
Citation: Sun, L.; Ke, D.; Wang, X.;

Huang, Z.; Huang, K. Robustness of

Deep Learning-Based Specific Emitter

Identification under Adversarial

Attacks. Remote Sens. 2022, 14, 4996.

https://doi.org/10.3390/rs14194996

Academic Editors: Prem Prakash

Jayaraman, Federico Montori,

Charith Perera and Felip Marti

Received: 25 July 2022

Accepted: 29 September 2022

Published: 7 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Robustness of Deep Learning-Based Specific Emitter
Identification under Adversarial Attacks
Liting Sun 1,†, Da Ke 1,†, Xiang Wang 1,*, Zhitao Huang 1 and Kaizhu Huang 2

1 College of Electronic Science and Technology, National University of Defense Technology,
Changsha 410073, China

2 School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
* Correspondence: xwang@nudt.edu.cn
† These authors contributed equally to this work.

Abstract: Deep learning (DL)-based specific emitter identification (SEI) technique can automatically
extract radio frequency (RF) fingerprint features in RF signals to distinguish between legal and illegal
devices and enhance the security of wireless network. However, deep neural network (DNN) can
easily be fooled by adversarial examples or perturbations of the input data. If a malicious device
emits signals containing a specially designed adversarial samples, will the DL-based SEI still work
stably to correctly identify the malicious device? To the best of our knowledge, this research is still
blank, let alone the corresponding defense methods. Therefore, this paper designs two scenarios
of attack and defense and proposes the corresponding implementation methods to specializes in
the robustness of DL-based SEI under adversarial attacks. On this basis, detailed experiments
are carried out based on the real-world data and simulation data. The attack scenario is that the
malicious device adds an adversarial perturbation signal specially designed to the original signal,
misleading the original system to make a misjudgment. Experiments based on three different attack
generation methods show that DL-based SEI is very vulnerability. Even if the intensity is very low,
without affecting the probability density distribution of the original signal, the performance can be
reduced to about 50%, and at −22 dB it is completely invalid. In the defense scenario, the adversarial
training (AT) of DL-based SEI is added, which can significantly improve the system’s performance
under adversarial attacks, with ≥60% improvement in the recognition rate compared to the network
without AT. Further, AT has a more robust effect on white noise. This study fills the relevant gaps
and provides guidance for future research. In the future research, the impact of adversarial attacks
must be considered, and it is necessary to add adversarial training in the training process.

Keywords: specific emitter identification; adversarial attack; wireless network security; adversarial
training; radio frequency fingerprint; Internet of Things

1. Introduction

Specific Emitter Identification (SEI), also known as Radio Frequency Fingerprinting
(RFF), is a technique to identify the source of emission by measuring external characteristics
of the radio frequency (RF) signal and obtaining the emitter-specific information [1–3].
The technique does not rely on the content of the signal transmission; however, it extracts
physical-layer information specific to the device hardware as an individual label. This
information is Radio frequency (RF) fingerprints, which are unintentionally generated by
the imperfect characteristics of hardware and cannot be avoided or forged [4,5]. Therefore,
SEI becomes a promising lightweight non-key authentication solution [6,7]. It can be used
in many scenarios, especially for the security of Internet of Things (IoT) [8,9]. Because, IoT
applications are highly resource-constrained, hence they can be not fully effective to utilize
even many modern cryptographic methods for security purposes, let alone the traditional
cryptography solutions [10,11]. And the size and flexibility of IoT also bring other unique
security concerns [12].
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The RF fingerprint of the emitter arises from the differences caused by the non-ideal
nature of the hardware, which is extremely subtle within the tolerance of the system’s
normal operation [13]. RF fingerprint has five main characteristics: universality, stability,
uniqueness, measurability, and independence [14]. Therefore, the core of SEI lies in the
acquisition of RF fingerprint information [1].

Up to now, there are two major feature extraction methods: (1) traditional human-
predefined feature method, (2) automatic extraction method based on neural networks.
The traditional human-predefined feature methods can be divided the transient-features
[15–17] and the state state-features [2,18,19]. However, with the rapid development of the
IoT technology, the number of devices and the amount of data have increased dramati-
cally. Therefore, the traditional methods have become increasingly difficult to meet the
requirements of large-scale data with high real-time [12,20].

Recent studies have shown that deep learning (DL)-based SEI methods can achieve
end-to-end automatic feature extraction with satisfying recognition results [5,8,13,21,22].
Despite their remarkable performance, the model robustness of deep neural networks
(DNN) emerges as one of the greatest challenges in safety-critical applications (e.g., self-
driving and healthcare). As indicated in many researches, DNNs can easily be fooled
by adversarial examples or perturbations of the input data. Adding a well-designed
adversarial perturbation to the input signal makes the neural network much less effective
or even fail to work at all in countering the attack [23].

An adversarial attack was first proposed in image recognition and computer vision
fields [24]. In the signal processing field, the research is primarily focused on automatic
modulation classification (AMC). The vulnerability of DL-based modulation classification
technique to adversarial examples was analyzed in [25].

SEI is specially designed to enhance the network security for adversarial problems,
such as DoS attack [26], injection attack [27], spoofing attack [28], etc. [29]. Moreover,
compared with modulation differences, SEI deals with more subtle fingerprint differences,
even requiring high robustness to identify malicious devices. However, no studies relevant
to the adversarial attacks have been conducted on SEI.

In SEI, the adversarial examples may be a new type of attack. If an unregistered mali-
cious device contains these specially designed adversarial perturbations on the transmitted
signal, will the performance of the DL-based SEI system be affected, and can the illegal
device be identified normally? Therefore, to make DL-based SEI techniques work stably
and reliably, the following questions must be answered:

(1) DL-based SEI is used to identify hardware differences between radiation sources, is it
robust? Will it be affected by adversarial examples?

(2) Does it work properly after being affected against these attacks? What is the form of
adversarial examples against SEI? What are the characteristics of the attack signal?

(3) Is there any way to improve system performance against these attacks? Can the
recognition performance of the system be fully recovered?

To the best of our knowledge, although there are many studies on DL-based SEI, they
have never focused on the these issues. Therefore, in this paper, we design two scenarios to
conduct systematical research on the above problems.

1.1. Contribution

To tackle the above problems, this paper focuses on the robustness of DL-based SEI,
especially the performance under adversarial attacks. The main contribution of this work
can be summarized as follows:

(1) The security and robustness of DL-based SEI under adversarial attacks are studied for
the first time, and the in-depth system analysis answers the above questions, which
has certain guiding significance for the practical application of this technology in the
future.
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(2) The concept of adversarial attack and defensive training is introduced into the SEI
problem, two new scenarios are designed on the basis of the original SEI, the specific
implementation methods are given, and rigorous experiments are carried out on the
real-world and simulated datasets. Scenarios include ¬ attack scenario: malicious
devices use adversarial attacks to fool DL-based SEI, and ­ defense scenario: ad-
versarial training is performed to improve system performance to correctly identify
illegal devices.

(3) In the attack scene, the adversarial perturbations and system loss are investigated
based on three adversarial example generation methods. The waveform character-
istics of adversarial examples, degree of performance degradation, and influences
on different emitters are analyzed and studied. It is discovered that DL-based SEI
is very vulnerable to adversarial attacks. Adversarial perturbation, even with a quite
low energy, can make the DL-based SEI fail, with much higher destructiveness than the
white noise of the same strength. The adversarial perturbations at the strength of−25 dB
on the real-world data can reduce the recognition performance from 99% to below 10%.

(4) In the defense scenario, a corresponding adversarial training (AT) method inspired
by the normalized training in [30], which deals with adversarial attacks, is proposed
to enhance the robustness of DL-based SEI. Through AT, the highest improvement
of the performance can be more than 60%. Facing the attacks at the strength of −32
dB, performance of DL-based SEI recovers from 55.29% to above 85.59%. AT also
improves the robustness of the system to white noise.

(5) In addition, it is also found that different datasets are affected by attacks differently,
and the improvement effect after AT is also different; there are also differences between
individual emitters. Moreover, there is a certain threshold for the improvement effect
of AT.

The research found that the problem of SEI is originally fine-grained identification,
so it is greatly affected by adversarial attacks, which makes the original system unable to
identify malicious devices and threatens network security. The system performance can be
improved after AT. In the future research and application, attention should be paid to this
kind of attack, and AT should be carried out.

