Improving Clear-Sky Solar Power Prediction over China by Assimilating Himawari-8 Aerosol Optical Depth with WRF-Chem-Solar
Abstract
:1. Introduction
2. Methodology
2.1. Forecast Model
2.2. Three-Dimensional Variational Data Assimilation
3. Observations and Experimental Design
3.1. Himawari-8
3.2. AERONET
3.3. SONET
3.4. SSR Stations
3.5. Experiments
4. Results
4.1. DA Impacts on Aerosol Spatial Column Distributions
4.2. Verification of DA on Aerosol ICs and Forecasts
4.3. Improvement of the Clear-Sky Solar Power Prediction by DA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mallapaty, S. How China Could Be Carbon Neutral by Mid-Century. Nature 2020, 586, 482–483. [Google Scholar] [CrossRef] [PubMed]
- Gentile, S.; Di Paola, F.; Cimini, D.; Gallucci, D.; Geraldi, E.; Larosa, S.; Nilo, S.T.; Ricciardelli, E.; Ripepi, E.; Viggiano, M.; et al. 3D-VAR Data Assimilation of SEVIRI Radiances for the Prediction of Solar Irradiance in Italy Using WRF Solar Mesoscale Model—Preliminary Results. Remote Sens. 2020, 12, 920. [Google Scholar] [CrossRef] [Green Version]
- Marquis, M.; Wilczak, J.; Ahlstrom, M.; Sharp, J.; Stern, A.; Smith, J.C.; Calvert, S. Forecasting the Wind to Reach Significant Penetration Levels of Wind Energy. Bull. Am. Meteorol. Soc. 2011, 92, 1159–1171. [Google Scholar] [CrossRef] [Green Version]
- Diagne, M.; David, M.; Lauret, P.; Boland, J.; Schmutz, N. Review of Solar Irradiance Forecasting Methods and a Proposition for Small-Scale Insular Grids. Renew. Sustain. Energy Rev. 2013, 27, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Diagne, M.; David, M.; Boland, J.; Schmutz, N.; Lauret, P. Post-Processing of Solar Irradiance Forecasts from WRF Model at Reunion Island. Sol. Energy 2014, 105, 99–108. [Google Scholar] [CrossRef]
- Liang, S.; Wang, D.; He, T.; Yu, Y. Remote Sensing of Earth’s Energy Budget: Synthesis and Review. Int. J. Digit. Earth 2019, 12, 737–780. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Duan, S.; Cai, T.; Liu, B. Online 24-h Solar Power Forecasting Based on Weather Type Classification Using Artificial Neural Network. Sol. Energy 2011, 85, 2856–2870. [Google Scholar] [CrossRef]
- Srivastava, S.; Lessmann, S. A Comparative Study of LSTM Neural Networks in Forecasting Day-Ahead Global Horizontal Irradiance with Satellite Data. Sol. Energy 2018, 162, 232–247. [Google Scholar] [CrossRef]
- Voyant, C.; Notton, G.; Kalogirou, S.; Nivet, M.-L.; Paoli, C.; Motte, F.; Fouilloy, A. Machine Learning Methods for Solar Radiation Forecasting: A Review. Renew. Energy 2017, 105, 569–582. [Google Scholar] [CrossRef]
- Jayalakshmi, N.Y.; Shankar, R.; Subramaniam, U.; Baranilingesan, I.; Karthick, A.; Stalin, B.; Rahim, R.; Ghosh, A. Novel Multi-Time Scale Deep Learning Algorithm for Solar Irradiance Forecasting. Energies 2021, 14, 2404. [Google Scholar] [CrossRef]
- Hammer, A.; Heinemann, D.; Lorenz, E.; Lückehe, B. Short-Term Forecasting of Solar Radiation: A Statistical Approach Using Satellite Data. Sol. Energy 1999, 67, 139–150. [Google Scholar] [CrossRef]
- Lorenz, E.; Hammer, A.; Heinemann, D. Short Term Forecasting of Solar Radiation Based on Satellite Data. In Proceedings of the International Solar Forum: 5. ISES Solar Conference—The Focal Point for Solar Science, Business and In-dustry in Europe, Breisgau, Germany, 20–23 June 2004. [Google Scholar]
