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Abstract: Mining-induced ground movement is a complicated nonlinear process and a regional
geological hazard. Time series in Earth sciences are often characterized as self-affine, long-range
persistent, where the power spectra exhibit a power-law dependence on frequency. Whether there
exists a periodic signal and a fundamental frequency in the time series is significant in analyzing
ground-movement patterns. To evaluate whether a power law describes the power spectra of a
ground-movement time series and whether a fundamental frequency exists, GPS monitoring records
taken over 14.5 years describing ground movement in the Jinchuan Nickel Mine, China, were
analyzed. The data sets consisted of 500 randomly selected GPS monitoring points, spanning the
April 2001–October 2015 time period. Whether a periodic signal in the ground movements existed
was determined through the autocorrelation function. The power spectra of the ground-movement
time series were found to display power-law behavior over vastly different timescales. The spectral
exponents of the horizontal and vertical displacements ranged from 0.47 to 3.58 and from 0.43 to
3.37, with mean values of 2.05 and 1.79, respectively. The ground movements of minefields No.1 and
No.2 had 1.1-month and 1.4-month fundamental periods, respectively. Together with a discussion of
the underlying mechanisms of power-law behavior and relevant influencing factors, these results
indicate that ground-movement time series are a type of self-affine time series that exhibit long-range
persistence and scale invariance and show a complex periodicity. These conclusions provide a basis
for predicting land subsidence in the study area over a timescale.

Keywords: ground movement; mining; power law; self-affine time series; periodicity

1. Introduction

Ground movement, which changes the Earth’s surface, can be induced by earthquakes,
volcanoes and landslides. It can also be caused by underground mining, groundwater
extraction, underground construction and other human activities [1–4]. Mining-induced
ground movement is usually nonlinear, complex and dynamic due to complex interactions
in the host rock, the inhomogeneous distribution of topsoil, the mining rate and mining
method, ever-changing mining areas and stress fields. Considerable progress has been
made in studying the characteristics, physical processes, prediction methods and factors
associated with mining-induced ground movements [5–8]. To forecast mining-induced
ground movements, traditional prediction methods use analytical or numerical simulations
to approximate a static expression of movement. These methods oversimplify the problem
and only deal with ideal conditions. Typically, the nonlinear interaction between each
rock mass unit within the system is ignored, and the dynamic evolution of ground move-
ment cannot be modeled. To investigate only the transient stability state and ignore the
dynamic and non-equilibrium processes affecting underground mining is untenable. Some
researchers have described mine subsidence as a self-organized process [9,10]. Although
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the fractal increments of dynamic subsidence induced by underground mining have been
studied, the physical mechanisms underlying them are still unclear.

When dealing with movement processes, time introduces an additional co-ordinate axis
to space, and the ground-movement time series contains significant information about the
rock mass system. Further complexity is added when such a process is observed on small
spatiotemporal scales, but estimates are also needed for very large ones. If a fundamental
frequency exists in the time series, it contributes to understanding the ground movement’s
underlying patterns. Therefore, it is vital to evaluate if these processes have different behaviors
on different spatial and temporal scales. Based on a historical time series, the probability
distribution of a future observation can be inferred. To do so, autocorrelation and spectral
analysis methods are useful devices to describe stochastic processes and time series.

In recent years, there has been much evidence that self-affinity, which is characterized
by long-range power-law correlations in time series, exists in many physical and economic
systems [11]. In addition, the concept of fractals can be applied not only to topological
objects, but also to time series [12]. To study the self-similarity and fractal structure of
physical phenomena time series, Mandelbrot, et al. extended the concept of statistical
self-similarity to time series using the context of the self-affine time series [13]. A time series
has the characteristic of self-affinity if the power spectrum (S(f)) is a power-law function of
frequency (f), taking S( f ) ∼ f−β [14,15].

Power-law behavior in space and time, which is characterized by fractal structure and
f -β noise, respectively, can be found in a wide variety of physical systems. This power-law
behavior can be broadly broken up into two parts, one of which is the frequency–size
statistical distribution of events. As is well known, the frequency–size distribution of many
natural phenomena, including landslides, earthquakes and floods are well approximated
by power laws [16–20]. The correlations between the data in the time series are the other
important part [21]. The time series of many physical phenomena exhibit self-affine fractals,
including river flows, lake levels and solar flares, and the power spectra of these time series
exhibit power-law behaviors [15,19,22,23]. The time series of many rock mass deformation
phenomena, including fault slips, rock slope movements and rock crack displacements,
also show the characteristic of self-affine dynamics [20,24,25].