1.2. Related Work
1.2.1. DL-Based SEI

At present, SEI based on deep learning has become a research hotspot. Different from
data such as images and texts, RF signals are often stored as In-phase/Quardrature (I/Q)
data, with the dimension of 2 ∗ N, where N represents the sequence length along the time
direction. The input of DL-based SEI is generally I/Q data or preprocessed data. For the
latter, it is common to use the Short-Time Fourier Transform (STFT), Continuous Wavelet
Transform (CWT), and Recurrence Plots (RP) methods to convert the signal to image form
[31] as input.

In terms of network structure, the CNN model is the most widely used and earliest
network structure in SEI [32,33]. Wong, Riyaz et al. [34] confirmed that the convolutional
neural network (CNN) can be used to directly process I/Q data to achieve RFF, showing the
advantages of end to end. The residual design can well alleviate the problem of network
degradation, and reduce the risk of gradient disappearance [35]. In 2019, Pan et al. [36]
used Residual Network (ResNet) to achieve emitter classification. In 2021, Zhang et al. [37]
designed a RFFResNet model with reduced parameters based on the ResNet model.

Therefore, this paper uses the I/Q data as the input of the neural network and conducts
experiments on the ResNet.

1.2.2. Adversarial Attack

Szegedy et al. [38] first revealed the vulnerability of deep learning models to adversar-
ial perturbations by solving for the following optimization problem:

min ‖ρ‖2 s.t.M(I + ρ) = ¯̀ ; I + ρ ∈ [0, 1]m,
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where M(·) is a deep learning model, I is the input of model and ρ is the adversarial
perturbation. ¯̀ is the ground truth label.

This is a hard problem. Szegedy computed a approximate solution by Limited Memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm. However, solving this approxi-
mate problem is computationally prohibitive. This inspired the Fast Gradient Sign Method
(FGSM) [24]. FGSM is a gradient-based single-step method for computing adversarial per-
turbations, focusing on the “efficiency” rather than achieving a high fooling rate. Building
on the basis of FGSM, iterative FGSM, the Basic Iterative Method (BIM) [39] was proposed.
It is an influential contribution that introduced the Physical World attacks. The Projected
Gradient Descent (PGD) [40] attack is widely considered as one of the most powerful at-
tacks in the literature. It is regarded the iterative FGSM as the `∞-bound PGD. The research
on adversarial vulnerability also started a parallel line of research on the defense of deep
learning adversarial attacks. Defensive distillation [41] was a prominent technique that
promised an effective solution to the problem, by building on the insights of knowledge
distillation in deep networks. However Carlini & Wagner [42] developed a set of attacks
that computes norm-restricted additive perturbations that completely break defensive
distillation, referred as “C&W” in the following.

In this work, FGSM, PGD and C&W are all utilized to generate adversarial perturba-
tions for SEI.

1.2.3. Adversarial Attack in Communication Signal Processing

In [25], an adversarial attack for a DL-based modulation classifier has been proposed
where the adversary assumes the availability of noisy symbols received at the modulation
classifier for generating the adversarial attack, which makes it impractical and limited in
scope, the research is primarily focused on automatic modulation classification (AMC).
The vulnerability of DL-based AMC to adversarial examples was analyzed in [43]. A
similar method has been proposed recently in [44], where modifications are employed
by the transmitter to evade a DNN-based jammer, and the receiver uses another DNN
(an autoencoder) to preprocess the received signal and filter out the modifications. Lin
et al. [45] found that the attack effect of the iterative methods to AMC was better than
that of the one-step method, inspiring researchers to further promote the convolutional
neural network reliability against adversarial attacks. Ref [41] considered the impact of the
defensive perturbations on the bit error rate (BER) at the legitimate receiver and proposed
a novel defense mechanism that modifies the channel input symbols at the transmitter in
order to reduce the modulation-classification accuracy at the intruder while maintaining a
low BER at the legitimate receiver.

However, no relevant studies of adversarial attacks on SEI have been conducted yet.
Since SEI focuses on subtle features between different emitters, the inter-class distances
are small. This leads to SEI being more susceptible to weak adversarial perturbations. The
security of DL-based SEI should receive more attention. In this paper, we first verify the
effectiveness and feasibility of adversarial attack in the SEI. Then, we give an alternative
method, adversarial training, to deal with the adversarial attack in the SEI.

1.2.4. Adversarial Training

Adversarial training is a set of techniques to improve the robustness of classifiers [30,
46]. It feeds adversarial data instead of clean data into the DNNs. Methods for improvement
extend the conventional adversarial training by injecting the adversarial perturbation to
hidden layers to boost the robustness of latent space [42,47,48]. All these methods generate
adversarial examples by maximizing the loss function of the label information.

1.3. Organization

The remainder of the paper is organized as follows. Section 2 introduces the model of
SEI and the transmitter distortion models. Section 3 describes three adversarial attacks and
the method of adversarial training. In Section 4, we detail the proposed three scenarios for
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SEI and the implement scheme of adversarial attacks and AT-SEI. Section 5 presents and
analyzes the experimental results based on different datasets. Finally, Section 6 sets out
the conclusion.

2. Problem Formulation

RFF arise from non-ideal distortion of the hardware device, i.e., deviations caused
by device imperfections or not operating in an ideal state. Such deviations are inevitably
incidental to the actual transmitted signal in the form of unintentional modulation (UM)
[18,49].

The signal with UM received at the receiver side can be expressed as

r(t) = (A(t) + ∆A(t))ej(2π f0t+φ(t)+∆φ(t)+θ0) + ν(t), (1)

where A(t) and φ(t) represent the intentional modulation (IM) on amplitude and phase,
respectively; ∆A(t) is the UM on amplitude; ∆φ(t) is the UM on phase; f0 is the frequency
offset, θ0 is the initial phase; ν(t) is the additive noise.

UM information is emitter-specific, representing the device difference between emit-
ters, i.e., RF fingerprint. Usually, the energy of UM is far less than the IM [50]. Compared
to IM, UM is subtle, difficult to extract, and susceptible to perturbation [51].

SEI aims to extract the exact representation of subtle UMs from IM and environmental
influences. In this study, UMs are automatically extracted using neural networks based on
the received time series r(t), similar to [8,21].

2.1. Transmitter Distortion Model

A typical transmitter structure is shown in the Figure 1 [52]. Usually, the devices in the
figure all lead to the generation of UM, that is, they are closely related to the RFF generation
of the emitter, including filter, mixer, power amplifier, and local oscillator. In this paper,
they are classified and modeled based on distortion effects, namely filter distortion (FD),
IQ modulation error (IQE), power amplifier nonlinear distortion (PAD), carrier leakage and
spurious tone (CST).

Symbol

Encoder
01011···    

π
2

Baseband Filter

Baseband Filter

DAC

DAC

IF LO

RF LO

IG

QG
I/Q Modulator

Mixer RF Filter

RF Power

Amplifier

Antenna

Mixer

Mixer

Figure 1. Structure of the typical transmitter.

2.1.1. Filter Distortion (FD)

The ideal bandpass filter should behave as follows throughout the transmitting band:
the amplitude of the frequency response and the group delay are constant. However, the
actual analog filter’s frequency response amplitude may be skewed or rippled within
the band, and its group delay varies with frequency. The filter distortions are mainly
manifested as: (1) skew and ripple in amplitude and frequency response; (2) fluctuations in
group delay [53].

These distortions of the filter are closely related to the characteristics of its internal
circuit components, and thus the filter distortion characteristics may vary from transmitter
to transmitter, thus constituting a transmitter fingerprint.

Although there are multiple filters in the transmitter structure, they can be modeled ap-
proximately as a whole-path filter from the point of view of their impact on the complex signal.
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Let H( f ) be the frequency response of an ideal transmitter bandpass filter, the whole
path distortion filter of the mth emitter can be expressed as

Gm( f ) = H( f )Am( f )ejφm( f ), (2)

where Am( f ) and φm( f ) denotes the distortions of amplitude and phase respectively. The
following discussion is all about the mth emitter. For brevity, the symbol m is omitted when
there is no ambiguity.

Further, the distortions can be expressed by the Fourier series, given as [52]

A( f ) = a0 +
∞

∑
k=1

ak cos(2πk f /TA)

φ( f ) = 2πb0 f +
∞

∑
k=1

bk sin
(
2πk f /Tφ

)
.