- Reikard, G. Predicting Solar Radiation at High Resolutions: A Comparison of Time Series Forecasts. Sol. Energy 2009, 83, 342–349. [Google Scholar] [CrossRef]
- Lorenz, E.; Hurka, J.; Heinemann, D.; Beyer, H.G. Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 2–10. [Google Scholar] [CrossRef]
- Perez, R.; Lorenz, E.; Pelland, S.; Beauharnois, M.; Van Knowe, G.; Hemker, K.; Heinemann, D.; Remund, J.; Müller, S.C.; Traunmüller, W.; et al. Comparison of Numerical Weather Prediction Solar Irradiance Forecasts in the US, Canada and Europe. Sol. Energy 2013, 94, 305–326. [Google Scholar] [CrossRef]
- Ruiz-Arias, J.A.; Dudhia, J.; Gueymard, C.A. A Simple Parameterization of the Short-Wave Aerosol Optical Properties for Surface Direct and Diffuse Irradiances Assessment in a Numerical Weather Model. Geosci. Model Dev. 2014, 7, 1159–1174. [Google Scholar] [CrossRef] [Green Version]
- Inman, R.H.; Pedro, H.T.C.; Coimbra, C.F.M. Solar Forecasting Methods for Renewable Energy Integration. Prog. Energy Combust. Sci. 2013, 39, 535–576. [Google Scholar] [CrossRef]
- Mailhot, J.; Belair, S.; Lefaivre, L.; Bilodeau, B.; Desgagne, M.; Girard, C.; Glazer, A.; Leduc, A.-M.; Methot, A.; Patoine, A.; et al. The 15-Km Version of the Canadian Regional Forecast System. Atmosphere-Ocean 2006, 44, 133–149. [Google Scholar] [CrossRef]
- Xue, M.; Droegemeier, K.K.; Wong, V. The Advanced Regional Prediction System (ARPS)—A Multi-Scale Nonhydrostatic Atmospheric Simulation and Prediction Model. Part I: Model Dynamics and Verification. Meteorol. Atmos. Phys. 2000, 75, 161–193. [Google Scholar] [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Barker, D.; Duda, G.; Huang, X.; Wang, W.; Powers, G. A Description of the Advanced Research WRF Version 3; NCAR: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Eissa, Y.; Naseema Beegum, S.; Gherboudj, I.; Chaouch, N.; Al Sudairi, J.; Jones, R.K.; Al Dobayan, N.; Ghedira, H. Prediction of the Day-Ahead Clear-Sky Downwelling Surface Solar Irradiances Using the REST2 Model and WRF-CHIMERE Simulations over the Arabian Peninsula. Sol. Energy 2018, 162, 36–44. [Google Scholar] [CrossRef]
- Lara-Fanego, V.; Ruiz-Arias, J.A.; Pozo-Vázquez, D.; Santos-Alamillos, F.J.; Tovar-Pescador, J. Evaluation of the WRF Model Solar Irradiance Forecasts in Andalusia (Southern Spain). Sol. Energy 2012, 86, 2200–2217. [Google Scholar] [CrossRef]
- Jimenez, P.A.; Hacker, J.P.; Dudhia, J.; Haupt, S.E.; Ruiz-Arias, J.A.; Gueymard, C.A.; Thompson, G.; Eidhammer, T.; Deng, A. WRF-Solar: Description and Clear-Sky Assessment of an Augmented NWP Model for Solar Power Prediction. Bull. Am. Meteorol. Soc. 2016, 97, 1249–1264. [Google Scholar] [CrossRef]
- Thompson, G.; Eidhammer, T. A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone. J. Atmos. Sci. 2014, 71, 3636–3658. [Google Scholar] [CrossRef]