Clarifying the spatiotemporal evolution process of surface movement is the basis for
studying surface movement caused by mining. However, few studies have focused on the
spectral analysis of ground-movement time series in the frequency domain or discussed
their persistence and fundamental frequency. Hence, we set out to determine whether
the power spectrum of ground-movement time series conforms to power-law behavior
and whether correlations between these time series data exist. Whether a fundamental
frequency in the time series exists also needs to be analyzed.

The purpose of this study is to apply the signal analysis method to reveal the self-
affine, long-range persistence and periodicity of ground-movement time series. To study
the temporal behavior of ground movement over a range of space and timescales, long-term
monitoring data were required. Based on field investigations and monitoring, 14.5 years
(April 2001–October 2015) of displacement data from 500 randomly selected GPS mon-
itoring points at the Jinchuan Nickel Mine in China were analyzed. The results show
that the power spectrum of the time series has a power-law dependence on frequency,
taking S( f ) ∼ f−β, despite differences in the location, construction conditions and the
stress field of the monitoring points. These spectral features of scale laws indicate that
mining-induced ground-movement time series are self-affine and a type of f−β noise. The
spectral exponents, β, of horizontal and vertical displacements range from 0.47 to 3.58
and 0.43 to 3.37, indicating that the time series is long-range persistent. This long-range
persistence benefits the short-range prediction of mining-induced ground movement. The
autocorrelation analysis results indicate that the time series shows a clear periodicity. The
ground movements of minefield No.1 and No.2 have 1.1-month and 1.4-month fundamen-
tal periods, respectively. The scale invariance of the ground-movement system, its relevant
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influencing factors and the underlying mechanisms of the power-law behavior are also
discussed herein.

2. Background

The Jinchuan Nickel Mine, located in Jinchang City, is the largest nickel deposit in
China. The ore deposit has a length of 6.5 km and a width of 570 m. The mine is divided
into four mining zones, as shown in Figure 1. After about 30 years of open-pit mining,
minefield No.1 was completely converted to underground mining in 1990. The nickel
mineral resources of minefield No.2, which is the main mining area, account for 75.2% of
the total reserves of the Jinchuan Nickel Mine. Mine No.3 is a newly exploited mine field
that was started after 2004 [26,27].
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Figure 1. Location and geological map of Jinchuan Nickel Mine in China.

The terrain of the mining area is flat, with an average elevation of about 1750 m,
showing lower characteristics in the northeast and higher characteristics in the southwest.
Due to the complex geological structure, tectonic activities are very strong, and the geo-
logical conditions of the mining area are extremely bad. Joints, fractures, faults and other
multi-scale structural planes have developed, the structure of the ore body and rock mass
is broken, and the rock mass stability is poor [28,29].

A downward-filling mining method using a section height of 20 m was adopted in
the study area. Each section was divided into five sublevels with a height of 4 m. Each
sublevel was divided into a number of mining panels; the size of each panel was about
100 m in length and width. Although backfilling was adopted, there was still serious
surface subsidence in the mining area [30,31].

3. Methods and Results
3.1. GPS Monitoring Design and Monitoring Results

The behaviors of rock mass movement and deformation are usually studied through
first-hand data obtained from actual measurements. Historical ground-movement records
provide essential data to study the dynamics of surface movement and deformation caused
by underground mining. The displacement of a subsidence point is a classic example of a
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time series, and the peaks in this time series are important for understanding rock mass
movement dynamics. To provide an estimate of the largest movement that will occur in a
given period and area, the historical records of every monitoring point are generally used.
To systematically study the space–time evolution of ground movements, long periods of
continuous field monitoring are necessary [32,33].

3.1.1. GPS Monitoring Design

Time-series analysis of global positional system (GPS) data has emerged as an important
tool for monitoring and measuring the displacement of the Earth’s surface. A GPS monitoring
technique has both high precision and efficiency, making it suitable for the large-scale and
real-time synchronous measurement of vertical and horizontal displacements in mining areas.
To collect monitoring data, GPS monitoring networks were established at the Jinchuan Nickel
Mine. Both a reference net and a deformation net were defined on the ground surface at the mine
as part of the GPS monitoring network. The reference net comprised seven benchmarks, which
were all located on firm bedrock, far away from the mining area. In this study, Z-12-type GPS
receivers and antennas (Ashtech Inc., Sunnyvale, CA, USA) were used for ground-movement
monitoring. The nominal accuracy of measurements of horizontal and vertical displacement was
3 mm± 0.5 ppm and 5 mm ± 1 ppm, respectively. For each segment, the survey time lasted 1–2
h, while the data collection interval was 10 s. The horizontal and vertical displacements of each
monitoring point were calculated for each measuring cycle using baseline processing, constraint
network adjustments and coordinate conversion. Field monitoring was carried out every six
months. By the end of 2015, monitoring work had been carried out biannually for 14.5 years
(April 2001–October 2015). Our results show that the displacement of each monitoring point
varied over the entire monitoring period. The observed ground movements were analyzed in
both the time domain and the frequency domain [34,35].

