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Abstract: Due to the challenges in data acquisition, especially for developing countries and at
local levels, spatiotemporal evaluation for SDG11 indicators was still lacking. The availability of
big data and earth observation technology can play an important role to facilitate the monitoring
of urban sustainable development. Taking Guilin, a sustainable development agenda innovation
demonstration area in China as a case study, we developed an assessment framework for SDG
indicators 11.2.1, 11.3.1, and 11.7.1 at the neighborhood level using high-resolution (HR) satellite
images, gridded population data, and other geospatial big data (e.g., road network and point of
interest data). The findings showed that the proportion of the population with convenient access to
public transport in the functional urban area gradually improved from 42% in 2013 to 52% in 2020.
The increase in built-up land was much faster than the increase in population. The areal proportion of
public open space decreased from 56% in 2013 to 24% in 2020, and the proportion of the population
within the 400 m service areas of open public space decreased from 73% to 59%. The township-level
results indicated that low-density land sprawling should be strictly managed, and open space and
transportation facilities should be improved in the three fast-growing towns, Lingui, Lingchuan, and
Dingjiang. The evaluation results of this study confirmed the applicability of SDG11 indicators to
neighborhood-level assessment and local urban governance and planning practices. The evaluation
framework of the SDG11 indicators based on HR satellite images and geospatial big data showed
great promise to apply to other cities for targeted planning and assessment.

Keywords: SDG11; geospatial big data; sustainable development goals; earth observation; Guilin

1. Introduction
1.1. The SDG11 Indicators

The 2030 Agenda for Sustainable Development and 17 Sustainable Development Goals
(SDGs) proposed by the United Nations in 2015 enable the international community to
make a scientific understanding and accurate assessment on the sustainable development
of global cities, thereby guiding their practical actions [1]. The SDGs seek to provide
a comprehensive set of goals and indicators to measure progress towards sustainable
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development from 2015 to 2030 [2]. However, the holistic and complex nature of the SDGs
has severely hampered progress towards these goals. With the date of achieving the goals
of the 2030 Agenda approaching, a robust and unified assessment framework and reliable
data are crucial for their accurate measurement and the fulfillment of the pledge—to ensure
that “no one will be left behind” [1].

The sustainability in cities and urban settlements influences all aspects of sustainable
development. The targets and indicators of the 11th Sustainable Development Goal (SDG11)
provide a standardized indicator-based assessment framework to track the progress of
sustainable urban development and inform policy implementation and practice. According
to the Inter-agency and Expert Group on SDG Indicators (IAEG-SDGs), SDG11.2.1, 11.3.1
and 11.7.1 are Tier II indicators. These indicators are conceptually clear and have an
internationally recognized methodology and standard, but data are not regularly reported.
SDG11.2.1 refers to the proportion of the population that has convenient access to public
transport disaggregated by age group, sex, and persons with disabilities. This indicator
aims to monitor the use of and access to the public transportation system, alleviate the
reliance on private means of transportation, and improve the traffic conditions in areas with
a high proportion of transport disadvantaged people. SDG11.3.1 measures how efficiently
cities utilize land and is measured as a ratio of the rate at which cities spatially consume
land against the rate at which their populations grow. SDG11.7.1 refers to the average
share of the built-up area of cities that is open space for public use for all, by sex, age, and
persons with disabilities. It enables cities to collect accurate, timely, disaggregated data and
information on open space by adopting a systemic approach.

1.2. The Role of Geospatial Big Data for SDG11 Indicators Monitoring

Geospatial big data played an important role in the monitoring of SDG11 indicators.
The use of big data such as mobile phone data, transaction data, health records, and
social media can complement traditional official statistical data and help fill data gaps
in monitoring SDG indicators [3,4]. Earth observation data (EO) obtained from satellites
and geospatial data collected by on-site sensors or citizens are recognized as an effective,
timely, and continuous information source to support evidence-based decision-making
for sustainable urban development [5,6]. Remotely-sensed EO data have the advantage of
collecting extensive information on the Earth’s surface at large spatial scales with repeat
acquisition cycles, which can supplement or enhance the traditional data sources in urban
areas [7–9]. The availability of open remote sensing data and high-performance cloud
computing platforms makes it possible to map built-up urban areas or impervious surfaces
over large areas with medium and high spatial resolution in recent decades [10,11]. Based
on open satellite data, several global built-up area layers have been developed, including the
Global Human Settlements Layer (GHSL) from the Joint Research Centre of the European
Commission [12], the Global Urban Footprint (GUF) [13], and the World Settlements
Footprint (WSF) jointly developed by ESA, the German Aerospace Center (DLR), and the
Google Earth Engine team [14]. These products provide information on the global human
settlement with spatial resolutions from 10 m to 30 m via processing millions of images
from Landsat and Sentinel satellites [15,16]. The accessibility of open geospatial data such
as WorldPop population grids and OpenStreetMap road networks facilitates accessibility
measurements in cities around the world.

