Big Geospatial Data and Data-Driven Methods for Urban Dengue Risk Forecasting: A Review
Abstract
:1. Introduction
2. Methods and Materials
2.1. General Framework of Dengue Risk Forecasting
2.2. Literature Selection and Information Analysis
2.3. Data Analysis
3. Current Status of Dengue Risk Forecasting
3.1. Dengue Predictors and Data Sources
- ➢
- ➢
- Historical time series of dengue cases are becoming increasingly important for future dengue risk prediction as they can provide the temporal characteristics of the dengue transmission of the specific study area: the important basis for future dengue transmission [12,16]. In addition, the time series of dengue cases in a typical dengue epidemic area can be used as one of the covariates for risk forecasting in its neighboring cities due to the proximity of the two cities and the spatial and temporal relationship between the dengue epidemics in the two cities [16,67];
- ➢
- ➢
- ➢
- ➢
- Internet search indices (e.g., the Baidu search index and Google search index) were utilized for dengue tracking as they are widely accessible worldwide, and represent the real-time attention of the population to a popular event, providing it strong potential to supplement current epidemiological methods [9,27,69];
- ➢
- Social media indices, mainly including tweet counts and Sina Weibo posts, were widely used for dengue risk forecasting as social media has become the key communication tool for governments, organizations, and individuals to disseminate valuable information to the public during dengue epidemics. In addition, individual users can also post their concerns and awareness of the dengue epidemics [29];
- ➢
- ➢
- ➢
- Extreme weather events (e.g., El Niño and La Niña) can drive climate variability at both seasonal and inter-annual intervals [21].
- ➢
- The official meteorological agencies provide data collected from meteorological stations that are mainly used for identifying local climatic factors;
- ➢
- Satellite-based datasets, including multi-source remote sensing images and ready-to-use products, can be used for computing the local climate factors (e.g., temperature and rainfall) and vegetation indices;
- ➢
- Public websites, such as search engines and social media sites, can provide internet search indices and social media indices;
- ➢
- Both the department of health services and the national electronic diseases surveillance systems (e.g., the Brazilian Notifiable Diseases Information System (SINAN) and the nowcasting surveillance system of arboviruses in Brazil, namely, infodengue [68]) provide historical dengue cases. It should be noted that some dengue projects (e.g., NOAA dengue forecasting project [69]) can also provide historical dengue epidemiological data;
- ➢
- Official statistics provide data related to population density and building age in recent studies of dengue risk forecasting;
- ➢
- Public transport data, such as bus transportation data and incoming and outgoing travel volumes, were used to characterize human mobility.
3.2. Spatial and Temporal Scales
3.3. Models
3.3.1. Time Series Models
3.3.2. Machine Learning Approaches
3.3.3. Deep Learning Approaches
3.3.4. Ensemble Learning
3.3.5. Hybrid Learning
3.4. Evaluation Metrics
4. Discussion
4.1. Potentials of Big Geospatial Data in Identification of More Dengue Risk Predictors
4.2. Potential of Geospatial Data Cloud Computing in Dengue Risk Prediction
4.3. Potentials of Deep Learning Models in Dengue Risk Forecasting
4.4. Limitations of the Use of Big Geospatial Data and Deep Learning in Dengue Risk Forecasting