3.1.2. Monitoring Results and Ground-Movement Assessment

To study the characteristics of the ground-movement time series at the mine, the
vertical and horizontal displacements of all monitoring points were analyzed (Figure 2).
At the Jinchuan Nickel Mine, monitoring results showed that, within a given time period,
the vertical and horizontal displacement of a monitoring point varied over a certain range,
rather than being a fixed value. Mathematically, the vertical and horizontal displacement
of a monitoring point should be considered a probability event, and regional ground
movement should be addressed as the sum of many movement events.

A positive vertical displacement value represents uplift events, while a negative value
represents subsidence events. Subsidence or uplift events for a specific monitoring point
can occur at any time. The horizontal and vertical displacement of a monitoring point over
the monitoring period changed often, exhibiting stochastic fluctuation. As time progressed,
displacements of various magnitudes occurred, giving rise to a cumulative settlement increase.
The variation in displacements of the specific monitoring points was similar. This is because
the variation in displacement is related to changes in the surrounding rock pressure and rock
mass structure, as well as the shape, depth, intensity and scope of the mining. For instance,
at minefield No.2, the extracted ore tonnage was 2.27 million tons in 2001 but reached 4.18
million tons in 2010. Ore production increased by 1.8 times from 2001 to 2010, while the
corresponding maximum subsidence increased by 1.5 times, from 149 mm to 217 mm. During
the whole monitoring period, the horizontal displacement rate and the cumulative horizontal
displacements of the monitoring points increased year-by-year. By the end of 2015, the
maximum horizontal displacement reached 1725 mm. The frequency of small and medium
movement events at a given monitoring point was higher than for large movement events.
Small, medium and large events have no specific quantitative values in this study but are
used as relative terms only. Over the whole monitoring period, the recurrence time intervals
in a certain displacement range were different too (Figures 3 and 4). Sometimes, they were
long and, sometimes, they were short. The recurrence time is the time interval between the
beginning of two successive subsidence events that have the same magnitude.
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Figure 2. Characteristics of vertical and horizontal displacement at the Jinchuan Nickel Mine:
(a) Distribution of GPS monitoring points at Jinchuan Nickel Mine overlying a contour map of the verti-
cal displacements recorded for October 2015, using May 2005 as a baseline. (b) Diagram of horizontal
displacement vectors at mine field No.2 in October 2015, using May 2001 as a reference measure.
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A wide area was affected by vertical and horizontal displacements caused by ground
movement. Three different subsidence troughs formed within the minefield (Figure 2a).
All subsidence troughs were centered on the mined-out space. They progressively devel-
oped and expanded as mining depth increased. At mine field No.2, almost all horizontal
displacement vectors point at the underground goaf, and the displacement value changes
with the distance from the center of the ore body (Figure 2b). With the intensification of
ground movement, more and more ground fissures have formed on the ground surface. In
recent years, some large cracks have joined together, making the damage to the ground
surface more serious.

It can be seen from Figure 3 that the vertical displacements of the monitoring points
were different due to their distance from the ore body. Despite some of the monitored
points far away from the mining area exhibiting irreversible, long-lasting movements, the
points far from the mining area (e.g., 2201, 6002) were more stable than the points near the
mining area (e.g., 2205, 6006). The displacements of monitoring points near the mining
area were larger than monitoring points further from the mining area. The linear trend of
the ground-movement time series near the mining area was clearer than the time series far
away from the mining area.

3.2. Statistical Relationship between the Subsidence and Its Occurrence Cycle

Statistical analysis of 500 monitoring points showed that the surface subsidence value
of the same monitoring point had the characteristics of being repeated and spaced. A deeper
exploration of the relationship between the amount of subsidence and its occurrence cycle
improve understanding of the potential time-domain characteristics of surface subsidence.
Firstly, the subsidence value was divided into different ranges, and then the number of
times N that a certain range of subsidence occurred at the 500 monitoring points in the
whole monitoring period (174 months) was counted. Thus, the occurrence cycle T was
calculated according to the formula T = 174/N (month), as shown in Table 1.

Figure 4 shows the statistical results of the subsidence value and the occurrence cycle.
It can be seen that the small-scale subsidence had a short period and high frequency, while
the large-scale subsidence volume had a long period and low frequency. According to the
fitting results, there was a power-law relationship between the amount of subsidence and
its occurrence cycle.
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Table 1. Subsidence occurrence cycle of 500 monitoring points.