- Xie, Y.; Sengupta, M.; Dudhia, J. A Fast All-Sky Radiation Model for Solar Applications (FARMS): Algorithm and Performance Evaluation. Sol. Energy 2016, 135, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Kim, J.-H.; Jiménez, P.A.; Sengupta, M.; Dudhia, J.; Xie, Y.; Golnas, A.; Giering, R. An Efficient Method to Identify Uncertainties of WRF-Solar Variables in Forecasting Solar Irradiance Using a Tangent Linear Sensitivity Analysis. Sol. Energy 2021, 220, 509–522. [Google Scholar] [CrossRef]
- Ancell, B.C. Examination of Analysis and Forecast Errors of High-Resolution Assimilation, Bias Removal, and Digital Filter Initialization with an Ensemble Kalman Filter. Mon. Weather Rev. 2012, 140, 3992–4004. [Google Scholar] [CrossRef]
- Berner, J.; Ha, S.-Y.; Hacker, J.P.; Fournier, A.; Snyder, C. Model Uncertainty in a Mesoscale Ensemble Prediction System: Stochastic versus Multiphysics Representations. Mon. Weather Rev. 2011, 139, 1972–1995. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.-Q.; Xie, L.; Pietrafesa, L.J. Correcting the Errors in the Initial Conditions and Wind Stress in Storm Surge Simulation Using an Adjoint Optimal Technique. Ocean Model. 2007, 18, 175–193. [Google Scholar] [CrossRef]
- Patel, S.; Vithalpura, M.; Mallick, S.K.; Ratheesh, S. Impact of Initial and Boundary Conditions on Coupled Model Simulations for Bay of Bengal. Mar. Geodesy 2022, 45, 166–193. [Google Scholar] [CrossRef]
- Dagan, G.; Stier, P.; Spill, G.; Herbert, R.; Heikenfeld, M.; van den Heever, S.C.; Marinescu, P.J. Boundary Conditions Representation Can Determine Simulated Aerosol Effects on Convective Cloud Fields. Commun. Earth Environ. 2022, 3, 71. [Google Scholar] [CrossRef]
- Slater, J.; Tonttila, J.; McFiggans, G.; Connolly, P.; Romakkaniemi, S.; Kuhn, T.; Coe, H. Using a Coupled Large-Eddy Simulation-Aerosol Radiation Model to Investigate Urban Haze: Sensitivity to Aerosol Loading and Meteorological Conditions. Atmos. Chem. Phys. 2020, 20, 11893–11906. [Google Scholar] [CrossRef]
- Tegen, I.; Fung, I. Contribution to the Atmospheric Mineral Aerosol Load from Land Surface Modification. J. Geophys. Res. 1995, 100, 18–707. [Google Scholar] [CrossRef]
- Schroedter-Homscheidt, M.; Oumbe, A.; Benedetti, A.; Morcrette, J.-J. Aerosols for Concentrating Solar Electricity Production Forecasts: Requirement Quantification and ECMWF/MACC Aerosol Forecast Assessment. Bull. Am. Meteorol. Soc. 2013, 94, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Tegen, I.; Hollrig, P.; Chin, M.; Fung, I.; Jacob, D.; Penner, J. Contribution of Different Aerosol Species to the Global Aerosol Extinction Optical Thickness: Estimates from Model Results. J. Geophys. Res.-Atmos. 1997, 102, 23895–23915. [Google Scholar] [CrossRef]
- Barbaro, E.W. Interactions between Aerosal and Convective Boundary-Layer Dynamics over Land. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2015. [Google Scholar]
- Randles, C.A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; et al. Intercomparison of Shortwave Radiative Transfer Schemes in Global Aerosol Modeling: Results from the AeroCom Radiative Transfer Experiment. Atmos. Chem. Phys. 2013, 13, 2347–2379. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Arias, J.A.; Dudhia, J.; Santos-Alamillos, F.J.; Pozo-Vázquez, D. Surface Clear-Sky Shortwave Radiative Closure Intercomparisons in the Weather Research and Forecasting Model. J. Geophys. Res. Atmos. 2013, 118, 9901–9913. [Google Scholar] [CrossRef]