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
ID | Authors | Year | Spatial Scales | Temporal Scales | Types of Predictors | Types of Data Sources | Models | Evaluation Metrics | Task |
---|---|---|---|---|---|---|---|---|---|
J1 | Li et al. [12] | 2022 | City-level | Weekly | Temperature | Satellite-based dataset | ARIMA LSTM | RMSE MAE | R |
Rainfall | |||||||||
Vegetation index | |||||||||
Humidity | |||||||||
Dengue | Department of health services and national electronic disease surveillance system | ||||||||
C2 | Pham et al. [13] | 2018 | City-level | Daily | Temperature | Official meteorological agency | LR DT LSTM | RMSE MAE | R, C |
Rainfall | |||||||||
Humidity | |||||||||
Wind | |||||||||
Vegetation index | Satellite-based dataset | ||||||||
J3 | Mussumeci et al. [14] | 2020 | City-level | Weekly | Temperature | Official meteorological agency | LASSO RF LSTM | MSE MSLE | R |
Temperature | |||||||||
Humidity | |||||||||
Pressure | |||||||||
Social media index | Public website | ||||||||
C4 | Saleh et al. [15] | 2021 | City-level | Weekly | Rainfall | Public website | SVR LSTM | R2RMSEMAEMSE | R |
Humidity | |||||||||
Temperature | |||||||||
Temperature | |||||||||
Vegetation index | Satellite-based dataset | ||||||||
J5 | Xu et al. [16] | 2020 | City-level | Monthly | Pressure | Official meteorological agency | GAM SVR GBM BPNN LSTM LSTM-TL | RMSE RRSE | R |
Temperature | |||||||||
Rainfall | |||||||||
Humidity | |||||||||
J6 | Liu et al. [17] | 2021 | Town-level | Weekly | Landscape | Public website | MLP SVM | Pearson correlation Hit rate | R, C |
Temperature | Official meteorological agency | ||||||||
Rainfall | |||||||||
Population | Satellite-based dataset | ||||||||
C7 | Chovatiya et al. [18] | 2019 | City-level | Monthly | Humidity | Public website | LSTM | RMSE | R |
Temperature | |||||||||
Pressure | |||||||||
Rainfall | Official meteorological agency | ||||||||
Air quality | |||||||||
C8 | Mustaffa et al. [19] | 2018 | City-level | Weekly | Rainfall | Official meteorological agency | Hybrid FPA-LSSVM | MSE RMSPE | R |
Temperature | |||||||||
Humidity | |||||||||
J9 | Liu et al. [20] | 2019 | City-level | Monthly | Temperature | Official meteorological agency | GAMM GAM | RMSE | R |
Humidity | |||||||||
Rainfall | |||||||||
Internet | Public website | ||||||||
J10 | Carvajal et al. [21] | 2018 | City-level | Weekly | Temperature | Official meteorological agency | GAM SARIMA RF GB | RMSEMAE | R |
Rainfall | |||||||||
Humidity | |||||||||
Wind | |||||||||
El Niño/La Niña | Official meteorological agency | ||||||||
Social media index | Public website | ||||||||
J11 | Appice et al. [22] | 2020 | State-level | Monthly | Temperature | Official meteorological agency | VAR ARIMA AutoTiC-NN M5 SVR kNN | RMSE Cluster analysis | R |
J12 | Zhao et al. [23] | 2020 | Country-level/state-level | Weekly | Vegetation index | Satellite-based dataset | ARIMA RF ANN | MAE RMAE | R |
Landscape | |||||||||
Rainfall | |||||||||
Population | Official meteorological agency | ||||||||
Economic index | |||||||||
Educational index | |||||||||
Time | — | ||||||||
J13 | Benedum et al. [24] | 2020 | City-level | Weekly | Dengue | Department of health services and national electronic disease surveillance system | PR Logistic regression ARIMA SARIMA RF | nMAE MCC | R, C |
Population | Official Statistics | ||||||||
Temperature | Official meteorological agency | ||||||||
Humidity | |||||||||
Rainfall | Satellite-based dataset | ||||||||