1.3. Research Questions, Motivation and Objectives

The process of sustainable development goals was mostly reported at the national level.
Assessing the sustainable development goals locally can track the progress in local sustain-
able development and provide relevant strategies to guide sustainability practices [17]. The
availability of big data (e.g., high-frequency satellite Earth observation data) can power the
sustainability practitioners to better monitor and evaluate the progress of sustainable devel-
opment. As an internationally agreed and reported assessment framework, knowledge and
practice gaps still exist on how to link and integrate the indicator measurements into urban
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governance and planning in the local context [18]. In addition, the complexity of SDG
indicator monitoring lies in the trade-offs and synergies between indicators [19–21]. To
address the above research gaps and challenges, the following key research questions were
raised: (1) whether an assessment framework to evaluate multiple SDG indicators conjunc-
tively can be developed using geospatial big data, and (2) whether the evaluation results of
SDG indicators at the neighborhood level can be linked with local urban governance and
planning practices.

With a unique karst landform, Guilin city in China was added to the United Nations
Educational, Scientific and Cultural Organization (UNESCO)’s world heritage list in 2014.
In February 2018, with the theme of “sustainable utilization of landscape resources,” Guilin
was selected as the innovation demonstration zone of the National Sustainable Develop-
ment Agenda in China. Taking Guilin city as a case study, this study aims to (1) develop
a framework to monitor three SDG11 indicators (indicators 11.2.1, 11.3.1, and 11.7.1) at
the neighborhood level using high-resolution satellite data, gridded population data, and
other geospatial big data (e.g., road network and point of interest data), (2) to provide a
holistic perspective of the progress of sustainable urban development in the study area,
and to (3) evaluate the feasibility of integrating SDG11 indicators into urban governance
practices in the local context.

2. Literature Review
2.1. Geospatial Datasets for SDG11 Indicators Monitoring

With the advantages of varying spatial and temporal resolution, large spatial coverage,
and long temporal coverage, Earth observation data provide an optimal data source for
the monitoring of SDG indicators both directly and indirectly [5]. Numerous studies
used satellite images from different sensors to assist in monitoring the progress of SDG11.
In these studies, the freely accessible global Landsat archive containing millions images
was the main source of remote sensing data. Landsat 2/5/7/8 datasets have been used
to analyze land use and landscape changes from local to global scales [22–24]. For the
evaluation of SDG11.3.1 indicators, the combination of Landsat and satellite images with
higher spatial resolution such as Sentinel and SPOT provided more accurate classification
results [25]. The SPOT 2 panchromatic imagery has a spatial resolution of 10 m and
multispectral imagery has a spatial resolution of 20 m. The SPOT 5 satellite imagery has a
spatial resolution of 2.5 m in the panchromatic band and 10 m in multispectral bands. The
fusion of remote sensing images and products was also used to obtain urban land cover
classification results with higher accuracy [22].

UN-Habitat proposed to use free EO satellite data from Landsat and Sentinel-2 satel-
lites to delineate potential public urban open spaces. Urban green areas comprise of many
small-size green spaces, such as gardens, community parks, roadside trees, etc. Although
open and free earth observations (10–30 m) with low and medium resolution can provide
valuable insights for policymakers and urban managers [26], their relatively coarse spatial
resolution tends to cause underestimation of small-sized open spaces [27,28] and leads to
low accuracy of open space detection in complex urban areas [29,30]. Streets less than 10
m wide can hardly be detected from Sentinel-2 satellite imagery at 10 m resolution [31].
High resolution remote sensing images (spatial resolution higher than 10 m) are more
suitable data sources for open space extraction in urban areas [28]. Most studies use remote
sensing images with very high spatial resolution for SDG11.7.1 monitoring, such as Plan-
etScope [27], RapidEye [28], QuickBird-2 [28,32], WorldView-2 [32] images, etc. Although
satellite images from these satellites can capture the details of land surface, they are very
costly and their application over large areas is infeasible, especially in areas with cloudy
landscapes [33].

Monitoring the progress of achieving the sustainable development goals through
the global indicator framework increased the demand for data that are high in quality,
broad in coverage, frequently available, and spatially disaggregated from countries around
the world [34]. In addition to remote sensing data, geospatial data collected voluntarily
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using a wide range of technologies and methods provided supplementary datasets to
insufficient official data and improved the monitoring of sustainable development goals [3].
Fried et al. [35] leveraged open data, including OpenStreetMap road network and World-
Pop population data to derive the values of SDG 11.2.1 indicator and accessibility metrics
and identified transport inequalities of low-income communities.