Subsidence Value (mm) Total Monitoring Time (month) Occurrence Time Occurrence Cycle (month)

0~10 174 6491 0.03
10~20 174 2763 0.06
20~30 174 1441 0.12
30~40 174 1399 0.12
40~50 174 899 0.19
50~60 174 550 0.32
60~70 174 217 0.80
70~80 174 150 1.16
80~90 174 275 0.63
90~100 174 58 3.00

100~110 174 50 3.48
110~120 174 33 5.27
120~130 174 29 6.00
130~140 174 25 6.96
140~150 174 30 5.80
150~160 174 27 6.44
160~170 174 21 8.29
170~180 174 23 7.57
180~190 174 19 9.16

3.3. Signal Analysis Methods and Results
3.3.1. Signal Analysis Methods

A time series is a set of observations arranged in chronological order. Time series can
be divided into continuous time series and discrete time series. The time series studied in
this paper is a type of discrete time series. If the future value of a time series can only be
described by a probability distribution, then the time series is indecisive or just a statistical
time series.

Time series can be analyzed in the time domain and frequency domain. To discern
and analyze whether a periodicity in a ground movement time series exists, the signal
processing method is an effective tool. The autocorrelation function can be used to check
the periodicity and persistence of a time series [14,36]. The autocorrelation function of a
time series determines the change in the linear correlation coefficient of the time series. The
values of the autocorrelation coefficient, Rh, can be used to measure persistence. Positive
and negative values of Rh indicate persistence and anti-persistence, respectively. For an
uncorrelated time series, the value will be zero. If there is a periodic signal hidden in the
time series, the autocorrelation function will have a sinusoidal shape, which can testify to
the existence of periodicity [36]. For a discrete time series, the autocorrelation coefficient,
Rh, can be calculated using the following formula:

Rh =
Ch
C0

Ch = 1
N

N−k
∑

i=1

(
Yi −Y

)(
Yi+k −Y

)
C0 = ∑N

i=1 (Yi−Y)2

N

(1)

N The number of values in the time series;
Yi The value of the time series at time ti;
Y The mean value of the time series;
K Time lag (k = 0, 1, 2, . . . ).
Based on the assumption that sine and cosine waves with various frequencies consti-

tute the time series, it can be analyzed in the frequency domain via the spectral analysis
method. The self-affinity and fundamental frequency of the time series can also be studied
via the spectral analysis method. According to several studies, the basic definition of a
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self-affine time series is that the power spectrum, (S(f)), of the time series has a power-law
dependence on the frequency, (f) [14,21,25], taking

S( f ) ∼ f−β (2)

where β is the power-spectral exponent. A great deal of information about s time series
can be provided by the power spectrum. Variations in time series contain important
interpretations for physical systems. These power variations in frequency can be revealed
by the power spectrum. The power spectrum of a discrete time series can be calculated
with the Fourier transform method.

Consider a discrete time series, yn, where i = 1,2,3, . . . , N and the total time interval is
T. The total time interval is divided into N equal intervals of length δ, with δ = T/N. The
Fourier transform result of the discrete time series [37] is

Ym = δ ∑N
n=1 yne2πinm/N , m = 1, 2, 3, . . . , N (3)

The power spectrum of a discrete time series, yn, can be written as

Sm = lim
N→∞

(
2 |Ym |2

Nδ

)
, m = 1, 2, 3, . . . ,

N
2

(4)

The power spectrum of a time series is also related to the autocorrelation function [30],
which can also be calculated using the following formula:

Sm = 2
{

C0 + 2 ∑N−1
k=1

[(
1− k

N

)
Ck cos

(
2πmk

N

)]}
, m = 1, 2, 3, . . . ,

N
2

(5)

Before carrying out a Fourier transform on a time series, the trend of the data should be
taken into account. Removing the trend of a time series is always recommended. When the
trend is removed, the mean of the time series’ data is equal to 0, and the variance is normalized
to 1; thus, the Fourier coefficients and the slope of the power spectrum function will not be
affected. However, care should be taken when detrending a time series since there are some
controversies surrounding it. If a time series presents a distinct linear trend and the values
are closely scattered around a straight line, then the linear trend can be safely removed. In
contrast, if there is no clear linear trend, detrending the linear trend will change the statistical
result of the slope of the power spectrum function [14,24]. For more details about Fourier
transform and self-affine time series, several studies can be consulted [14,38].