J14 | Bomfim et al. [25] | 2020 | Neighborhood-level | Weekly | Human mobility | Public transport data | ARIMA LSTM | Precision Recall F-score MAE RMSE | R, C |
Time | — | ||||||||
J15 | Withanage et al. [26] | 2018 | District-level | Monthly | Rainfall | Official meteorological agency | LR | RMSE MAE MAPE PSS | R |
Temperature | |||||||||
Humidity | |||||||||
Dengue | Department of health services and national electronic disease surveillance system | ||||||||
J16 | Guo et al. [27] | 2019 | City-level | Weekly | Temperature | Official meteorological agency | Ensemble learning | RMSE MAE Pearson correlation | R |
Humidity | |||||||||
Rainfall | |||||||||
Internet | Public website | ||||||||
Social media index | |||||||||
J17 | Fakhruddin et al. [28] | 2019 | City-level | Weekly | Rainfall | Official meteorological agency | GLM | MSE R2 Adjusted R2 p-value | R |
Humidity | |||||||||
J18 | Ramadona et al. [29] | 2019 | Neighborhood-level | Monthly | Social media index | Public website | PR | BIC R2 SRMSE | R |
Human mobility | |||||||||
J19 | Chakraborty et al. [30] | 2019 | City-level, Country-level | Weekly/monthly | Dengue | Public website | ARIMA ANN NNAR Hybrid ARIMA-ANN Hybrid ARIMA-NNAR | RMSE MAE SMAPE | R |
J20 | Cortes et al. [31] | 2018 | City-level | Monthly | Dengue | Department of health services and national electronic disease surveillance system | ARIMA SARIMA | Comparison | R |
J21 | Jayaraj et al. [32] | 2019 | District-level | Monthly | Temperature | Official meteorological agency | PR SARIMA SARIMAX | AIC MAE MSE | R |
Humidity | |||||||||
Rainfall | |||||||||
C22 | Tanawi et al. [33] | 2021 | City-level | Weekly | Humidity | Official meteorological agency | SVR | RMSE MAE | R |
Rainfall | |||||||||
Temperature | |||||||||
Dengue | Department of health services and national electronic disease surveillance system | ||||||||
J23 | Findlater et al. [34] | 2019 | Country-level | Yearly | Human mobility | Public transport data | NBR | unknown | R |
Population | Official Statistics | ||||||||
J24 | Bal et al. [35] | 2020 | City-level | Monthly | Temperature | Official meteorological agency | Zero-inflated PR | Comparison, CI | R |
Humidity | |||||||||
Rainfall | |||||||||
Dengue | Department of health services and national electronic disease surveillance system | ||||||||
J25 | Cheng et al. [36] | 2020 | City-level | Daily | Temperature | Official meteorological agency | AR | MAE RMSE | R |
Humidity | |||||||||
Mosquito index | Unknown | ||||||||
J26 | Buczak et al. [37] | 2018 | City-level | Weekly | Temperature | Satellite-based dataset | Ensemble learning SARIMA | MAE | R |
Rainfall | |||||||||
Vegetation index | |||||||||
J27 | Polwiang [38] | 2020 | City-level | Monthly | Humidity | Official meteorological agency | PR ARIMA ANN | Correlation coefficient MAE RMSE MAPE | R |
Temperature | |||||||||
Rainfall | |||||||||
J28 | Rangarajan et al. [39] | 2019 | Country-level | Weekly | Internet | Public website | ARLR AR LASSO Ensemble learning, Naïve method | RMSE MAE MAPE | R |
J29 | Gabriel et al. [40] | 2019 | City-level | Monthly | Dengue | Department of health services and national electronic disease surveillance system | SARIMA | Comparison | R |
J30 | Yuan et al. [41] | 2019 | Province-level | Yearly/weekly | Temperature | Official meteorological agency | PR | MSE | R |
Rainfall | |||||||||
J31 | Zhu et al. [42] | 2019 | Province-level | Weekly | Temperature | Official meteorological agency | Probit regression | Correlation Coefficient | R |
Pressure | |||||||||