2.2. Methods for SDG11 Indicators Monitoring

Since the adoption of SDGs in 2015, the SDG11.2.1, SDG11.3.1, and SDG11.7.1 indica-
tors have been used to monitor and assess the progress of sustainable urban development
in numerous studies (Table 1). The popularity of SDG11.2.1 is attributed to its simple
estimation methods and interpretation of results. However, researchers argued that it was
not comprehensive to use a single SDG11.2.1 indicator to evaluate the traffic accessibility
of cities or countries. Other indicators should also be measured in decision-making for
transportation facility improvement. Tiznado-Aitken et al. [36] evaluated the accessibility
of Santiago’s pedestrian environment based on Lorenz curves, Gini coefficient, and Foster-
Greer-Thorbecke (FGT) poverty measures. Brussel et al. [37] found that the SDG indicator
11.2 could not represent the traffic reality well and proposed accessibility indicators that
could provide a more diversified, complete, and realistic picture of the transportation
system’s performance. Fried et al. [35] supplemented the analysis results of SDG11.2.1
through a more detailed location-based accessibility analysis and revealed traffic inequality
in low-income communities.

Early studies used remote sensing images, machine learning classification methods,
and GIS technology to analyze urban growth and sprawl processes [38]. More advanced
techniques, such as deep learning and scenario modeling, were applied for SDG11.3.1
monitoring and prediction [39–41]. Kussul et al. [39] proposed a method for land cover
classification and land productivity assessment using medium and high spatial resolution
satellite data and deep learning methods. Wang et al. [40] used the spatio-temporal interac-
tion method and Pearson’s method to monitor the spatio-temporal changes of SDG 11.3.1.
Lu et al. [41] monitored and predicted changes in urban land use efficiency indicators based
on remote sensing and scenario modeling in a coastal megacity from 2000 to 2030. Remote
sensing and geospatial big data can help understand the spatiotemporal dynamics of urban
green space under the urbanization [42], accessibility [43], and walkability [44]. However,
the detailed mapping of urban open public space and the measurement of SDG11.7.1
indicators still needs localized data and strong urban data collection capacity [45].

Table 1. Literature review of three SDG11 indicators using geospatial data.

SDG Indicator Data Source Spatial Resolution Study Area References

SDG11.2.1

An underlying road
network,

100 m Nairobi, Kenya Fried et al. [35]a general transit feed
specification package,

WorldPop population,

an opportunity dataset.

SDG11.2.1

Public transport stops,

Santiago, Chile
Tiznado-Aitken

et al. [36]road network,

georeferenced information.

SDG11.3.1

Built-up areas, 30 m, 250 m, 1 km

10,000 urban centers
Melchiorri et al.

[23]
resident population, 250 m, 1 km

settlement typologies. 1 km
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Table 1. Cont.

SDG Indicator Data Source Spatial Resolution Study Area References

SDG11.3.1

A GIS raster dataset of
built-up areas, 1 km

Global Estoque et al. [24]
a statistical dataset

of population. 250 m, 1 km

SDG11.3.1

Landsat-5/8 images, 30 m

Beijing–Tianjin–Hebei region,
China

Zhou et al. [22]
built-up area products, 30 m

WorldPop population, 100 m

ancillary datasets. 30 m

SDG11.3.1

LULC, 30 m

Mainland China Wang et al. [46]
census data,

DMSP/OLS, 1 km

administrative boundary
map.

SDG11.3.1

Landsat-5/8 images, 30 m

Tianjin, China Lu et al. [41]
topographic data, 30 m

road network,

demographic data. 100 m

SDG11.3.1

Built-up areas, 1 km

Global Schiavina et al. [47]
resident population,

settlement typologies,

functional urban area.

SDG11.3.1

Landsat 5 TM images, 30 m

South Africa Mudau et al. [25]SPOT 2/5 sensors images,

Panchromatic
10/2.5 m;

multispectral
20/10 m

census data.

SDG11.3.1
Landsat 2/5/7/8 images, 80/30 m

Southern Brazil Moro et al. [21]Sentinel-3B OLCI-WFR
satellite images. 300 m

SDG11.3.1

Built-up area, 100 m the Yangtze River Delta,
the Middle Reaches of the Yangtze
River, and Chengdu–Chongqing,

China

Wang et al. [40]population data, 100 m

boundaries maps.

SDG11.3.1
Resident population, 1 km

Poland and Lithuania Calka et al. [48]CORINE land cover
2000/2018 12.5 m

SDG11.7.1

PlanetScope images, 3.7–4.1 m

The Athens Metropolitan Area Verde et al. [27]Sentinel-1 images,

ground range-detected
products.

SDG11.7.1

Sentinel-2A images, 10 m

Hangzhou, China Deng et al. [49]SPOT-2/3/5 images, XS 20 m/PAN 10
m/XS 10&20 m

reference and
ancillary data.
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2.3. Research Challenges

A review of recent research shows that Earth observation data can effectively support
the government in addressing sustainable development goals and monitoring the imple-
mentation of SDG indicators. The rapid development of Earth observation technologies
and big data platforms will continue to play a role in expanding indicators and targets
that can be effectively measured and monitored globally. However, the success of SDG11
implementation depends largely on the availability of high-quality assessment data [2,3].
Although satellite data has been widely used in SDG indicator evaluation, the spatial reso-
lution of remote sensing images used varies from 2.5 m to 1 km (Table 1). High-resolution
satellite data has become increasingly available. Its potential for urban built-up areas and
open space mapping and monitoring can be further evaluated. Data fusion methods and
more advanced data processing techniques, such as deep learning, should be exploited
to improve the accuracy and reliability of geospatial products and information derived
from remote sensing images. Data sharing and openness should also be promoted to better
support the monitoring of SDG11 indicators.