(3)

where a0, b0, TA, and TB are the distortion parameters for the current emitter. The symbol
m has been omitted.

Taking the second-order approximation, we can obtain [54]

A( f ) = a0 + ak cos(2πk f /TA)

φ( f ) = 2πb0 f + bk sin(2πk f /TB).
(4)

Therefore, by equating the filter to baseband, the transmitter equivalent baseband
signal for the entire path is expressed as

sFD(t) =
∞

∑
k=−∞

Skg(t− kT), (5)

where Sk is the transmit complex modulation symbol and g(t) =
∫ ∞
−∞ G( f )ej2π f td f .

The decomposition of g(t) yields that the filter distortion leads to parasitic modulation
on the carrier, similar to the summation of multiple paths of delay, which is spread in time,
causing delay expansion and thus introducing trace amounts of inter-code crosstalk.

2.1.2. I/Q Quadrature Modulation Errors (IQE)

I/Q modulation errors are specifically manifested as gain mismatches in the two IQ
paths and quadrature errors, i.e., not strictly 90◦.

Suppose sI(t) and sQ(t) are the baseband waveforms of I/Q respectively, then the
ideal baseband signal is

s0(t) = sI(t) + jsQ(t). (6)

And the baseband signal carrying the I/Q modulator distortion can be expressed as

sIQE(t) = ρ(sI(t) + cI) cos(2π f t +
ξ

2
)

+(sQ(t) + cQ) sin(2π f t− ξ

2
),

(7)

where ρ = GI
GQ

is the gain mismatch, GI and GQ are the amplitude gains of the two channels,
respectively, and ξ are the phase deviations of the quadrature errors, cI and cQ are the DC
bias components generated by the two mixers, respectively. Typically, cI and cQ can be
treated as constants.

2.1.3. Carrier Leakage and Spurious Tone (CST)

Oscillators and various other active devices (such as mixers and amplifiers) generate
various harmonic signals. If the frequency of the parasitic harmonic signal lies within the
signal passband range, it will not be filtered and will be emitted along with the normal
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radiation source modulated signal, which is spurious tone. If the frequency of the parasitic
harmonics is equal to the carrier frequency, it is called carrier leakage.

Due to differences in devices, the frequency and amplitude of the parasitic harmonics
will likely differ, thus constituting an RFF.

This distortion can be modeled as

sCST(t) =
(

x(t) + ςCL
)

cos(2π f t) + AST cos
(

2π
(

f ST + f
)

t
)

, (8)

where AST is the amplitude of the parasitic harmonics, f ST is the frequency of the parasitic
harmonics, and ςCL is the carrier leakage.

2.1.4. Power Amplifier Nonlinear Distortion (PAD)

The amplifier is designed to amplify the input signal power linearly, but due to the
constraints of the non-ideality of the device, the amplification effect of the amplifier on the
input signal shows nonlinear characteristics. Effectively, the amplifier nonlinearity will
produce the amplitude modulation-amplitude modulation (AM-AM) compression effect
and the amplitude modulation-phase modulation (AM-PM) conversion effect [55].

The nonlinear characteristic of the power amplifier is usually described by Taylor
series [2,54]. The output signal can be modeled as

sPAD(t) =
L

∑
i=1

bm,i(x(t))i, (9)

where x(t) is the input signal of power amplifier, L is the order and bm,i denotes the
coefficient of the Taylor polynomial.

3. Adversarial Attack and Adversarial Training
3.1. Adversarial Attack

In recent years, it has been found that DNNs can be easily deceived or attacked by a
special perturbation called adversarial examples, which are often imperceptible, generated
using adversarial learning, and have some generalization, i.e., they can successfully attack
different DL models. Specifically, in pattern classification, when the identified samples, are
slightly perturbed, it is very likely that the neural network will be misclassified even if it is
well trained [23]. As DL has been widely used in practice, especially in some fields with
high security requirements, the robustness of artificial intelligence (AI) algorithmic models
against adversarial examples becomes particularly important.

Szegedy et al. first demonstrated the existence of small perturbations to the input
samples, such that the perturbed samples could fool DNNs into misclassification [38].

3.1.1. Definition

Let the input signal be x, and the most likely class of output be l. The purpose of
training DNNs is to obtain the optimal parameters. The formula is as follows:

arg min
θ

L( f (θ, x), l), (10)

where f is the selected network model, and L is the loss function.
Generally, imperceptibly tiny perturbations of a given sample do not normally change

the underlying class.
The most basic optimization problem for adversarial examples can be defined as

xadv = arg max
x′

L(x, θ). s.t. ‖ x′ − x ‖p≤ ε. (11)

The goal is to find a worst sample xadv in a very small neighborhood of radius ε of the
original sample x such that the loss of the classifier is maximized.

Several methods have been proposed to generate adversarial examples.
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3.1.2. Type of Attack

These generation methods can be classified into white-box attacks and black-box
attacks based on whether they can access the target network parameters [56].

Under white-box attacks, the attacker is usually assumed to know all the information
of the target model, such as the model structure, model parameters, training strategy, and
even training data.

In contrast, under a black-box attack, the attacker is usually assumed to know only the
inputs of the target model but not the internal parameters. The fact that black-box attacks
are set up is more in line with the actual reality, because it is generally difficult to obtain the
internal parameters of the target model. But this does not make black-box attacks more
meaningful than white-box attacks. In fact, testing the performance of a model under a
white-box attack can reflect the performance of the model in the worst case.

Therefore, we choose three relatively typical methods of generating adversarial exam-
ples under black-box attacks to test the performance of DL-based SEI under the worst-case
adversarial sample attacks.

3.1.3. Adversarial Example Generation

To explore the attack performance in SEI, we select three most popular methods: fast
gradient sign (FGSM) [24], projected gradient descent (PGD) [46] and C&W [41] methods.

FGSM

FGSM was developed to efficiently compute an adversarial perturbation for a given
input signal by solving the following problem,

ρ = ε · sign(∇L(θ, x, l)), (12)

where ∇L(·, ·, ·) computes the gradient of the lost function around the current value of the
model parameters θ w.r.t. x; sign(·) denotes the sign function; ε is the small scalar value
that restricts the norm of the perturbation.

The pseudo code of FGSM can be summarized in Algorithm 1.

Algorithm 1 FGSM.
Input: Original signal example x; ground-truth label l;

Loss function L of classifier; perturbation size ε.
Output: Adversarial example xadv

1. Calculate the gradient ∇xL(θ, x, l)
2. Acquire ρ by applying the gradient method as

ρ = ε · sign(∇xL(θ, x, l))

3. Applying the perturbation to the original sample as:

xadv = x + ε · sign(∇xL(θ, x, l))

4. Return xadv

PGD

PGD is an intuitive extension of FGSM, also known as Basic Iterative Method (BIM).
It is to iteratively take multiple small steps while adjusting the direction after each step
and limit the overall perturbation to the input space. PGD is iteratively calculated as
follows [46]:

xi+1
ρ = Clipε{xi

ρ + λsign(∇L(θ, xi
ρ, l))}, (13)

where xi
ρ is the perturbed signal at the ith iteration; Clipε{·} clips (the values of the pixels

of) the signal in its argument at ε and λ determines the step size (0 < λ < ε).
The pseudo code of PGD is given in Algorithm 2.
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Algorithm 2 PGD.
Input: Original signal example x; ground-truth label l;

Loss function L of classifier; perturbation size ε;
Iteration number N.

Output: Adversarial example xadv
1. Initialize x0

ρ ← x
2. for i = 0 to N − 1 do
3. Calculate the gradient ∇xL(θ, x, l)
4. Update xn+1

ρ by applying the gradient method, and use Clipx,λ{·} to clip xi+1
ρ as

xi+1
ρ = Clipx,λ

{
xi+1

ρ + λ · sign
(
∇xL

(
xi

ρ, l
))}

5. Applying the perturbation to the original sample as:
6. end for
7. Return xadv = xi+1

ρ

C&W

A set of adversarial attacks was introduced by Carlini and Wagner [41], that is C&W
method. These attacks make the perturbations quasi-imperceptible by restricting their l2,
l∞ , and l0 norms. The C&W method can achieve attacks with different confidence levels.

LC&W(x′, t) = max
(

max
i 6=t
{Z(x′)(i)} − Z(x′)(t)′ − κ

)
, (14)

where Z(x′)(i)′ represents the ith component of the classifier output, t is the target labels, κ is
the parameter reflexing the minimum expected confidence bound of the adversarial example.

