scholar] [CrossRef]
- Nievinski, F.G.; Larson, K.M. Forward modeling of GPS multipath for near-surface reflectometry and positioning applications. GPS Solut. 2014, 18, 309–322. [Google Scholar] [CrossRef]
- Colominas, M.A.; Schlotthauer, G.; Torres, M.E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing. Biomed. Signal Process. Control 2014, 14, 19–29. [Google Scholar] [CrossRef]
- Liu, Y.; Su, L.; Wang, Q.; Zhang, J.; Shan, Y.; Deng, M. Comprehensive and quantitative analysis of growth characteristics of winter wheat in China based on growing degree days. Adv. Agron. 2019, 159, 237–273. [Google Scholar]
- Wang, X.; Wang, Q.; Fan, J.; Su, L.; Shen, X. Logistic model analysis of winter wheat growth on China’s Loess Plateau. Can. J. Plant Sci. 2014, 94, 1471–1479. [Google Scholar]
Satellite System | Frequency Band | SNR Type |
---|---|---|
GPS | L1 | S1 |
L2 | S2 | |
L5 | S5 | |
GLONASS | G1 | S1 |
G2 | S2 | |
Galileo | E1 | S1 |
E5b | S7 | |
BDS | B1-2 | S2 |
B3 | S6 | |
B2b | S7 |
Band | DOYs | In Situ/m | Original/m | Deviations_ori/m | Segmented/m | Deviations_seg/m |
---|---|---|---|---|---|---|
GPS-L1 | 115 | 0.7083 | 0.8557 | 0.1474 | 0.6655 | −0.0428 |
120 | 0.7000 | 0.8266 | 0.1266 | 0.6364 | −0.0636 | |
124 | 0.6938 | 0.8477 | 0.1509 | 0.6545 | −0.0393 | |
133 | 0.7000 | 0.8655 | 0.1655 | 0.6753 | −0.0247 | |
GLONASS-G1 | 115 | 0.7083 | 0.8491 | 0.1483 | 0.6694 | −0.0389 |
120 | 0.7000 | 0.8604 | 0.1442 | 0.6570 | −0.0430 | |
124 | 0.6938 | 0.8691 | 0.1350 | 0.5416 | −0.0522 | |
133 | 0.7000 | 0.8441 | 0.1378 | 0.6506 | −0.0494 | |
Galileo-E1 | 115 | 0.7083 | 0.8566 | 0.1408 | 0.6587 | −0.0496 |
120 | 0.7000 | 0.8442 | 0.1604 | 0.6700 | −0.0300 | |
124 | 0.6938 | 0.8288 | 0.1753 | 0.6787 | −0.0151 | |
133 | 0.7000 | 0.8378 | 0.1441 | 0.6537 | −0.0463 | |
BDS-B1-2 | 115 | 0.7083 | 0.8478 | 0.1395 | 0.6575 | −0.0508 |
120 | 0.7000 | 0.8372 | 0.1372 | 0.6469 | −0.0531 | |
124 | 0.6938 | 0.8523 | 0.1585 | 0.6620 | −0.0318 | |
133 | 0.7000 | 0.8423 | 0.1423 | 0.6520 | −0.0480 |
Methods | Correlation Coefficient | Root-Mean-Square -Error (m) | Mean-Absolute-Error (m) |
---|---|---|---|
GPS-L1 | 0.8868 | 0.0765 | 0.0471 |
GPS-L2 | 0.6886 | 0.1053 | 0.0967 |
GPS-L5 | 0.7684 | 0.0950 | 0.0780 |
GLONASS-G1 | 0.7993 | 0.0864 | 0.0712 |
GLONASS-G2 | 0.6566 | 0.1022 | 0.0940 |
Galileo-E1 | 0.7891 | 0.0853 | 0.0668 |
Galileo-E5b | 0.6557 | 0.1143 | 0.0997 |
BDS-B1-2 | 0.8092 | 0.0899 | 0.0755 |
BDS-B3 | 0.7348 | 0.1015 | 0.0907 |
BDS-B2b | 0.7204 | 0.1068 | 0.0895 |
Fusion | 0.9555 | 0.0383 | 0.0301 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, M.; Chen, K.; Shen, F. Monitoring of Wheat Height Based on Multi-GNSS Reflected Signals. Remote Sens. 2022, 14, 4955. https://doi.org/10.3390/rs14194955
Sui M, Chen K, Shen F. Monitoring of Wheat Height Based on Multi-GNSS Reflected Signals. Remote Sensing. 2022; 14(19):4955. https://doi.org/10.3390/rs14194955
Chicago/Turabian StyleSui, Mingming, Kun Chen, and Fei Shen. 2022. "Monitoring of Wheat Height Based on Multi-GNSS Reflected Signals" Remote Sensing 14, no. 19: 4955. https://doi.org/10.3390/rs14194955
APA StyleSui, M., Chen, K., & Shen, F. (2022). Monitoring of Wheat Height Based on Multi-GNSS Reflected Signals. Remote Sensing, 14(19), 4955. https://doi.org/10.3390/rs14194955