Analytical frameworks, tools, and analyses that enable interlinkages between targets
and indicators can provide more insights on how various interacting forces led to specific
outcomes, thereby helping establish connections between science and policy [50]. Re-
searchers argued that it is not comprehensive to use a single indicator to evaluate the traffic
accessibility of cities. However, the majority of previous studies using geospatial data
focused on the measurement of one specific indicators. Multiple indicators can be assessed
conjunctively to draw policy and practice implications for sustainable urban development.
Comprehensive assessment framework involving multiple indicators should be developed
and implemented to provide sound policy guide for city governors in future studies.

Despite the fact that the methodologies and approaches of SDG indicator monitoring
with Earth observation data have been developed, the assessment was mainly performed at
a city, regional and national level. Few studies conducted neighborhood level analysis and
incorporated the assessment results with local urban planning and governance practices.
Localized urban practices using open geospatial data and SDG indicators is beneficial
for guiding cities and regions, especially in developing countries, to assess sustainable
development progress and support policy-making processes.

3. Study Area

Guilin City (Figure 1) is located in the northeastern part of Guangxi Zhuang Au-
tonomous Region, China. It is located between 109◦36’ to 111◦29’E and from 24◦15’ to
26◦23’N. The territory is 236 km long from north to south and 189 km wide from east to
west. Guilin has a subtropical monsoon climate with an average annual precipitation of
1887.6 mm and an annual mean temperature of 18.9 ◦C. The core urban area of Guilin city
includes six districts, Xiufeng, Qixing, Xiangshan, Diecai, Yanshan, and Lingui, covering
an area of 2767 km2. Guilin has a typical karst landform and is a world-famous scenic
city. Considering its extraordinary natural beauty and aesthetic values, the World Heritage
Committee added the Guilin Karst to UNESCO’s world heritage list in 2014. Guilin is
also the political, economic, cultural, and technological center in the northeastern part of
Guangxi Province.

With the rapid economic development, anthropogenic activities have become increas-
ingly intensive in Guilin in the last decades. The over-development and exploitation of
natural landscapes have led to considerable pressure on the sensitive and fragile ecological
environment [51]. The contradiction between the growth of natural resource utilization
demand and the actual environmental carrying capacity has become increasingly promi-
nent. The evaluation and monitoring of SDG indicators can provide valuable information
for the construction of the innovation demonstration zone of the National Sustainable
Development Agenda and for protecting the ecological environment in local areas.
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Figure 1. Geographic location of the study area.

4. Materials and Methods
4.1. Datasets

In this study, three SDG11 indicators were measured within the urban functional
boundary of Guilin from 2013–2020. High-resolution remote sensing images of Chinese
Gaofen-1/6 satellites and geospatial big data were mainly used (Table 2). Since the Gaofen-1
satellite was launched in 2013 and the high-resolution satellite images acquired by Gaofen-1
have been available since then, this study selected 2013–2020 as our study period. The
Gaofen-1/6 satellites carry two 2 m panchromatic and 8 m multi-spectral high-resolution
cameras with four bands (PMS). After preprocessing, image fusion was employed to fuse
the multispectral images and panchromatic images, and 2 m resolution multi-band data
was finally obtained for land use classification in the study area. Point of interest (POI) data
including bus stations and train stations in 2015 and 2020 were collected from the AutoNavi
electronic navigation map (https://ditu.amap.com, accessed on 10 April 2021). Due to
the low quality of historical data, the road networks were only obtained for the year 2020.
LandScan global population data, produced by the U.S. Department of Energy’s Oak Ridge
National Laboratory (ORNL) (https://landscan.ornl.gov/, accessed on 1 June 2021), was
used to measure the number of populations. This dataset used spatial data, high-resolution
imagery analysis techniques, and a dasymetric modeling approach to disaggregate census
population numbers within administrative boundaries. LandScan is the finest resolution
global population distribution data available representing an ambient population. The
LandScan data covering the study area were retrieved in 2013, 2015, and 2020 for the SDG
indicator measurement.

https://ditu.amap.com
https://landscan.ornl.gov/
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Table 2. Geospatial datasets used in this study.