There are many ways to implement C&W. In this paper, we implement C&W attacks
using the C&W-loss within the PGD framework [57].

The pseudo code of C&W is shown in Algorithm 3.

Algorithm 3 C&W.
Input: Original signal example x; ground-truth label l;

C&W loss function LC&W of classifier; Perturbation size ε;
Iteration number N.

Output: Adversarial example xadv
1. Initialize x0

ρ ← x
2. for i = 0 to N − 1 do
3. Calculate the gradient ∇xLC&W(θ, x, l)
4. Update xn+1

ρ by applying the gradient method, and use Clipx,λ{} to clip xi+1
ρ as

xi+1
ρ = Clipx,λ

{
xi+1

ρ + λ · sign
(
∇xLC&W

(
xi

ρ, l
))}

5. Applying the perturbation to the original sample as:
6. end for
7. Return xadv = xi+1

ρ

3.2. Adversarial Training

The aim of AT is to train the model with both the natural samples and adversarial
examples to alleviate the influence caused by adversarial attacks [58].

The new training objective can be given as

αL(x, y) + (1− α)(L(x′, y), (15)
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where L(x, y) denotes the classification loss, x′ represents the corresponding adversarial
example of natural example x, and α is the weight, usually set to 0.5.

The optimization problem of AT with the lp norm constraint can be formulated
as follows:

min
θ

max
ρ

D[q(y|x), pm(y|x, θ)] + D[q(y|x), pm(y|x + ρ, θ)]

s.t. ‖ρ‖p ≤ σ,
(16)

where q(y|x) defines the true posterior distribution; ρ is the perturbation added to the
input within a small range; and σ is the small positive value. The nonnegative function
D[·] is used to measure the divergence between the true posterior and model distribution.
The objective of AT is to fit the true distribution with the model distribution on natural and
adversarial examples.

3.2.1. Training Method

To implement AT, the inner maximization problem must first be solved to obtain the
worst perturbation. The first Taylor expansion of D[·] is used as the approximation to
simplify the optimization problem for the original objective function. With the lp constraint,
we can approximate the worst perturbation as follows:

ρ = σsign(∇L)(
|∇L|
‖∇L‖p∗

)
1

p−1 , (17)

where L is the loss function of DNN and p∗ is the dual of p.
When p = ∞, this method can be degraded to FGSM [24]. Consequently, the worst

perturbation becomes Equation (12). Details of the proof can be found in [30]. After
computing the adversarial perturbation, the model distribution pm(y|x, θ) is trained to
approximate the true distribution q(y|x) on natural and adversarial examples. It has been
shown that AT can achieve better generalization and robustness than traditional training
methods of DNNs [30].

4. Scenario Description and Implementation

The robustness of DL-based SEI under adversarial attacks is the main focus in this
work. On the basis of the original SEI, i.e., Natural SEI, we have added two new scenarios,
namely attack and defense. The schematic diagram of the scenes is shown in Figure 2,
where the black devices represent legal devices and red one for illegal device. The lines
in the same color represent the signals of the corresponding devices. And the green line
represents a situation where a malicious rogue device conducts an adversarial attack.

legal

illegal

DL-based SEI

legal

illegal

legal

adv

Natural SEI

Attacks

AT-SEI
legal

illegal
Defense

Figure 2. Scheme of DL-based SEI in three scenarios.

The goal of SEI is to stably identify emitters, especially distinguish legitimate and
malicious devices, so as to ensure network security.

The three scenarios are described in detail below.
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4.1. Natural SEI

Much of the current literature on DL-based SEI pays attention to improving the correct
recognition rate of the system in the case of no adversarial attack [22,59]. This case is called
as “Natural SEI” in this work.

As shown in Figure 2, there are registered legitimate devices (in black) and unregistered
malicious device (in red) in the environment. In Natural SEI, the original DL-based SEI can
correctly identify these devices and classify them as legal and illegal.

4.1.1. Model

The implementation framework of DL-based SEI is shown in Figure 3. There are three
main steps. (1) At first, the actual received signal should be preprocessed. In this work, the
input of the network is time-domain waveform of the IQ raw signal, so the preprocessing
includes signal detection, filtering noise reduction, and energy normalization. (2) Input
the preprocessed signal into the DNN, where the UM-related fingerprint feature extraction
and classification identification are automatically completed. In the figure, y(t) represents
the pre-processed results of r(t). (3) Finally, output the emitter ID of the specific emitter
corresponding to the received signal.

Preprocessing
Feature 

Extraction
Classification Emitter ID

DNN

 r t  y t

DL-based SEI

Figure 3. Implementation Framework of DL-based SEI.

4.1.2. Implementation

Improving the neural network structure to improve the correct recognition rate is not
the focus of this paper, instead, it focuses on the impact assessment of adversarial attacks
and AT methods on classical neural networks. Therefore, the experiments are based on the
classic ResNet18, the network settings refer to [60]. The details of the network setup are
shown in Figure 4. As shown , the activation function is chosen as ReLu, and N denotes
the number of sample points of the signal samples. Other necessary signal processing
procedures are according to the DL-based SEI given in Figure 3.

STAGE 1

STAGE 2

STAGE 3

STAGE 4

STAGE 0

INPUT

OUTPUT

ResNet18

CONV: 1×3, 64,

Stride = 1

Padding = 1

BN, RELU

STAGE 0

(1, 2, N)

(64, 4, N)

STAGE 1

BSK1: 64, 1

(64, 4, N)

BSK1: 64, 1

(64, 4, N)

STAGE 2

BSK1: 128, 1

(128, 4, N)

BSK1: 128, 2

(128, 2, N/2)

STAGE 3

BSK1: 256, 1

(256, 2, N/2)

BSK1: 256, 2

(256, 1, N/4)

STAGE 4

BSK1: 512, 1

(512, 1, N/4)

BSK1: 512, 2

(512, 1, N/8)

BSK1: C_out, S

CONV: 3×3, C,

Stride = S

Padding = 1

BN, RELU

CONV: 3×3, C,

Stride = 1

Padding = 1

BN

+, RELU

(C_in, H, W)

(C_out, H/S, W/S)

Avg_pool2D: 1×4

(512, 1,N/32 )

flatten

4096

Linear:4096, 512

Linear:512, 20

512

20

Figure 4. Deep learning network structure based on ResNet18 of SEI. N represents the data length.

All experiments in this paper are based on this network structure. Without loss of gen-
erality, the DNN is still used to denote the selected ResNet18 architecture in this following.
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4.2. Attack: SEI under Adversarial Attacks

This is a new scenario proposed in this paper. This kind of attack s not an attack
method in the traditional sense, such as a spoofing attack, nor does it change the hardware
of the emitter. The specific process is to generate a very subtle adversarial perturbations
according to the characteristics of the neural network, and then attach the adversarial
perturbations to the signal to be transmitted. Adding this perturbation signal will cause
the original DL-based SEI system to misjudge the red illegal device as a legal device. This
completes the attack process.

The green line associated with DL-based SEI in Figure 2 represents the scenario where
a malicious device (red) emits a signal with a specially designed perturbation that makes
the original DL-based SEI system misjudgment.

4.2.1. Model

When faced with an adversarial attack, the signal can be expressed as

r̃(t) = r(t) + δ(t), (18)

where δ(t) denotes the subtle perturbation introduced by the adversarial attack (short as
“adv” in the following), r(t) represents the received signal without adversarial attacks in
Equation (1), and r̃(t) is referred to as the adversarial example in the following.

To express the strength of the adversarial attack, we define the perturbation-to-signal
ratio (PSR) as an evaluation metric, denoted as the energy ratio of the perturbation δ(t) to
the received signal r(t),

PSR = 10 log

(∫ T
0 δ2(t)dt∫ T
0 r2(t)dt

)
. (19)

4.2.2. Implementation

In this work, three kinds of adversarial perturbations are directly generated according
to Section 3.1.3. Then add the digital adversarial perturbations before DAC, shown in
Figure 5. In the experiment, the adversarial perturbations are directly added to the received
signals. The signal with adversarial perturbation is aforementioned adversarial example
r̃(t). Finally, input the adversarial examples to the trained DNN model to test the change
of the recognition performance for DL-based SEI under adversarial attacks.