- Cheng, Y.; Dai, T.; Goto, D.; Murakami, H.; Yoshida, M.; Shi, G.; Nakajima, T. Enhanced Simulation of an Asian Dust Storm by Assimilating GCOM-C Observations. Remote Sens. 2021, 13, 3020. [Google Scholar] [CrossRef]
- Dai, T.; Cheng, Y.; Goto, D.; Li, Y.; Tang, X.; Shi, G.; Nakajima, T. Revealing the Sulfur Dioxide Emission Reductions in China by Assimilating Surface Observations in WRF-Chem. Atmos. Chem. Phys. 2021, 21, 4357–4379. [Google Scholar] [CrossRef]
- Pang, J.; Liu, Z.; Wang, X.; Bresch, J.; Ban, J.; Cnen, D.; Kim, J. Assimilating AOD Retrievals from GOCI and VIIRS to Forecast Surface PM2.5 Episodes over Eastern China. Atmos. Environ. 2018, 179, 288–304. [Google Scholar] [CrossRef]
- Wang, D.; You, W.; Zang, Z.; Pan, X.; Hu, Y.; Liang, Y. A Three-Dimensional Variational Data Assimilation System for Aerosol Optical Properties Based on WRF-Chem v4.0: Design, Development, and Application of Assimilating Himawari-8 Aerosol Observations. Geosci. Model Dev. 2022, 15, 1821–1840. [Google Scholar] [CrossRef]
- Dai, T.; Schutgens, N.A.J.; Goto, D.; Shi, G.; Nakajima, T. Improvement of Aerosol Optical Properties Modeling over Eastern Asia with MODIS AOD Assimilation in a Global Non-Hydrostatic Icosahedral Aerosol Transport Model. Environ. Pollut. 2014, 195, 319–329. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D.; Boucher, O. A Satellite View of Aerosols in the Climate System. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Q.; Lin, H.-C.; Schwartz, C.S.; Lee, Y.-H.; Wang, T. Three-Dimensional Variational Assimilation of MODIS Aerosol Optical Depth: Implementation and Application to a Dust Storm over East Asia. J. Geophys. Res.-Atmos. 2011, 116, D23206. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Liu, Z.; Davis, C.; Gu, Y. Dust Radiative Effects on Atmospheric Thermodynamics and Tropical Cyclogenesis over the Atlantic Ocean Using WRF-Chem Coupled with an AOD Data Assimilation System. Atmos. Chem. Phys. 2017, 17, 7917–7939. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, C.S.; Liu, Z.; Lin, H.-C.; McKeen, S.A. Simultaneous Three-Dimensional Variational Assimilation of Surface Fine Particulate Matter and MODIS Aerosol Optical Depth. J. Geophys. Res.-Atmos. 2012, 117, D13202. [Google Scholar] [CrossRef]
- Ye, H.; Pan, X.; You, W.; Zhu, X.; Zang, Z.; Wang, D.; Zhang, X.; Hu, Y.; Jin, S. Impact of CALIPSO Profile Data Assimilation on 3-D Aerosol Improvement in a Size-Resolved Aerosol Model. Atmos. Res. 2021, 264, 105877. [Google Scholar] [CrossRef]
- Dai, T.; Cheng, Y.; Suzuki, K.; Goto, D.; Kikuchi, M.; Schutgens, N.; Yoshida, M.; Zhang, P.; Letu, H.; Shi, G.; et al. Hourly Aerosol Assimilation of Himawari-8 AOT Using the Four-Dimensional Local Ensemble Transform Kalman Filter. J. Adv. Model. Earth Syst. 2019, 11, 680–711. [Google Scholar] [CrossRef]
- Chapman, E.G.; Gustafson, W.I.; Easter, R.C.; Barnard, J.C.; Ghan, S.J.; Pekour, M.S.; Fast, J.D. Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources. Atmos. Chem. Phys. 2009, 9, 945–964. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully Coupled “Online” Chemistry within the WRF Model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Auligné, T. Multivariate Minimum Residual Method for Cloud Retrieval. Part I: Theoretical Aspects and Simulated Observation Experiments. Mon. Weather Rev. 2014, 142, 4383–4398. [Google Scholar] [CrossRef]