The values of a time series can affect other values that are not only nearby in time, but
also far away in time. If a time series exhibits persistence, the values within the time series
are correlated, and the correlations can be strong, weak or nonexistent [39]. When the data
are positively correlated, big values tend to follow. The correlations refer to the statistical
dependence of neighbored values in the time series. When we analyze the correlations
of values in a time series, two types of correlations are considered; one is short-range
persistence, and the other is long-range persistence [37,40]. If a time series is short-range
persistent, a number of preceding values influence the next value, and the persistence is
characterized by an exponential decay. Conversely, long-range persistence is characterized
by power-law decay, and almost all values in the time series are correlated with one another
on a very large timescale [41].

To quantify the temporal correlations and the strength of persistence in self-affine time
series, the spectral exponents, β, must be analyzed [42]. The spectral exponent quantifies
how variability is distributed across the frequency domain and is a measure of the strength
of persistence or anti-persistence in a time series [14,15]. When β > 0, the time series is
long-range persistent, and the correlations between neighbored values become stronger.
If 0 < β < 1, the time series shows weak persistence, is stationary and both the mean
and variance are constants. If β > 1, strong persistence exists in the time series, which
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is nonstationary with mean and variance changes in the recorded length [43]. If β = 0,
the time series corresponds to white noise, and the correlations between the values are
nonexistent [15,43]. A self-affine time series with β < 0 exhibits long-range anti-persistence.

The value of a spectral exponent, β, is the slope of the best-fit straight line to the power
spectrum and frequency in a log–log plot. If the least-square method is applied to fit the
logarithmized data, a higher exponent will, misleadingly, be obtained; the same problem will
occur if we fit a power law to the data. When the general maximum likelihood method is used,
this problem can generally be avoided. Thus, when determining the power spectral exponent of
a ground-movement time series, the general maximum likelihood method is applied.

3.3.2. Autocorrelation Analysis Results of Ground Movement

In this study, the time series and autocorrelation plots for all the monitoring points
were analyzed. We found that the characteristics of some time series were complex, having
approximately sinusoidal shapes and linear trends. Some of the ground-movement time
series contained clear long-term linear trends (e.g., 2206 and 6006 in Figure 3), which could
influence the analysis results. To reduce error, a series should be linearly detrended. For
example, Figure 5 shows the non-detrended and detrended time series and autocorrelation
plots for the monitoring point 6001. The horizontal and vertical displacement time series
and the autocorrelation plots all have approximately sinusoidal shapes, and the fluctuating
forms are complicated. This indicates that a hidden complex periodicity exists in the time
series. The autocorrelation coefficients of the horizontal and vertical displacements of the
monitoring point 6001 centered between positive and negative 0.4.

3.3.3. Spectral Analysis Results of Ground Movement

To study the ground-movement dynamics, self-affinity, fundamental frequency and
persistence of the ground-movement events, the power spectra of the time series were
analyzed; the timescale ranged from six months to 14.5 years. We performed a spectral
analysis on the ground movement time series of 500 randomly distributed monitoring
points. The time series data were plotted in double logarithmic plots; the vertical and
horizontal coordinates were logarithms of the power spectrum, S(f), and the logarithms of
frequency f, respectively.

The power spectrum of the horizontal and vertical displacements has a power-law
dependence on frequency, with a linear decrease in the double logarithmic plot (Figure 6).
This shows that a log–log linear relationship exists between the frequency and the corre-
sponding power spectrum at any timescale. This relationship is best approximated by a
power-law decay, S(f) ~ f−β.

We analyzed all the spectral exponents, β, and found that the exponents of vertical
displacement ranged from 0.43 to 3.37, and most were between 1.11 and 2.96, with the
mode and mean values being 1.51 and 1.79, respectively. As for horizontal displacement,
the spectral exponents, β, ranged from 0.47 to 3.58, and most of them were between 1.22
and 3.18, with the mode and mean values being 2.76 and 2.05, respectively.

Furthermore, we found that the predominant frequencies of the horizontal and vertical
displacements in minefields No.1 and No.2 were different (Figure 6). The predominant
frequencies of horizontal and vertical displacements in minefield No.1 were 0.9558 and
0.9447, corresponding to approximately 1.1 months. At minefield No.2, the predominant
frequencies were 0.7133 and 0.7573, corresponding to approximately 1.4 months.
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Figure 5. Non-detrended and detrended vertical and horizontal displacement time series and auto-
correlation plots of the monitoring point 6001 at the Jinchuan Nickel Mine: (a) Horizontal displace-
ment, (b) vertical displacement, (c) detrended horizontal displacement, (d) detrended vertical dis-
placement, (e) autocorrelation plot of horizontal displacement, (f) autocorrelation plot of vertical 
displacement. 