1 10 0

encoder modulator

LO

mixer

Adversarial 

perturbations

Antenna

DAC

Band-pass 

Filter

Power

amplifier

Power

amplifier

Figure 5. Scheme of the addition of subtle adversarial perturbation at the emitter.

4.3. Defense: AT-SEI under Adversarial Attacks

This is another scenario proposed in this work, which is to defend against the above-
mentioned attacks. The specific process is to add an adversarial training link in the training
procedure of DL-based SEI to improve the stability of the system against adversarial attacks.
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In Figure 2, AT-SEI represents the DL-based SEI system after AT, and the green line
associated with AT-SEI corresponds to this scenario. After AT, AT-SEI can correctly identify
illegal devices. That is, defense means (AT) can ensure that the DNN model works properly
to identify the correct emitter identity (ID).

Implementation

We choose the single-step gradient attack FGSM as the way to generate adversarial
examples, and add adversarial examples to the training set to retrain in this work. The
training schematic is shown in Figure 6. The training method is introduced in Section 3.2.1.
And the other related settings can be kept consistent with the previous two scenarios.

Feature layersFeature layers
Class labelClass label

( )r t

( )t

L







loss L

Figure 6. Diagram of AT for DL-based SEI.

In addition, the generation settings of adversarial attacks are also kept the same as
Section 4.2.

To sum up, scheme of DL-based SEI including all three different scenarios is shown in
Figure 7.

DL-based SEI Emitter ID
( )r t

Emitter

DL-based SEI Wrong ID
( ) ( ) ( ) r t r t t

Emitter

Adversarial 

perturbations

Natural SEI

True IDEmitter

Adversarial Training

DL-based SEI
( ) ( ) ( ) r t r t t

SEI with Adversarial Attacks

AT-SEI with Adversarial Attacks

Adversarial 

perturbations

Scenario 1

Scenario 2

Scenario 3

Figure 7. Scheme of DL-based SEI in three different scenarios.

5. Experimental Results

In this section, we first introduce the situation of data and related configurations.
There are two types of datasets, radar data (Dataset 1) and communication data (Dataset 2),
each containing 20 emitters to be identified. Experiments are then conducted primarily on
Dataset 1 for adversarial attack and defense training, i.e., AT, and repeated on Dataset 2
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for validation. Both sets of experiments use the same DNN structure (ResNet18) and are
trained independently.

All experiments are performed on an NVIDIA GeForce GTX 3090 using on GPU per
run. Each of the four attack methods is implemented using pytorch1.10 and cuda11.3.
We use Adam with learning rate = 1× 10−5 to optimize the target model, and the ReLU
activation function was used in all layers, and the categorical-crossentropy loss functions
are tried in the experiments. We divide the whole dataset into the training set, validation
set and test set according to the ratio of 7:2:1. The training set is used to adjust the model
parameters. After each training epoch, the model is validated on the validation set to get
the validation loss. Besides, we adopt an early-stopping training strategy, i.e., we stop
training when the validation loss is no longer decreasing after several epochs of training,
and the model with the lowest validation loss is used as the optimal model. Finally, we test
the optimal model on the test set and get all the experimental results. The three datasets
are completely independent, so the results on the test set can guarantee that the model is
not obtained in an overfitting situation.

5.1. Dataset and Configure
5.1.1. Dataset 1

As for the radar signals, they are emitted by 20 secondary radars of 20 different civil
aircrafts, labeled as R1 to R20. There are more than 240 pulse samples of each emitter, and
the detailed pulse numbers are listed in Table 1. And there are 6267 pulses in total and
264 points for each sample. The RF and intermediate frequency (IF) are 1090 and 60 MHz,
respectively. The sampling frequency is fs = 250 MHz.

Table 1. Samples of Each Emitter for Dataset 1.

Emitter ID Sample Emitter ID Sample

R1 334 R11 321
R2 398 R12 302
R3 417 R13 280
R4 398 R14 308
R5 262 R15 303

R6 300 R16 292
R7 304 R17 300
R8 241 R18 301
R9 305 R19 304
R10 289 R20 306

The signal-to-noise ratio (SNR) and the pulse width (PW) distribution of all samples
are shown in Figure 8. It can be seen the SNR of most pulses is above 30 dB. And the
majority of samples range in pulse width from 0.6 µs to 0.7 µs.
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(a) SNR

(b) Pulse Width

Figure 8. SNR and pulse width distribution of real-world signals of the 20 radars in Dataset 1.

5.1.2. Dataset 2

According to the device distortion models of Section 2.1, 20 different emitters are
simulated, which are represented by T1-T20, and the specific parameter settings are shown
in Table 2.

Signals of Quadrature Phase Shift Keying (QPSK) modulation are generated. The shaped
filter is a square root rising cosine-shaped filter with a roll-off factor set to 0.35. The sampling
rate ( fs) is 20 MHz, the code rate ( fz) is 1 MHz, and the carrier frequency ( f0) is 5 MHz.
There are 3000 samples per emitter and 60,000 samples in total. Each sample has 1000
points, containing 50 random codes. Here, 80% samples of each emitter are randomly
selected for training, and the rest are used as the test set. These parameters are summarized
in Table 3.
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Table 2. Distortion parameters of simulated communication transmitters for Dataset 2.

Emitter ID
FD IQE CST PAD

(a0, a1, TA) (b0, b1, TB) ρ ξ AST f ST ςCL(10−3) d1 d2 d3

T1 (1, 0.06, 4) (1, 0.0309, 4) 0.9996 −0.016 0.0072 0.0197 1.1 + 9.8i 1 0.03 0.1
T2 (1, 0.085, 4) (1, 0.0308, 4) 0.9997 −0.014 0.0074 0.0193 1.2 + 9.6i 1 0.05 0.09
T3 (1, 0.073, 4) (1, 0.0307, 4) 0.9998 −0.012 0.0076 0.0189 1.3 + 9.4i 1 0.07 0.08
T4 (1, 0.04, 4) (1, 0.0306, 4) 0.9999 −0.010 0.0078 0.0185 1.4 + 9.2i 1 0.09 0.07
T5 (1, 0.06, 4) (1, 0.0305, 4) 1.0000 −0.008 0.0080 0.0181 1.5 + 9.0i 1 0.11 0.06

T6 (1, 0.085, 4) (1, 0.0304, 4) 1.0001 −0.006 0.0082 0.0177 1.6 + 8.8i 1 0.13 0.05
T7 (1, 0.073, 4) (1, 0.0303, 4) 1.0002 −0.004 0.0084 0.0173 1.7 + 8.6i 1 0.15 0.04
T8 (1, 0.04, 4) (1, 0.0302, 4) 1.0003 −0.002 0.0086 0.0169 1.8 + 8.4i 1 0.17 0.03
T9 (1, 0.03, 4) (1, 0.0301, 4) 1.0004 0.000 0.0088 0.0165 1.9 + 8.2i 1 0.19 0.02
T10 (1, 0.03, 4) (1, 0.0300, 4) 1.0005 0.002 0.0090 0.0161 2.0 + 8.0i 1 0.21 0.01

T11 (1, 0.03, 4) (1, 0.0299, 4) 1.0006 0.004 0.0092 0.0157 2.1 + 7.8i 1 0.25 0
T12 (1, 0.03, 4) (1, 0.0298, 4) 1.0007 0.006 0.0094 0.0153 2.2 + 7.6i 1 0.3 −0.01
T13 (1, 0.03, 4) (1, 0.0297, 4) 1.0008 0.008 0.0096 0.0149 2.3 + 7.4i 1 0.35 −0.02
T14 (1, 0.03, 4) (1, 0.0296, 4) 1.0009 0.010 0.0098 0.0145 2.4 + 7.2i 1 0.4 −0.03
T15 (1, 0.03, 4) (1, 0.0295, 4) 1.0010 0.012 0.0100 0.0141 2.5 + 7.0i 1 0.45 0.1

T16 (1, 0.03, 4) (1, 0.0294, 4) 1.0011 0.014 0.0102 0.0137 2.6 + 6.8i 1 0.5 0.2
T17 (1, 0.03, 4) (1, 0.0293, 4) 1.0012 0.016 0.0104 0.0133 2.7 + 6.6i 1 0.55 0.3
T18 (1, 0.03, 4) (1, 0.0292, 4) 1.0013 0.018 0.0106 0.0129 2.8 + 6.4i 1 0.6 0.4
T19 (1, 0.03, 4) (1, 0.0291, 4) 1.0014 0.020 0.0108 0.0125 2.9 + 6.2i 1 0.65 0.5
T20 (1, 0.03, 4) (1, 0.0290, 4) 1.0015 0.022 0.0110 0.0121 3.0 + 6.0i 1 0.7 0.6

Table 3. Parameters of communication signals in Dataset 2.