- Auligné, T. Multivariate Minimum Residual Method for Cloud Retrieval. Part II: Real Observations Experiments. Mon. Weather Rev. 2014, 142, 4399–4415. [Google Scholar] [CrossRef]
- Deng, A.; Gaudet, B.; Dudhia; Alapaty, K. Implementation and Evaluation of a New Shallow Convection Scheme in WRF. In Proceedings of the 94th American Meteorological Society Annyal Metting, 26th Conference on Weather Analysis and Forecasting/22nd conference on Numerical Weather Prediction, Atlanta, GA, USA, 2–6 February 2014; p. 13. [Google Scholar]
- Chou, M.-D.; Suarez, M.J. A Solar Radiation Parameterization for Atmospheric Studies; NASA: Greenbelt, MD, USA, 1999. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res.-Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Thompson, G.; Field, R.; Rasmussen, M.; Hall, D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 5095–5115. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Huang, G.; Dai, T.; Hu, K. The First 5-Year Clean Air Action Did Increase the Blue Days in Winter over Beijing-Tianjin-Hebei. Sci. Bull. 2022, 67, 774–776. [Google Scholar] [CrossRef]
- Monica, C.; Diego, G.; Tim, B.; Terry, K.; Jacek, K. HTAPv3 Emission Mosaic: A Global Effort to Tackle Air Quality Issues. in preparation.
- Kleist, D.T.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Wu, W.-S.; Lord, S. Introduction of the GSI into the NCEP Global Data Assimilation System. Weather Forecast. 2009, 24, 1691–1705. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-S.; Purser, R.J.; Parrish, D.F. Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances. Mon. Weather Rev. 2002, 130, 2905–2916. [Google Scholar] [CrossRef]
- Descombes, G.; Auligne, D.; Vandenberghe, F.; Barker, M.; Barre, J. Generalized Background Error Covariance Matrix Model (GEN_BE v2.0). Geosci. Model Dev. 2015, 669–696. [Google Scholar] [CrossRef] [Green Version]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, S.; Nakajima, T.; Takenaka, H.; Higurashi, A.; Kikuchi, N.; Nakajima, T.Y.; Ishida, H. New Approaches to Removing Cloud Shadows and Evaluating the 380 Nm Surface Reflectance for Improved Aerosol Optical Thickness Retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager. J. Geophys. Res. Atmos. 2013, 118, 13520–13531. [Google Scholar] [CrossRef]
- Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Nomaki, T.; Higurashi, A. Common Retrieval of Aerosol Properties for Imaging Satellite Sensors. J. Meteorol. Soc. Jpn. Ser. II 2018, 96B, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, M.; Murakami, H.; Suzuki, K.; Nagao, T.M.; Higurashi, A. Improved Hourly Estimates of Aerosol Optical Thickness Using Spatiotemporal Variability Derived From Himawari-8 Geostationary Satellite. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3442–3455. [Google Scholar] [CrossRef]