Data Set Acquisition Time Spatial Resolution Source

Road network 2020 Autonavi electronic
navigation map

Point of interest 2015
2020

Autonavi electronic
navigation map

Gaofen-1/6
satellite images

2013
2015
2020

2/8 m Chinese Academy
of Sciences

Population grid data
2013
2015
2020

1 km LandScan

Urban park 2015
2020

Autonavi electronic
navigation map

4.2. Methods

The workflow for SDG indicator assessment is shown in Figure 2. The road network
data, point of interest data, and LandScan population data were used to perform a dynamic
assessment of public transport accessibility and SDG11.2.1 indicators. Secondly, high-
resolution satellite images were used for land cover classification to analyze changes
in SDG11.3.1 indicators. Finally, high-resolution satellite images were used to extract
green space and measure changes in SDG11.7.1 indicators. The LandScan population grid
data was used to calculate the number of populations with convenient access to urban
open spaces.
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The notations used for the calculation of three SDG11 indicators, SDG11.2.1, SDG11.3.1,
and SDG11.7.1, are summarized in Table 3.
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Table 3. Notations used in this study.

Terms Definition Unit

Pi The total population served by public transport service area i. -

Pij
The number of the population of population zone j (j = 1 . . . n) that fully or

partially intersect with a public transport service area i. -

LCR Land consumption rate. -

Urbt The total area covered by the urban built-up area in the initial year t. km2

Urbt+n The total area covered by the urban built-up area in the final year t+n. km2

LCRPGR The ratio of land consumption rate to population growth rate. -

PGR Population growth rate. -

LCPCt1 The land consumption per capita at time t1. km2

Urbt1 The total built up area within the urban boundaries at time t1. km2

Popt1 The total population within the urban boundaries at time t1. -

Change in LCPC(t1−t2) The percentage change in land consumption per capita between t1 and t2. %

Change in Urban Infill The percentage change rate of urban density. %

Sstreets Total area occupied by streets in all locales. km2

Scity Total area of all locales. km2

SOPS The total area occupied by open public spaces. km2

PLAS The share of city land occupied by streets. %

POPS The share of urban areas that is allocated to open public spaces. %

PPOPS
The average share of built-up area of cities that is open public space and

streets. %

Subscripts

i The service area

j The population zone

t The initial year

n The number of years between the initial year and the final year

t1 The initial year

t2 The final year

Streets Urban streets

City Urban area

OPS Open public spaces

POPS Built-up area of cities that is open public space and streets

Symbols

Σ The summation symbol

% Percentage means the percentage of one number that is the other number,
expressed by “%”

ln The natural logarithm symbol is the logarithm with constant e as the base,
which is recorded as lnN (N > 0)

4.2.1. SDG11.2.1

SDG indicator 11.2.1 measures proportion of population that has convenient access to
public transport. For SDG 11.2.1, public transport is considered “convenient” for people
who live within 500 m walking distance from the nearest low-capacity station and 1 km
from the nearest high-capacity station. According to the definition of low-capacity public
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transportation and high-capacity public transportation, the 500 m service area of the bus
stations and the 1 km service area of the railway stations were created using network
analysis [34]. A network service area was created along the road network at each public
transport stop or around each public transport route per applicable walking distance
thresholds. The use of network distance can reflect the configuration of the road network,
and identify the existence of obstacles that hinder direct access to public transport facilities.
All individual service areas are then merged to create continuous service area polygons.
The service area and the population data are overlaid to calculate the population with
access to each public transport stop. The number of populations served by the public
transport service was calculated by:

Pi = ∑ n
j=1Pij, (1)

where Pij is the population served by the public transport service in buffer i of population
zone j (j = 1 . . . n) that completely or partially intersect with the service area i, and Pi refers
to the total population served by public transport stations in service area i.

The SDG11.2.1 indicator was calculated as percentage of population with convenience
assess to public transport. The higher the percentage of the population with convenient
access to public transportation services, the better the accessibility, and vice versa. This
indicator reflects the service status of the regional road network and transportation stations.
The SDG 11.2.1 indicators in 2013, 2015, and 2020 were calculated to analyze the changes in
public transportation accessibility in the study area.

4.2.2. SDG11.3.1

SDG indicator 11.3.1 measures the ratio of land consumption rate to population
growth rate [40,41,48,52]. Using the remote sensing images of Gaofen-1 in 2013 and 2016
and Gaofen-6 in 2020, a random forest classifier was used to classify the land cover of the
study area into five categories: built-up land, forest, cultivated land, water body, and bare
land. Based on the classification results, changes in the urban functional boundaries and
land use were analyzed for each period. The land consumption rate (LCR) was calculated
using the following equation:

LCR =
ln(Urbt+n

Urbt
)

n
, (2)

where Urbt is the total area covered by the urban built-up area in the initial year (km2);
Urbt+n is the total area covered by the urban built-up area in the final year (km2); n is the
number of years between the two periods.