Humidity | |||||||||
Wind | |||||||||
J32 | Chen et al. [43] | 2018 | Neighborhood-level | Weekly | Human mobility | Public transport data | LASSO | RMSE, ROC | R, C |
Landscape | Official Statistics | ||||||||
Humidity | Official meteorological agency | ||||||||
Temperature | |||||||||
Vegetation index | Satellite-based dataset | ||||||||
J33 | Shashvat et al. [44] | 2019 | City-level | Monthly | Rainfall | Official meteorological agency | LR ANN SVR ARIMA Ensemble learning | RMSE MSE MAE | R |
Humidity | |||||||||
J34 | Valencia et al. [45] | 2021 | City-level | Weekly | Temperature | Official meteorological agency | SARIMA SARIMAXLSTM | RMSE MAPE | R |
Humidity | |||||||||
Rainfall | |||||||||
C35 | Mishra et al. [46] | 2019 | City-level | Weekly | Rainfall | Official meteorological agency | LR SVR NN XGBoost BR GBR | MAE | R |
Vegetation index | Satellite-based dataset | ||||||||
C36 | Nan et al. [47] | 2018 | City-level | Daily | Temperature | Official meteorological agency | XGBoost RF LASSO AdaBoost SVM LR Gboost RR | RMSE MAE R2 | R |
Pressure | |||||||||
Wind | |||||||||
J37 | Liu et al. [48] | 2020 | Town-level | Weekly | Temperature | Official meteorological agency | SVM LASSO ANN | Pearson correlation Hit Rate | R, C |
Rainfall | |||||||||
Population | Satellite-based dataset | ||||||||
Human mobility | China Mobile Telecommunications Company | ||||||||
C38 | Kurnianingsih et al. [49] | 2020 | Province-level | Yearly | Others | Official meteorological agency | LSTM | MAE RMSE | R |
El Niño/La Niña | |||||||||
J39 | Puengpreeda et al. [50] | 2020 | Province-level | Weekly | Internet | Public website | LASSO RR RF AdaBoost Extra-Trees | MSE MAE R2 | R |
Rainfall | Official meteorological agency | ||||||||
Humidity | |||||||||
Sunshine Index | |||||||||
Temperature | |||||||||
Wind | |||||||||
J40 | Shashvat et al. [51] | 2021 | City-level | Monthly | Rainfall | Public website | ES ARIMA | MAE AIC BIC MASE | R |
Humidity | |||||||||
C41 | Mustaffa et al. [52] | 2019 | City-level | Monthly | Rainfall | Public website | Hybrid FPA-LSSVM, Hybrid MFO-LSSVM, Hybrid GWO-LSSVM | RMSPE, MSE | R |
Temperature | |||||||||
Humidity | |||||||||
J42 | Baquero et al. [53] | 2018 | City-level | Monthly | Temperature | Official meteorological agency | GAM ANN SARIMA Ensemble model | RMSE | R |
Humidity | |||||||||
Rainfall | |||||||||
C43 | Anggraeni et al. [54] | 2019 | City-level | Weekly | Dengue | Department of health services and national electronic disease surveillance system | Hybrid Fuzzy-ARIMA | MSE SMAPE | R |
C44 | Baker et al. [55] | 2021 | City-level | Weekly | Temperature | Public website | MLR PR NBM NB DT SVM kNN AdaBoost Ensemble learning | MAE | R |
Rainfall | |||||||||
Humidity | |||||||||
Vegetation index | |||||||||
Dengue | |||||||||
J45 | Chakraborty et al. [56] | 2020 | Country-level | Weekly | Rainfall | Official meteorological agency | GP GAM ARIMA RF | RMSE MAD | R |
Humidity | |||||||||
Temperature | |||||||||
C46 | Saptarini et al. [57] | 2018 | City-level | Monthly | Rainfall | Official meteorological agency | Hybrid GA-ERNN | MSE | R |
Humidity | |||||||||
Temperature | |||||||||
Sea level | |||||||||
C47 | Kerdprasop et al. [58] | 2020 | City-level | Monthly | Time | — | ANN MLR GLM LR SVR CART CHAID Ensemble learning | Correlation coefficient | R |
Rainfall | Satellite-based dataset | ||||||||
Vegetation index | |||||||||
Temperature | |||||||||
El Niño/La Niña | |||||||||