- Li, D.; Qin, K.; Wu, L.; Xu, J.; Letu, H.; Zou, B.; He, Q.; Li, Y. Evaluation of JAXA Himawari-8-AHI Level-3 Aerosol Products over Eastern China. Atmosphere 2019, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Wang, W.; Chen, B. Comparison of Hourly Aerosol Retrievals from JAXA Himawari/AHI in Version 3.0 and a Simple Customized Method. Sci. Rep. 2020, 10, 20884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, W.; Fan, M.; Tao, M.; Wei, J.; Jin, J.; Tan, Y.; Wang, Q. Validation of Himawari-8 Aerosol Optical Depth Retrievals over China. Atmos. Environ. 2019, 199, 32–44. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database – Automated near-Real-Time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Fast, J.D.; Gustafson, W.I.; Easter, R.C.; Zaveri, R.A.; Barnard, J.C.; Chapman, E.G.; Grell, G.A.; Peckham, S.E. Evolution of Ozone, Particulates, and Aerosol Direct Radiative Forcing in the Vicinity of Houston Using a Fully Coupled Meteorology-Chemistry-Aerosol Model. J. Geophys. Res.-Atmos. 2006, 111, D21305. [Google Scholar] [CrossRef]
- Li, Z.Q.; Xu, H.; Li, K.T.; Li, D.H.; Xie, Y.S.; Li, L.; Zhang, Y.; Gu, X.F.; Zhao, W.; Tian, Q.J.; et al. Comprehensive Study of Optical, Physical, Chemical, and Radiative Properties of Total Columnar Atmospheric Aerosols over China: An Overview of Sun–Sky Radiometer Observation Network (SONET) Measurements. Bull. Am. Meteorol. Soc. 2018, 99, 739–755. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Li, K.; Blarel, L.; Wendisch, M. A Method to Calculate Stokes Parameters and Angle of Polarization of Skylight from Polarized CIMEL Sun/Sky Radiometers. J. Quant. Spectrosc. Radiat. Transf. 2014, 149, 334–346. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wang, X.L.; Wild, M. Causes of Dimming and Brightening in China Inferred from Homogenized Daily Clear-Sky and All-Sky in Situ Surface Solar Radiation Records (1958–2016). J. Clim. 2019, 32, 5901–5913. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.L.; Wild, M. Homogenization and Trend Analysis of the 1958–2016 In Situ Surface Solar Radiation Records in China. J. Clim. 2018, 31, 4529–4541. [Google Scholar] [CrossRef]
- Boylan, J.W.; Russell, A.G. PM and Light Extinction Model Performance Metrics, Goals, and Criteria for Three-Dimensional Air Quality Models. Atmos. Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
- Proestakis, E.; Amiridis, V.; Marinou, E.; Georgoulias, A.K.; Solomos, S.; Kazadzis, S.; Chimot, J.; Che, H.; Alexandri, G.; Binietoglou, I.; et al. Nine-Year Spatial and Temporal Evolution of Desert Dust Aerosols over South and East Asia as Revealed by CALIOP. Atmos. Chem. Phys. 2018, 18, 1337–1362. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zeng, C.; Gong, W.; Wang, L.; Sun, K.; Shen, H.; Zhu, Z.; Zhu, Z. Improving Spatial Coverage for Aqua MODIS AOD Using NDVI-Based Multi-Temporal Regression Analysis. Remote Sens. 2017, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of Improved PM2.5 Air Quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Tomaso, E.; Schutgens, N.A.J.; Jorba, O.; Pérez García-Pando, C. Assimilation of MODIS Dark Target and Deep Blue Observations in the Dust Aerosol Component of NMMB-MONARCH Version 1.0. Geosci. Model Dev. 2017, 10, 1107–1129. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wagner, F.; Peng, W.; Yang, J.; Mauzerall, D.L. Reduction of Solar Photovoltaic Resources Due to Air Pollution in China. Proc. Natl. Acad. Sci. USA 2017, 114, 11867–11872. [Google Scholar] [CrossRef] [PubMed]