The global population grid data was used to calculate the population in the study area
in the corresponding year, and the population growth rate (PGR) was calculated using
similar method. Combining the changes in built-up land and population, the ratio of land
consumption rate to population growth rate (LCRPGR) in the functional urban area was
calculated using equation:

LCRPGR =
LCR
PGR

, (3)

To capture the urbanization process more comprehensively, two secondary indicators
were also calculated. The per capita land consumption (LCPC) at t1 was derived according
to Equation (4), and the percentage change rate of per capita land consumption (Change in
LCPC) and the percentage change rate of urban density (Change in Urban Infill) between
t1 and t2 were calculated according to Equations (5) and (6).

LCPCt1 =
Urbt1
Popt1

, (4)

ChangeinLCPC(t1−t2) =
LCPCt2 − LCPCt1

LCPCt1
, (5)
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ChangeinUrbanInfill =
Urbt2 − Urbt1

Urbt1
× 100, (6)

where Urbt1 refers to the total built-up area within the urban boundary at time t1 (km2);
Popt1 refers to the total population within the urban boundaries at time t1; Urbt2 refers to
the total built-up area at time t2 within the same urban boundary (km2).

4.2.3. SDG11.7.1

SDG Indicator 11.7.1 measures the average share of the built-up area of cities that
is open space for public use. The road network data and the boundaries of the urban
functional area were used to calculate the land allocated to streets (Equation (7)). Using an
object-based image analysis method, green space was extracted using the high-resolution
satellite images. The urban parks were extracted using the Autonavi electronic navigation
map (AMAP). Then, the proportion of open public spaces was calculated using Equation (7).
As for the core indicator, the proportion of public open space in the city was expressed as
the proportion of the total open space area of streets and open public spaces in the urban
area [49]. 

PLAS = Sstreets
Scity

× 100%

POPS = SOPS
Scity

× 100%

PPOPS = Sstreets+SOPS
Scity

× 100%

, (7)

where PLAS represents the share of city land occupied by streets (%), Sstreets represents the
total area occupied by streets in all locales (km2), and Scity represents the sum area of all
locales (km2); POPS represents the share of urban areas that is allocated to open public
spaces (%), SOPS represents the total area occupied by open public spaces (km2); PPOPS
represents the average share of built-up area of cities that is open space for public use for
all (%).

A network analysis was performed to generate an urban open space service area with
a road network distance of 400 m. First, a network dataset was create using road network
data, and then a road network-based service area was created around each public open
space using a 400 m threshold. All people living in the service area are deemed to have
convenient use of open public space. Finally, combined with the grid population data,
the population in the service area of the open space was calculated in each period in the
study area.

5. Results
5.1. Spatiotemporal Variation of Population with Access to Public Transport Stops (SDG 11.2.1)

The public transportation service area of Guilin in 2015 and 2020 was shown in
Figure 3. The service area of public transport stations was increasing and covers most of
the population in the main functional areas of the city, but there were also some densely
populated areas that were not covered by the service area.

Figure 4 shows the changes in population with convenient access to public transport
services from 2013 to 2020. The level of public transport services continued to improve
from 2013 to 2020. The total population with access to public transport stops increased
from 458,861 in 2013 to 489,379 in 2015 and 573,957 in 2020. The accessibility indicator
increased from 42.08% in 2013 to 52.31% in 2020.

The changes in SDG 11.2.1 indicators were further evaluated at the township level
(Figure 5). The indicators of most towns showed a trend of improvement over time. Among
them, the population in Xiangshan, Xiufeng, Qixing, and Lijun has been fully covered
by public transportation services. However, in towns such as Dingjiang, Lingchuan, and
Lingui, less than 40% of the population has access to convenient public transport. The
construction of public transportation facilities in these areas was weak, and investment on
public transportation infrastructures is highly needed in these areas.
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5.2. Spatiotemporal Variation of Land Consumption vs. Population Growth (SDG 11.3.1)

The accuracy of the land use classification results in the study area was evaluated
using ground truth samples. The overall classification accuracy and kappa coefficient
of the classification results of each period were higher than 90%. Based on the land use
classification results, the temporal variations in LCR, PGR, and LCRPGR indicators and
the corresponding secondary indicators (i.e., change in LCPC and change in urban infill)
were measured in the study area (Table 4). The results showed that the urban expansion
and population growth rates of Guilin were not well coordinated from 2013 to 2020. The
urban expansion rate was faster than the population growth rate, and the per capita urban
built-up area continued to increase at an accelerating rate. This indicates a sprawling urban
growth pattern in the study area.
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Table 4. SDG11.3.1 indicators from 2013 to 2015 in Guilin.

Time Span LCR PGR Change in
LCPC

Change in
Urban Infill LCRPGR

2013–2015 0.0525 0.0179 7.16% 4.77% 2.9343
2015–2020 0.0320 −0.0007 17.78% 23.30% −45.7867

At the township level, the built-up area expanded more than 12 times faster than the
population growth rate in Dingjiang, followed by Dahe, Pingshan, and Chuanshan from
2013 to 2015 (Figure 6). During the period 2013 to 2015, a large number of construction
projects were started. However, those towns hardly attracted many people inflow. The
towns of Diecai, Xiufeng, Lijun, Xiangshan, and Nanmen experienced a population decline.
From 2015 to 2020, the expansion rates of built-up areas in Lingchuan, Lingui, and Dingjiang
were still far greater than the population growth rate, which might be due to new settlement
planning in these towns. The growth rate of built-up area in Lingui new area accelerated
tremendously after 2015.
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Figure 6. Ratio of land consumption rate to population growth rate(LCRPGR) from 2013 to 2020 in
townships of Guilin.