Parameter Value Parameter Value

Sampling Rate 20 MHz Modulation QPSK
Symbol Rate 5 MHz Roll-off factor 0.35

Carrier Frequency 1 MHz Codes/sample 50
Emitter ID T1–T20 Sample/emitter 3000

5.1.3. Configure
Recognition Rate

In this work, the correct recognition rate is used as the evaluation index. And the
reliability is evaluated by using the change of the recognition rate in different scenarios.
The overall recognition rate is defined as P:

P =
I

∑
i=1

Nc
i /

I

∑
i=1

Nt
i , (20)

where Nc
i denotes the number of correctly identified samples of the ith emitter, and Nt

i
represents the number of tested samples. The recognition rate of the ith emitter is given as

Pi = Nc
i /Nt

i . (21)

Parameter

The learning rate for Dataset 1 is 5× 10−5 and that for Dataset 2 is 1× 10−6. The batch
size for Dataset 1 is 32, and 16 for Dataset 2. The patience of early stopping is set to 20. The
noise in this work is addition white gaussian noise (AWGN).
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5.2. Experiment on Dataset 1
5.2.1. Natural SEI

Figure 9 shows the confusion matrix of ResNet18 after training for all targets on the
validation set, with an average recognition rate of 99.52%, and the distribution of extracted
features after T-sne dimensionality reduction [61]. The classification boundaries of features
of different emitter are obvious and relatively dispersed in the feature space, which can
achieve accurate identification, proving that the neural network is well trained and can
achieve the SEI task without perturbation.
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(b) Low-dimensional feature distribution

Figure 9. Identification performance and the feature distribution of directly trained DNN for Dataset
1. The average identification accuracy is P = 99.522%.

Floating Point Operations Per Second (FLOPS) is often used to measure the time com-

plexity in neural network. The FLOPS of the whole neural network is O
(

D
∑

l=1
M2

l=1K2
l Cl−1Cl

)
,

where D is the depth of CNN, M and K is the length of feature map and kernel of L-th layer,
C is the number of channel. In our model, the FLOPS is 1.429Gflops, and the parameters
size is 13.27522 M.

5.2.2. Adversarial Attacks

We test the recognition performance of directly trained DNNs when facing three types
of adversarial attacks.

Overall Performance

The specific recognition of each emitter is shown in the confusion matrices in Figure
10. The recognition performance decreases by more than 40% when the adversarial sample
strength is at −32 dB (for Dataset 1, the case with PSR = −32 dB is chosen as the focus of
the analysis, because it is relatively representative (not the best nor the worst, as shown in
Figure 11 below)). The average correct recognition rate of the targets decreases to 61.72%,
51.20%, and 51.36% under FGSM, PGD, and C&W attacks, respectively, indicating that the
system is no longer working properly.

After adding an adversarial attack under PSR = −32 dB, different emitters are misclas-
sified, which is manifested in the confusion matrix as the appearance of more samples for
elements beyond the diagonal, and different emitters are affected by the adversarial attack
to different degrees. The degree of impact of the three different attacks on different targets
also varies. Under the C&W attack, the performance dropped the most, from 99.52% to
50.239%, with a drop of nearly 50%.
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(a) FGSM P = 62.839%
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(c) PGD P = 52.791%

                             

     

 

   

   

   

   

   

   

   

   

   

 
 
  
  

     

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

(d) PGD P = 52.791%

         

          

               

             

       

          

    

              

         

              

                

               

      

           

               

     

          

           

        

              

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(e) C&W P = 50.239%

                             

     

 

   

   

   

   

   

   

   

   

   

 

 
  
  

  
  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

(f) C&W P = 50.239%

Figure 10. Identification performance and the feature distribution after attacks of PSR = −32 dB for
Dataset 1. The figures of the first column represent the confusion matrices, and the second column is
for low-dimensional feature distribution.
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Figure 11. Recognition effect of the system with and without AT for different attack strengths,
different attack types and different noise levels for Dataset 2.

Compared with Figure 9, the feature boundaries of different emitters in Figure 10
become blurred and mixed in distribution, making it difficult to distinguish accurately and
proving the fragility of the DL-based SEI.

Adding adversarial examples causes the distribution of features to shift, and the
feature shifts are not consistent. For example, in the case of no attack (Figure 9), the features
of R19 are concentrated in the middle upper part of the feature plane without overlapping
with other emitters, while after FGSM and PGD attacks the features are concentrated in
the middle of the whole feature plane and have overlapping with R14. And the features of
R19 after C&W attack are distributed in the lower middle of the whole feature plane and
scattered into three parts, which are not concentrated.

Emitter

The recognition results of each emitter under different types of attacks are shown in
Figure 12. In the absence of attacks, the correct recognition rate of each emitter can reach
almost 100%; in the face of attacks, the recognition effect decreases significantly. However,
the impact on different targets varies, with R7 being almost unaffected (almost 100%), while
all test samples of R4, R10, R14, and R15 are misidentified. This is due to the fact that the
differences between emitters are inherently subtle and unevenly distributed in the feature
space, and thus are affected to different degrees by the adversarial attacks. Although there
are several relatively robust targets under the three attacks, the overall recognition rate is
only 50–60%, and the system is actually not working at all.

Waveform

As aforementioned, identification accuracy decrease dramatically at PSR = −32 dB,
the corresponding waveforms of the three attack methods are shown in Figure 13. Original
waveforms and waveforms with the added adversarial attack of the three attack methods
(waveform + adv) are shown on the left column. The second column of subplots shows
added adversarial perturbations (adv). The probability density function (PDF) of the
waveforms with and without adversarial perturbation are given in the third column. The
PDF is fitted by the frequency distribution histogram of the signal [54].

It can be seen from the figures:

• The overall signal waveform after adding the attack is similar to the original signal.
The difference is so subtle that the human eye can-not detect the difference; however,
these perturbation can make the recognition performance of SEI significantly worse.

• The waveform of the perturbation is not significantly regular. The normalized energy
amplitude does not exceed 0.02, which is very low compared with the original signal.
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• The PDF of the waveform did not change significantly before and after being attacked.
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Figure 12. Recognition results of each emitter under different types of attacks at a strength of −32
dB for Dataset 1. The horizontal axis indicates different emitters, and the vertical axis indicates
the corresponding recognition rate values. Different color blocks indicate the recognition effect of
different cases, the length of the blocks is proportional to the size of the correct recognition rate. The
longer the length, the higher the recognition rate. The values range from 0–1 (100%). The total range
is 0–4 for all four cases.

       
 

   

 

   

 

   

 

   
       

                

              

       
 

 

 

 

 

 

 
         

                

              

       
 

   

 

   

 

   

 
        

                

              

Figure 13. Waveforms of the three attack methods at PSR = −32 dB. The original waveforms and
waveforms with the added adversarial attack of the three attack methods (waveform + adv) are shown
in the left column. The second column of subplots shows the waveforms of the added adversarial
examples. The third column shows the probability density function (PDF) of the waveforms.
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Experiments show that the waveform with adv is not significantly different from the
original waveform, and only a very low energy perturbation needs to be added to disable
the system compared to the original signal.

In practice, if these subtle adversarial perturbations are artificially added to the mali-
cious device signal, they are difficult to detect and can prevent a specific SEI system from
working properly, seriously affecting network security, so targeted robustness enhancement
is essential.

5.2.3. Performance after AT

To improve the robustness against adversarial attacks, the same structure of ResNet18
network as above is trained with AT. In the absence of an adversarial attack, the average
recognition rate of the system on the test set is 96.491%, and the confusion matrix of 20
emitters is shown in the first subfigure of Figure 14. The second subfigure in Figure 14
visualizes the feature distribution for different emitters.
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(b) Low-dimensional feature distribution

Figure 14. Identification performance and the feature distribution of the DNN after AT for Dataset 1.
The average identification accuracy is P = 96.491%.