Figure 5. Non-detrended and detrended vertical and horizontal displacement time series and autocor-
relation plots of the monitoring point 6001 at the Jinchuan Nickel Mine: (a) Horizontal displacement,
(b) vertical displacement, (c) detrended horizontal displacement, (d) detrended vertical displacement,
(e) autocorrelation plot of horizontal displacement, (f) autocorrelation plot of vertical displacement.
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Figure 6. Power spectra of the horizontal and vertical displacement in the monitoring point 2207 at
minefield No.2 and the monitoring point 2003 at minefield No.1 in log S(f)–log (f) and log S(f)–f plots:
(a,b): power spectra of the horizontal and vertical displacement of the monitoring point 2207 in a log
S(f)–log (f) plot; (c,d): power spectra of the horizontal and vertical displacement of the monitoring
point 2207 in a log S(f)–f plot; (e,f): power spectra of the horizontal and vertical displacement of the
monitoring point 2003 in a log S(f)–log (f) plot; (g,h): power spectra of the horizontal and vertical
displacement of the monitoring point 2003 in a log S(f)–f plot.
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4. Discussion
4.1. Self-Affinity, Long-Range Persistence and Scale-Invariance of Ground Movement

A spectral analysis of a regionally distributed, mining-induced ground-movement
time series is presented, showing that the time series is universally self-affine and that the
power spectrum has a power-law on frequency. Although several engineering geological
conditions, including mining intensity, rock mass fracture, the geometry of the working
face, etc., are different, the power spectra of different ground movement time series show
the same power-law behavior. The power-law correlation between the power spectrum and
the frequency also suggests that mining-induced ground movement is a type of f−β noise.
The spectral exponents, β, of horizontal and vertical displacement indicate the absence of
any characteristic timescale in the power-law range.

Power-law behavior describes fractal or scale-invariant relationships, and it arises
from scale-invariant processes [44]. Thus, the ground movement is scale-invariant in the
timescale. The scaling behavior of the time series is closely linked to several features, such
as long-range persistence and self-affinity, and these features are characterized by the fact
that their power spectra show power-law behaviors [43]. The self-affinity also shows certain
fractal characteristics, and, if the time series is scale-invariant, no characteristic timescale
can be distinguished from either the whole or the parts of the series [14].

Different from statistically self-similar fractals, self-affine fractals, which are statisti-
cally similar under anisotropic scaling are, by definition, generally anisotropic rather than
isotropic [23]. Due to the complicated structure of the rock mass, the ground-movement
system shows anisotropy; thus, we argue that the ground movement’s self-affine time
series has the characteristic of scale invariance, confirming the anisotropy of the ground
movement system. The scale invariance of the time series reflects the physical and dy-
namic mechanisms of ground-movement phenomena and is also helpful in gaining a better
understanding of related mining-induced hazards.

A time series characterized by long-range persistence is referred to as a long-memory
time series. As we found above, mining-induced ground movement is a self-affine time
series. The exponent of vertical displacement ranged from 0.43 to 3.37, and the exponent
of horizontal displacement ranged from 0.47 to 3.58. This indicates that the time series
exhibited long-range persistence. The autocorrelation analysis results also confirmed that
the ground-movement time series showed persistence. The spectral exponent also indicated
that there was no characteristic timescale in the range of the power law. In other words, the
long-range correlations between the time series values occurred over a large timescale. The
long-range persistence indicated that almost all values in the time series were correlated
with one another on a very large timescale [41], contributing to the prediction of future
values. In addition, long-range temporal correlations always exist in non-equilibrium
systems [45], which indicates that the mining-induced ground movement system was far
from equilibrium.

4.2. The Periodicity and The Predictability of Mining-Induced Ground Movement

The change in the ground-movement time series shown in Figure 6 has a sinusoidal
shape. This was obvious for all monitoring points. A sinusoidal shape also appears in
the autocorrelation plots. A clear periodicity in the values of the horizontal and vertical
displacements of all the monitoring points is indicated by the sinusoidal shape, which means
that the fluctuations in the ground movement are likely characterized by a periodic signal.

The spectral analysis results of the data indicate that the ground movement of mine-
field No.1 has an approximately 1.1-month fundamental period, while the fundamental
period of minefield No.2 is very close to 1.4 months. The predominant frequencies are
different in different regions. As analyzed above, the displacements of different minefields
are characterized by diverse hidden frequencies and periodicities, which may be directly
related to mining history and mining methods. After about 30 years of open-pit mining,
minefield No.1 completely converted to underground mining; the mining history and
mining method are totally different from minefields No.2 and No.3. In minefields No.2 and
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No.3, the mining method was underground mining from the very beginning. Periodicity is
a significant factor that helps us understand periodic patterns of mining-induced ground
movement and discover the underlying periodical influence factors. For example, the
ground-movement periodicity may be related to the periodical mining rate or the ore yield.