From 2013 to 2015, the fastest growing area in per capita land consumption (LCPC)
was in Dahe, up to 24.72% (Figure 7). The LCPC in Dingjiang, Lingchuan, Chuanshan, and
Pingshan continued to grow, and the LCPC of other regions were decreasing. From 2015
to 2020, the LCPC of Jiashan, Lijun, Xiufeng, and Nanmen increased sharply due to the
loss of population, while the per capita land consumption area of most of the remaining
townships showed a downward trend. The changes in LCPC (Figure 7) indicates that
land use efficiency continued to decrease, especially in Lingui, Lingchuan, and Dingjiang,
where disorderly expansion occurred. In the townships where the expansion of built-up
land was much faster than the population growth, the planning and management of land
development should be strengthened to avoid low-density sprawl of urban land.
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5.3. Spatiotemporal Variation of Open Public Space (SDG 11.7.1)

For SDG11.7.1 indicator, the land of streets in the area was 16.18 km2, which accounts
for 5.13% of total urban area (Figure 8). The area of green space was 160.28 km2, 123.10 km2,
and 59.32 km2 in 2013, 2015 and 2020, respectively, showing a rapidly decreasing trend. The
corresponding areal proportion of urban green space (POPS) accounted for 50.83%, 33.91%,
and 18.81% of the urban area, respectively. The proportion of the overall open public space
has gradually decreased from 55.97% in 2013 to 39.04% in 2015 and 23.95% in 2020.
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The 400 m service area of parks and green spaces were shown in Figure 9. In 2013,
2015, and 2020, the service areas were 151.34 km2, 96.09 km2, and 81.76 km2, respectively.
The proportions of the population in the service area of open public space in Guilin were
73.2 %, 64.0%, and 59.3% in 2013, 2015, and 2020, respectively (Table 5). With the rapid
decrease of green spaces, the service area has decreased over time. The total number of
residents served by green open spaces also showed a rapid downward trend. Most of the
green areas were converted into urban built-up land. From 2013 to 2020, the area of green
space in the urban functional area dropped sharply, while the number of urban parks has
only increased by 6 km2 with a total area of 1.24 km2. Most of them were distributed in
the new urban areas in the west, however, the number and area cannot meet the needs of
citizens due to rapid increase in population.
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Table 5. Population with access to open public spaces from 2013 to 2020 in Guilin.

2013 2015 2020

Population with access to public
open space 817,366 731,600 664,953

Total population 1,117,265 1,142,848 1,121,568

Proportion (%) 73.16 64.02 59.29

Figure 10 shows the changes in the proportion of the population in the green space
service area of each town in the functional area of Guilin. At the township level, the service
areas were relatively large for Xiufeng, Xiangshan and Qixing. The proportions of served
population in most towns have decreased over time. The fastest decline was observed in
Lingui, which has dropped from 50% to 24%. In 2020, the proportions of served population
in Dingjiang, Lingui, Lingchuan, Dahe, Chaoyang, and Jiashan were lower than 40%. In
addition, the entire area of Xiufeng was fully covered by the service area of open public
space from 2013 to 2020, and all residents have convenient access to urban green space.
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6. Discussion

The SDG11.2.1 evaluation results show that the public transport convenience of the
regional central towns in Guilin is better than that of the peripheral towns. The research
results of Tiznado-Aitken, Muñoz and Hurtubia [36] are consistent with our study. Building
an integrated transportation network that meets the needs of social and economic develop-
ment is very important for achieving sustainable development. The transportation links
between the bordering towns and the central towns should be strengthened to promote
the in-depth development of regional economics [53]. Meanwhile, intensive use of urban
resources and livable environment should be maintained to build a modern town in Guilin
with a good ecological environment during the road network construction. This study
confirms that the application of high-resolution Earth observation data can improve the
lack of information on SDG11.3.1 at a fine scale [48]. The growth rate of the built-up area
exceeded the growth rate of the population in the same time period, increasing imbalance
between rapid urban expansion and population growth. The uncoordinated population
and land growth have been reported in small and medium-sized cities in China [22,46,54].
One possible reason is that low land acquisition costs and rapid industrial development
have transformed a large number of agricultural land markets into non-agricultural land
markets, which has resulted in the growth of LCR [54]. The proportion of land use types
used for built-up areas in Guilin was increasing, while the land used to provide urban
green spaces was decreasing. The benefits provided by the urban green space cannot
meet the needs of the increasing population. The realization of the SDGs depends on the
balance and cohesion of all the elements related to land [55]. It is necessary to balance the
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growth of urban built-up areas and green spaces to promote sustainable development. In
the undergoing densification of urban areas, adequate and accessible green public spaces
should be planned to solve the scarcity of green space and to sustain the quality of urban
environments and social systems, and human wellbeing [56].