Faced with adversarial attacks of the same intensity as that of Section 5.2.2, the cor-
responding confusion matrices of DNN after AT are shown in Figure 15, with an av-
erage recognition rate of 89.79%, 82.14%, and 84.85% for the three cases, respectively.
Under the three adversarial attacks, the corresponding confusion matrices are shown in
Figure 15. Although the performance is slightly reduced compared to the result of AT
without attacks in Figure 14, the improvement is obvious for each emitter compared with
Figure 10. According to corresponding feature distributions after attacks, shown in the
second column of Figure 15, the effectiveness of AT is pretty obvious compared with
Figure 10. From the perspective of the confusion matrix, when there are adversarial exam-
ples after AT, most of the values are concentrated on the diagonal line, indicating that they
can basically be correctly identified; From the scatter plot, the scatter distribution of each
emitter is more concentrated.
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(a) FGSM P = 89.793%
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(c) PGD P = 84.848%

                             

     

 

   

   

   

   

   

   

   

   

   

 

 
  
  

     

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

(d) PGD P = 84.848%

    

    

     

            

    

     

    

      

    

                

           

         

    

       

            

    

      

    

    

            

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(e) C&W P = 82.137%

                             

     

 

   

   

   

   

   

   

   

   

   

 

 
  
  

  
  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

(f) C&W P = 82.137%

Figure 15. Identification performance and the feature distribution with attacks of PSR = −32 dB after
AT for Dataset 1. The figures of the first column represents the confusion matrices, and the second
column is for low-dimensional feature distribution.
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Table 4 summarizes the comparison of DNN with or without AT. Although the AT
performance slightly decreases in the absence of an attack (−3.03%), it is still >96% and does
not affect normal recognition. However, the performance improvement in the adversarial
case is dramatic. When PSR = −32 dB, the average accuracy under three attacks before
and after AT are 55.29% and 85.59%, respectively, with an average improvement of 30.30%.
The system recognition rate under all attacks are maintained at more than 82%; the basic
recognition function is recovered.

Table 4. Performance comparison under PSR = −32 dB for Dataset 1(%).

Method No AT AT Improvement

Natural 99.52 96.49 −3.03
FGSM 62.84 89.79 26.95
C&W 50.24 82.14 31.90
PGD 52.79 84.85 32.06

Average (attacks) 55.29 85.59 30.30

Performance of Each Emitter

The statistics of each emitter device with and without AT under attacks at PSR = −32 dB
are shown in Table 5, where “Average” indicates the average value in the three attack cases.
It can be seen that the overall law of the effect of attack and AT is consistent for all emitters.
That is, the recognition effect decreases when facing the attack, and improves significantly
after AT.

Table 5. Identification Performance of Each Emitter under Attacks with the Intensity of
PSR = −32 dB (%).

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Natural 100.00 97.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
FGSM 65.52 84.09 84.31 2.70 95.24 88.89 100.00 80.00 100.00 6.67
C&W 48.28 72.73 74.51 2.70 90.48 80.56 100.00 48.00 86.67 0.00
PGD 55.17 77.27 74.51 2.70 95.24 83.33 100.00 56.00 86.67 0.00
Average 67.24 82.94 83.33 27.03 95.24 88.19 100.00 71.00 93.33 26.67

Natural (AT) 100.00 100.00 98.18 87.88 100.00 100.00 100.00 100.00 100.00 88.00
FGSM (AT) 100.00 100.00 98.18 81.82 100.00 100.00 100.00 100.00 100.00 76.00
C&W (AT) 100.00 100.00 98.18 69.70 100.00 95.65 100.00 88.89 100.00 24.00
PGD (AT) 100.00 100.00 98.18 69.70 100.00 100.00 100.00 94.44 100.00 36.00
Average (AT) 100.00 100.00 98.18 77.27 100.00 98.91 100.00 95.83 100.00 56.00

R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

Natural 100.00 100.00 100.00 100.00 96.43 100.00 100.00 100.00 100.00 96.77
FGSM 43.75 44.83 85.71 5.00 11.11 91.67 33.33 76.32 79.31 71.43
C&W 15.63 37.93 75.00 0.00 3.70 91.67 21.43 39.47 75.86 39.29
PGD 18.75 31.03 82.14 0.00 3.70 91.67 21.43 50.00 75.86 50.00
Average 44.53 53.45 85.71 26.25 28.74 93.75 44.05 66.45 82.76 64.37

Natural (AT) 87.88 100.00 100.00 96.00 88.24 100.00 85.71 100.00 100.00 97.56
FGSM (AT) 84.85 81.48 100.00 88.00 58.82 100.00 39.29 100.00 100.00 82.93
C&W (AT) 78.79 59.26 100.00 84.00 32.35 100.00 28.57 100.00 100.00 65.85
PGD (AT) 81.82 66.67 100.00 88.00 50.00 100.00 32.14 100.00 100.00 68.29
Average (AT) 83.33 76.85 100.00 89.00 57.35 100.00 46.43 100.00 100.00 78.66

On the other hand, we can see that different attacks have different effects on different
emitter devices. For example, for R10, the recognition result is 100% after direct training,
however, the recognition rate drops rapidly to single digits in the presence of attacks.
After AT, although the direct recognition rate dropped to 88%, the performance improved
significantly with the addition of adversarial examples, and the average correct rate re-
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covered from 26.67% to 56.00% and 76% on FGSM. And after AT, nine emitters can reach
Pi = 100%, i ∈ {1, 2, 5, 7, 9, 13, 16, 18, 19} under all three attacks.

The performance of different devices with or without AT is visually displayed in
Figure 16. It can be concluded that the recognition rate of some devices will drop slightly
after adversarial training, but the recognition performance improves significantly when
facing adversarial attacks.
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Figure 16. Identification performance for each emitter after AT under three attack scenarios with
PSR = −32 dB for Dataset 1. “Average” denotes the average identification accuracy of original DNN
under three attacks. “Average (AT)” denotes the average identification accuracy of the DNN after AT
under three attacks.

5.2.4. Intensity Analysis

Figure 17 shows the recognition performance of DNN with and without AT in the
presence of three attacks with PSR ranging from −40 to 0 dB for Dataset 1. For comparison,
the performance under the influence of the additive white noise of the corresponding
strength is also tested. To be consistent with the PSR, the ratio of noise-to-signal ratio (NSR)
is used here to express the AWGN intensity,

NSR =
1

SNR
= 10 log

[
1
T
∫ T

0 s2(t)dt
1
T
∫ T

0 v2(t)dt

]
. (22)

Figure 17. Recognition effect of the system with and without AT for different attack strengths,
different attack types and noise levels for Dataset 1.
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The solid lines in the figure represent no adversarial training, and the dashed line
represents the system after AT. Overall, the dashed lines are generally above the solid ones,
proving the effectiveness of AT. The following conclusions can be obtained from the figure:

1. The directly trained DNN can achieve a highly accurate recognition rate without
attack. However, in the presence of an adversarial attack, the performance degrades
rapidly and drops below 10% at −25 dB, demonstrating the vulnerability of the
DNN-based SEI.

2. It can be seen that the result curve of the adversarial attack is at the bottom of the figure.
All three attack methods are effective for DNN-based SEI, and minor perturbations
can cause significant performance degradation, for their result lines are on the bottom
of the figure. Among them, C&W and PGD attacks are more effective (because the
implement of C&W is based on PGD framework in Section 3.1.3), their performance
are similar, and FGSM has a slightly lesser effect on the performance. It is worth
noting that the line of “AWGN” is higher than the lines of adversarial attacks, it means
that the adversarial examples are more destructive to DNN than the white noise of
the same strength.

3. After AT, the performance of direct recognition is slightly reduced compared to
that without AT but can still reach 96.49%. However, the DNN’s performance is
significantly improved compared to that of direct training when facing adversarial
attacks. In particular, under the FGSM attack, the accurate recognition rate of 69% at
−22 dB is still achieved, as marked in the figure. Compared with the case without
AT, there is an improvement of more than 60%. Moreover, the line of “AWGN(AT)” is
obviously higher that “AWGN”, it means that AT can improve the neural network’s
robustness to additive Gaussian white noise.

4. The system fails even after AT when a well-designed adversarial perturbation with
PSR > −10 dB is added. It shows that the trained DNN for SEI is concerned with the
fine-grained variability at that level on Dataset 1. Additionally, the RF fingerprints
between emitters are very subtle. Thus, it reaches a performance boundary when
faced with an adversarial attack above that strength, losing the recognition effect.