Model Setting | Description | Reference |
---|---|---|
Microphysics | Thompson | [57] |
Radiation | RRTMG scheme for SW and LW | [10,11] |
Land Surface | Noah Land Surface Model | [12] |
Cumulus Parameterization | Grell–Freitas ensemble scheme | [15] |
Aerosol module | GOCART | [60] |
Dust emission | GOCART dust emissions | [21] |
Version | Chemistry | Online Couple | Data Assimilation | |
---|---|---|---|---|
OR | WRF-Solar | - | - | - |
FR | WRF-Chem-Solar | √ | √ | - |
DA | WRF-Chem-Solar-DA | √ | √ | √ |
Regions | N | Experiments | BIAS | RMSE | CORR | IOA |
---|---|---|---|---|---|---|
North Eastern | 1084 | OR | 49.980 | 93.664 | 0.920 | 0.943 |
FR | 30.918 | 84.651 | 0.921 | 0.953 | ||
DA | 23.240 | 83.873 | 0.917 | 0.954 | ||
Northern | 731 | OR | 101.039 | 143.234 | 0.865 | 0.871 |
FR | 63.619 | 114.327 | 0.881 | 0.913 | ||
DA | 46.346 | 104.749 | 0.886 | 0.927 | ||
Eastern | 342 | OR | 88.366 | 120.377 | 0.928 | 0.923 |
FR | 47.814 | 94.106 | 0.929 | 0.951 | ||
DA | 27.412 | 90.098 | 0.921 | 0.955 | ||
Southern | 562 | OR | 111.054 | 176.936 | 0.840 | 0.887 |
FR | 71.735 | 151.104 | 0.846 | 0.915 | ||
DA | 41.776 | 133.711 | 0.854 | 0.932 | ||
Central | 951 | OR | 72.450 | 208.284 | 0.737 | 0.841 |
FR | 19.840 | 185.317 | 0.766 | 0.870 | ||
DA | 17.020 | 184.346 | 0.768 | 0.871 | ||
Western | 1328 | OR | 41.392 | 156.566 | 0.842 | 0.910 |
FR | 14.320 | 149.571 | 0.846 | 0.916 | ||
DA | 12.102 | 151.194 | 0.842 | 0.914 | ||
Tibetan | 273 | OR | 146.070 | 230.096 | 0.818 | 0.851 |
FR | 137.654 | 226.330 | 0.815 | 0.854 | ||
DA | 135.003 | 226.468 | 0.810 | 0.854 |
Station Name | Regions | Latitude | Longitude | Station Tsype |
---|---|---|---|---|
Erlianhaote | Northern | 43.63°N | 111.94°E | Prairie |
Jiamusi | North Eastern | 40.08°N | 113.41°E | Plain |
Panzhihua | Central | 26.58°N | 101.72°E | Mountainside |
Cuona | Tibetan | 27.98°N | 91.95°E | Plateau |
Huaian | Eastern | 33.64°N | 118.93°E | Suburban |
Tengchong | Southern | 24.98°N | 98.51°E | Suburban |
Xining | Western | 36.66°N | 101.73°E | Suburban |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Dai, T.; Li, C.; Cheng, Y.; Huang, G.; Shi, G. Improving Clear-Sky Solar Power Prediction over China by Assimilating Himawari-8 Aerosol Optical Depth with WRF-Chem-Solar. Remote Sens. 2022, 14, 4990. https://doi.org/10.3390/rs14194990
Wang S, Dai T, Li C, Cheng Y, Huang G, Shi G. Improving Clear-Sky Solar Power Prediction over China by Assimilating Himawari-8 Aerosol Optical Depth with WRF-Chem-Solar. Remote Sensing. 2022; 14(19):4990. https://doi.org/10.3390/rs14194990
Chicago/Turabian StyleWang, Su, Tie Dai, Cuina Li, Yueming Cheng, Gang Huang, and Guangyu Shi. 2022. "Improving Clear-Sky Solar Power Prediction over China by Assimilating Himawari-8 Aerosol Optical Depth with WRF-Chem-Solar" Remote Sensing 14, no. 19: 4990. https://doi.org/10.3390/rs14194990
APA StyleWang, S., Dai, T., Li, C., Cheng, Y., Huang, G., & Shi, G. (2022). Improving Clear-Sky Solar Power Prediction over China by Assimilating Himawari-8 Aerosol Optical Depth with WRF-Chem-Solar. Remote Sensing, 14(19), 4990. https://doi.org/10.3390/rs14194990