Actions taken at the neighborhood level can lead to positive urban changes and en-
hance the sustainability of communities [57]. The evaluation of SDG indicators 11.2.1,
11.3.1, and 11.7.1 suggested that the three towns of Lingui, Lingchuan, and Dingjiang
should consider increasing their green area andpublic transportation facilities to prevent
the low-density development of built-up land. Investments in urban infrastructure to en-
able a function can often create lock-in situations that last for decades or even centuries [58].
In urban planning, natural landscapes, trunk lines, and urban construction should be inte-
grated, and ecological and livable towns should be built on the basis of existing landscapes.
It is worth mentioning, however, that some scholars have found that the construction of
extensive road networks across the landscape also destroys natural habitats and increases
the pressure on sustainable development policies. For example, human activities have led
to ecological degradation in the Qilian Mountains [59]. Monitoring of SDG 11.7.1 indicator
aims to ensure that important ecological functional areas such as nature reserves, scenic
spots, forest parks, wetlands, and vital water sources within the urban area of Guilin City
are not damaged. It also aims to improve the construction of urban open space. According
to the township-level analysis results of SDG11.3.1, policymakers in Lingui, Lingchuan,
and Dingjiang should plan and consider building new districts based on their population
density, resources, and environmental carrying capacity and should not pursue urban-
ization while ignoring the ecological environment. Due to the lack of conservation and
preservation, deforestation in the past ten years was extensive, and the water storage
capacity was weakened, which also impacted the water quality in Guilin. Since 2011, Guilin
has implemented a series of policies to improve the ecological environment. These policies
are encouraging and might help to formulate sustainable development strategies suitable
for Guilin in the future.

A well-conceptualized and robust SDG monitoring framework can inform the strategic
design of policies and interventions to address the challenges of growing urban areas and
uncertainty in a variety of scenarios. SDG11 monitoring framework explicitly considers
the linkages between policy, urban development, and the SDGs by integrating interdisci-
plinary knowledge. Implementing isolated targets without a comprehensive approach will
undermine the unique dynamics of each city and endanger sustainable development. The
comprehensive evaluation results in our study indicates that the evaluation results of mul-
tiple SDG indicators should be considered comprehensively under the local context to gain
insights from local ecosystem and development conditions and guide sustainable policies
and practices. Since the proposed approach is based on the United Nations’ guidelines and
uses open geospatial data, it can be easily adopted in cities in other countries or regions to
support sustainable urban practices.

One limitation of our study is that the indicator assessment was performed in the years
2013, 2015, and 2020. The study periods highly depend on the availability of open geospatial
data. With geospatial data becoming more readily available, an annual evaluation of the
SDG indicators can be performed in future studies. Moreover, raw spatial and temporal
resolution geospatial data such as gridded population data (1000 m) was used in this study.
This may have caused uncertainties and bias in the evaluation results [60,61]. Geospatial
data with higher spatiotemporal resolution and thematic accuracy should be used to obtain
more reliable assessment results. The sharing of geospatial data should be endorsed, and
multi-source data fusion technology should be developed to improve the resolution and
accuracy of SDG indicator measurements.

7. Conclusions

Following the guidelines of SDG11 indicators, this study evaluated the spatiotemporal
changes in transport accessibility, land consumption, and urban open space in the urban
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functional area of Guilin from 2013 to 2020. The evaluation results showed that the accessi-
bility of public transport gradually improved from 2013 to 2020, and the SDG11.2.1 indica-
tors increased from 42.08% in 2013 to 52.31% in 2020. However, the expansion of built-up
land was faster than the increase in population, and the per capita land consumption contin-
ued to increase. The proportion of public open space area also decreased from 56.0% in 2013
to 24.0% in 2020, and the proportion of population with convenient access to open public
space decreased from 73.2% to 59.3%. At the township level, the SDG11 indicators of Lingui,
Lingchuan, and Dingjiang, which have been rapidly growing in recent years, ranked the
lowest among the evaluated towns. Therefore, the construction of public transport facilities
should be increased, the low-density sprawl of built-up land should be controlled, and the
area of green space should be enlarged in these areas. This study proved the effectiveness of
the United Nations Sustainable Development Goal SDG11 indicators in evaluating changes
in urban transportation, urban public space, and urban land use efficiency that are closely
related to urban sustainability at the neighborhood level. The evaluation framework for
SDG11 indicators based on HR satellite images and open geospatial big data proposed
in this study can be applied to other cities, thereby contributing to the achievement of
the sustainable development goals. Geospatial data with enhanced spatial and temporal
resolution should be produced and applied to improve the accuracy and reliability of SDG
evaluation results in future studies.
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