5.3. Validation on Dataset 2

Based on Dataset 2, the above experiments on Dataset 1 are all repeated at SNR = 30,
35, 40 dB, respectively. The experimental results are shown in Figure 11. As can be seen
from the figure, similar conclusions can be obtained on Dataset 2 as on Dataset 1.

1. The performance of DNN, which has originally P > 90%, decreases rapidly when
encountering adversarial attacks. Compared to C&W and PGD, FGSM has a smaller
impact. Also, unlike Dataset 1, Dataset 2 is more sensitive to counter perturbations
and requires a lower attack intensity to compromise the system. It is more vulnerable
because the differences between transmitters are set to be small, as shown in the Table
2.

2. The adversarial perturbation is more destructive compared to AWGN of the same
intensity. The perturbations are carefully designed to be able to affect the DL-based
SEI with less energy.

3. AT can improve the robustness to adversarial examples. The enhancement of AT can
also reach 25.72% (PSR = −70 dB), 24.04% (PSR = −50 dB). Also, AT enhances the
robustness of the system to AWGN. However, the enhancement effect here is lower
compared to Dataset 1.

4. The AT fails when the strength of perturbations reaches PSR =−35 dB. The differences
between the emitters in Dataset 2 are more subtle, so that the performance boundary
is at PSR = −35 dB.

The confusion matrices of the different methods are given for SNR = 35 dB at intensities
of −70 dB and −55 dB from Figures 18–21. The closer the values in the confusion matrix
are to the diagonal, the better the identification is, since the adjacent emitters are set closer
in simulation parameters as given in Table 2. At lower attack intensities, the system
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performance of the three methods is obviously improved after adding AT. When the attack
intensity increases (−55 dB), in which although the C&W and PGD correct recognition
rates are not significantly improved, the clutter of elements beyond the diagonal decreases
as seen in the figures.

       

      

        

        

         

     

       

       

    

    

    

    

    

    

    

    

            

      

       

               

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(a) Natural with P = 91.652%

     

      

          

      

     

     

      

    

    

    

    

    

    

    

    

    

      

    

     

             

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(b) Natural (AT) with P = 93.604%

Figure 18. Recognition effect of the system with and without AT when SNR = 35 dB for Dataset 2.

        

      

          

            

          

       

        

       

    

    

    

    

      

    

    

    

            

     

       

               

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(a) FGSM under PSR = −70 dB (P = 85.146%)

     

      

          

        

         

     

       

    

    

    

    

    

    

    

    

    

        

    

     

             

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(b) FGSM (AT) under PSR = −70 dB (P = 88.94%)

                

       

           

          

              

        

           

             

    

    

    

    

       

    

    

       

               

        

             

                     

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(c) FGSM under PSR = −55 dB (P = 52.445%)

            

     

                

          

                

      

           

     

    

    

    

    

    

    

    

    

       

     

        

                    

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(d) FGSM (AT) under PSR = −55 dB (P = 60.588%)

Figure 19. Recognition effect of the system with and without AT under FGSM attack when
SNR = 35 dB for Dataset 2.



Remote Sens. 2022, 14, 4996 27 of 31

               

        

                

        

           

       

          

            

       

    

         

           

              

    

     

            

               

      

              

                   

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(a) C&W under PSR = −70 dB (P = 36.138%)

         

     

              

      

            

       

         

              

    

    

    

    

       

    

    

     

     

      

       

                  

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(b) C&W (AT) under PSR = −70 dB (P = 43.058%)

        

     

            

     

          

       

             

            

             

        

           

               

             

          

        

                

         

     

          

          

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

(c) C&W under PSR = −55 dB (P = 0%)

     

    

              

    

          

         

     

         

      

     

            

        

            

        

             

           

       

        

     

                 

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(d) C&W (AT) under PSR = −55 dB (P = 0%)

Figure 20. Recognition effect of the system with and without AT under C&W attack when
SNR = 35 dB for Dataset 2.

             

        

               

            

           

       

          

            

       

    

         

         

              

    

     

            

                   

        

                

                     

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(a) PGD under PSR = −70 dB (P = 35.816%)

           

     

              

      

               

       

          

            

    

    

    

    

       

    

    

     

           

      

       

                     

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(b) PGD (AT) under PSR = −70 dB (P = 43.11%)

Figure 21. Cont.
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(c) PGD under PSR = −55 dB (P = 0%)

       

    

              

    

           

        

      

         

      

     

          

        

         

        

             

       

         

        

           

                   

               

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
 
 
 
 

 

  

  

  

  

  

  

  

  

  

   

(d) PGD (AT) under PSR = −55 dB (P = 0%)

Figure 21. Recognition effect of the system with and without AT under PGD attack when SNR = 35 dB
for Dataset 2.

5.4. Analysis

From the above experimental results and analysis, the following points can be seen.
In the attack scenario, in terms of the overall recognition rate, the recognition perfor-

mance of the system will drop significantly after being attacked. Taking Dataset 1 as an
example, when PSR is −32 dB, the maximum performance drop of the system reaches 50%.
With the increase of the attack intensity, at PSR = −22 dB, compared with the noise system
of the same intensity, the reduction rate exceeds 60%, and the recognition performance
directly drops to about 0%, which completely fails.

In terms of details, ¬ the impact of different attack methods is different, and the
effect of C&W and PGD attacks is more obvious; ­ After the attack, the distribution of the
feature methods extracted by the neural network changes; ® Different radiation sources
are affected differently.

As the characteristics of the adversarial sample, the adversarial perturbation is of
very low energy and irregular, and it has little effect on the probability density of the
original signal.

For the defence scenario, after AT, when attacked at the same intensity (−32 dB), the
performance of AT-SEI is improved by an average of 30%, and the average recognition rate
can be restored to 85.59%.

For the communication signal Dataset 2, there are similar laws to Dataset 1, but
different datasets are affected to different extents. Using a lower strength attack can disable
the DL-based SEI system of the communication signal.

In addition, there is a certain threshold for improving the performance of AT, which is
about −10 dB for Dataset 1 and −35 dB for Dataset 2.

To sum up, in practical applications, if a malicious device superimposes a very small
perturbation waveform on the original waveform, without affecting the signal PDF, the
existing DL-based SEI will fail, which cannot correct distinguish between malicious and
legitimate devices. After AT, the robustness in this regard can be greatly improved, and the
performance can be recovered to a certain extent. Therefore, in the practical application
of DL-based SEI, the impact of adversarial attacks must be considered, and AT must be
carried out.

6. Conclusions

In this paper, adversarial attack and corresponding defense training are introduced
into SEI for the first time, which answers the relevant questions about the robustness of
DL-based SEI under adversarial attacks and fills the relevant gaps. Aiming at the SEI
problem, two practical scenarios of attack and defense are designed to carry out research,
and specific implementation methods are given.
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It is found that DL-based SEI, similar to the field of image recognition, is also sensitive
to adversarial attacks. Experiments on different datasets show that after being attacked, the
system will be misjudged or even invalid, so that malicious devices cannot be identified and
the network security is facing serious threats. For example, only attack at the strength of
−32 dB on the real-world dataset can reduce identification performance of the system to less
than 50%, and the destructive power is far greater than the noise of the same intensity. At
the same time, this paper gives a solution as adversarial training to improve the robustness
of the system under adversarial attacks, and at −32 dB the system can be recovered to more
than 85%.

Therefore, the following conclusions can be drawn. The reliability of DNN-based
SEI systems under strong adversarial conditions is crucial. In future DL-based SEI related
research and practical applications, in order to stabilize the work, the attack of adversarial
samples must be considered, and operations such as adversarial training must be performed
to improve the robustness in this scenario.

In addition, the following are also found in this work, which can be the focus of future
research. (1) Different types of data are affected to different degrees, among which the
simulated communication signals are more easily affected, and further research should be
conducted on the relationship between signal types and attacks; Different emitters even
from the same dataset are affected by different degrees, and more in-depth research is
needed. (2) There is still a performance boundary after adversarial training. It is necessary
to design a more effective defense method combined with the radio frequency fingerprint
mechanism to further improve the performance, especially for communication signals with
subtle device-specific differences. (3) More signal types, more neural network structures,
and more attack methods should be involved in future experiments, especially the more
realistic black-box attacks.
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