Among the many phenomena in earth sciences, there are several hazards, such as
landslides, floods and earthquakes. These hazards kill many people every year, and lives
may be saved if the hazards can be predicted in the short term. In statistical prediction,
the increase in uncertainty needs to be considered. Power-law behaviors have a slow
power-law decay at large scales, which means that the increase in uncertainty follows a
negative power law rather than an exponential one. The power spectrum of a self-affine
time series is a useful tool to evaluate event occurrences in the temporal domain, and
a self-affine time series is likely to have sufficient memory for a scale-invariant signal
and slow power-law decay [45,46]. This slow increase is positive for short-term statistical
forecasts of occurrence rates [47]. Periodicity is undoubtedly a frequent phenomenon
among all important movement patterns. Finding periodic behaviors is significant for
understanding the underlying patterns of physical objects, predicting future movements
and identifying abnormal phenomena. The mining-induced ground-movement time series
exhibits long-range persistence, and long-range temporal correlations between movement
values and periodicity also contribute to the short-term prediction of hazards.

4.3. Underlying Mechanism of Power-Law Behaviors

As discussed above, the power spectrum of the ground-movement time series displays
power-law behavior across different timescales. This power law indicates that mining-
induced ground movement is a type of f -β noise. f -β noise is a broader form of 1/f noise,
which was put forward by Per Bak [25,48]. As a broader form of 1/f noise, f -β noise contains
several special categories, including pink noise with β = 1, red noise with β = 2, black noise
with β = 3 and other noises [49]. 1/f noise has been observed in many physical phenomena,
and the power spectra of these phenomena display power-law behaviors [25,43].

Many researchers have argued that power-law behaviors are the consequence of SOC
(self-organized criticality) [25,50,51]. SOC was put forward to illustrate the evolution
patterns and characteristics of nonlinear complex systems [22,25]. In a self-organized
critical state, the size distribution of unstable events has a power-law distribution [23,52],
which means that the emergence of scale-invariant structures can be a spatial fingerprint
of SOC. The other self-organized critical behavior is 1/f noise [23,52], in which the power
spectrum has a power-law dependence on frequency. 1/f noise, which is related to the
occurrence of a self-organized critical state, is characterized by correlations extended over a
wide range of timescales and indicates the underlying mechanism of self-organized critical
systems [25,49,53]. Self-organized criticality is considered scale-invariant; in particular,
long-range correlations occur between different spatial and temporal scaling fields [48]. In
a self-organized critical state, a frequency spectrum distribution, S( f ) ∼ f−2+α, can result
from a power-law distribution over the lifetime of events: D(t) ∼ t−α [25,49].

Over time, a self-organized process that is dynamic but far from equilibrium will develop
into a self-organized critical state. When a system evolves into a self-organized critical
state, a chain-reaction can be caused by minor events, and large events can be triggered [22].
During self-organization, interactions between a unit and its nearest neighbors often vary,
and the combined effect of these interactions varies, too. Thus, these systems remain far from
equilibrium and never develop into a stable state, although they may have stable statistical
properties. In a self-organized criticality system, the “input” to a complex system is constant,
whereas the “output” is a series of events or “avalanches” that follow power-law behavior [17].
Only when a system is open, nonlinear, far from equilibrium, and both robust and sensitive,
can power-law behavior resulting from SOC be studied systematically.

In deforming systems, the deformed solids are nonlinear dynamic systems with self-
organized criticality. Power laws can be used to describe features with long-range space–
time correlations, such as the self-similarity of fractures, as well as damage accumulation
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over the entire hierarchy of scales. In particular, Makarov argued that the deformed
medium should be considered a multiscale, nonlinear system to evaluate the possibility of
mine roof collapses. Mining-induced ground-movement systems are open systems because
both matter and energy are exchanged with regions outside the system. Surrounding rock
stress fields, rock mass structures and other factors all change in time and space, while
nonlinear interactions among them make the physical process of movement very complex
and nonlinear. Although a local and temporary stable state may develop, the system is
still far from equilibrium, reflecting such nonlinear interactions. In rock engineering, the
failure or instability of a rock mass is mainly determined by excavation unloading and
other environmental factors (e.g., water, temperature). Excavation causes the original stress
balance of the rock mass to be disturbed, and stress redistribution occurs. Internal cracks
accumulate and develop, eventually bringing about the failure of the rock mass. When new
fractures occur in a rock element, other elements are affected as energy releases, triggering
more fractures to develop. Randomly distributed fractures concentrate, forming a failure
surface and leading to rock failure. Thus, small failure elements can cause a chain-reaction
within the rock system. This process shows the sensitivity of the deforming system. On
most occasions, the failure of a rock element does not immediately trigger a mine roof
collapse or ground movement because of the robustness of the rock mass system. Although
nonlinear interactions between the stress field, structural failure planes and rock blocks are
extremely strong, the progressive increase in the system’s sensitivity can be restricted by
overall rock mass stability, leading to robustness in the system.

As outlined above, mining-induced ground-movement systems have the characteris-
tics of SOC. They can develop critical states through self-organized evolution, governed by
power laws.

4.4. Influencing Factors of Power Spectral Exponents

The spectral exponents, β, of the horizontal and vertical displacements of ground-
movement change over different locations. Other natural phenomena governed by power-
law behavior also exhibit changes in their exponent values. Studies show that the distribu-
tion of surface displacements and fault geometry, as well as the correlations between them,
may be related to the spatial and temporal power-law behavior of aseismic slips. The depth
of soil deposits, soil density, shear modulus, corner frequency of the source and the high-
frequency decay rate of acceleration are factors that control the spectral shape of ground
motion [54]. Some researchers argue that the power-law exponents of landslides may vary
with the underlying geology [50,55,56]. Meanwhile, the retreat of cliffs or coastal bluffs is
greatly dependent on the frequency of wave attacks at the cliff toe and rain intensity. These
studies cause us to speculate that variation in the spectral exponent of ground movement
is associated with variation in rock mass movement triggers.

The range of ground movement in the mine and the ground-movement magnitude
are related to many rock mass movement triggers, including the mining history, mining
area, mining rate, mining intensity, mining method, mining depth, ore yield, structural
setting, host rock stress field, rock mass structure, rock mass fracture intensity, and the
geometry of the working face, as well as the thickness and distribution of the overburden
and topsoil. Underground mining is essentially an unloading process in which rock mass
failure is characterized by several distinct deformation stages. These stages include crack
initiation, crack propagation and coalescence. The distribution of unloading-induced
cracks affects both the overlying rock mass’s geo-mechanical behavior and its stability,
which, in turn, control the magnitude of ground movement. As rock mass movement
triggers, both the unloading value and the unloading rate affect fissure development and
the settlement of a mining-influenced system for a given region over a given timescale. The
relationship between joint movement and mining-induced ground movement has been
studied in detail. It has been shown that the broken expansion coefficients are positively
correlated with the fractal dimension of a rock’s fractures [57,58]. During the evolution
of a fracture network, new fractures are added to the established network, making it



Remote Sens. 2022, 14, 4993 15 of 17

more complex. In this way, the fractal dimension of the network increases over time [10].
Although the fractal distribution of a rock mass’s fracture length and spacing has been
studied [58], the association between the spectral exponents and the fractal distribution
of failure planes remains speculative. In addition, tectonic stress also controls ground
movement. We found that two subsiding centers could occur within some subsidence
troughs; this phenomenon is related to the high level of tectonic stress within the study
area [4]. Rock mass deformation and damage are closely related to the magnitudes and
orientations of the maximum and minimum principal stresses. The existence of high-level
tectonic stress alleviates the magnitude of vertical subsidence and promotes the horizontal
deformation of the ground [2].

In different positions in a mining-influenced area, the factors discussed above often
vary. During mining, rock mass movement triggers change over time and location. There-
fore, changes in both the magnitude and frequency of ground-movement events cause the
spectral exponents to change based on location.

5. Conclusions

(1) The mining-induced ground movements of 500 randomly selected GPS monitoring
points were analyzed. We found that points far from the ore body were more stable than
those near the ore body, and their linear trend in the time series was more obvious. Over
the whole monitoring period, the surface subsidence of the same monitoring points had
the characteristics of repetition and spacing. The spectral exponents of the horizontal and
vertical displacements ranged from 0.47 to 3.58 and from 0.43 to 3.37, with mean values
of 2.05 and 1.79, respectively. The ground movement of minefields No.1 and No.2 had
1.1-month and 1.4-month fundamental periods, respectively.

(2) The power spectra of ground-movement time series showed a power-law depen-
dence on frequency. This indicates that the time series is self-affine on different timescales
and is a type of noise. The power-law behavior of the time series may be related to the self-
organized criticality of the ground-movement system, and it reflects the scale-invariance of
the ground-movement system in the timescale. The variation in the value of the spectral
exponent may be associated with rock-movement triggers.

(3) A hidden fundamental period exists in the ground-movement time series, the
correlations between ground-movement values within the time series are strong, and long-
range persistence occurs over a large timescale. Together with the power-law behavior,
long-range persistence and periodicity benefit the short-range prediction of mining-induced
ground movements. These results provide a basis for studying the underlying patterns of
mining-induced ground movements in more detail.
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