C48 | Raju et al. [59] | 2019 | State-level | Monthly | Dengue | Department of health services and national electronic disease surveillance system | LR KR SVR | MAE, MSE | R |
Rainfall | Official meteorological agency | ||||||||
Temperature | |||||||||
Humidity | |||||||||
C49 | Thiruchelvam et al. [60] | 2021 | District-level | Weekly | Temperature | Official meteorological agency | ARIMAX, LSE | MSE AIC | R |
Humidity | |||||||||
Rainfall | |||||||||
Dengue | Department of health services and national electronic disease surveillance system | ||||||||
C50 | Jayasani et al. [61] | 2021 | District-level | Monthly | Rainfall | Official meteorological agency | LSTM LSTM-TL VAR | RMSE MAD | R |
Dengue | Department of health services and national electronic disease surveillance system | ||||||||
Temperature | Public website | ||||||||
Humidity | |||||||||
J51 | Stolerman et al. [62] | 2019 | City-level | Yearly | Rainfall | Official meteorological agency | SVM | Accuracy | C |
Temperature | |||||||||
Dengue | Department of health services and national electronic disease surveillance system | ||||||||
J52 | Koh et al. [63] | 2018 | City-level | Weekly | Dengue | Department of health services and national electronic disease surveillance system | AR Bayesian NN | MSE | R |
Rainfall | Public website | ||||||||
J53 | Nguyen et al. [64] | 2022 | Province-level | Monthly | Rainfall | Official meteorological agency | PR SVR XGBoost SARIMA CNN Transformer LSTM LSTM-AT | MAE RMSE Accuracy Precision Sensitivity Specificity | R, C |
Temperature | |||||||||
Humidity | |||||||||
Sunshine Index | |||||||||
Evaporation |
References
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Stanaway, J.D. The global economic burden of dengue: A systematic analysis. Lancet Infect. Dis. 2016, 16, 935–941. [Google Scholar] [CrossRef]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Kou, S.C.; Lu, F.; Brownstein, J.S.; Brooke, N.; Santillana, M. Advances in using Internet searches to track dengue. PLoS Comput. Biol. 2017, 13, e1005607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, V.R.; Phalkey, R.; Horstick, O.; Ratanawong, P.; Wilder-Smith, A.; Tozan, Y.; Dambach, P. Modeling tools for dengue risk mapping—A systematic review. Int. J. Health Geogr. 2014, 13, 50. [Google Scholar] [CrossRef] [Green Version]
- Marti, R.; Li, Z.; Catry, T.; Roux, E.; Mangeas, M.; Handschumacher, P.; Gaudart, J.; Tran, A.; Demagistri, L.; Faure, J.-F.; et al. A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires. Remote Sens. 2020, 12, 932. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Chen, J.; Shi, D.; Zhu, L.; Bai, X.; Duan, X.; Liu, Y. Learning Temporal and Spatial Correlations Jointly: A Unified Framework for Wind Speed Prediction. IEEE Trans. Sustain. Energy 2020, 11, 509–523. [Google Scholar] [CrossRef]
- Hoyos, W.; Aguilar, J.; Toro, M. Dengue models based on machine learning techniques: A systematic literature review. Artif. Intell. Med. 2021, 119, 102157. [Google Scholar] [CrossRef]
- Sylvestre, E.; Joachim, C.; Cécilia-Joseph, E.; Bouzillé, G.; Campillo-Gimenez, B.; Cuggia, M.; Cabié, A. Data-driven methods for dengue prediction and surveillance using real-world and Big Data: A systematic review. PLoS Negl. Trop. Dis. 2022, 16, e0010056. [Google Scholar] [CrossRef]
- Siriyasatien, P.; Chadsuthi, S.; Jampachaisri, K.; Kesorn, K. Dengue Epidemics Prediction: A Survey of the State-of-the-Art Based on Data Science Processes. IEEE Access 2018, 6, 53757–53795. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Gurgel, H.; Xu, L.; Yang, L.; Dong, J. Improving Dengue Forecasts by Using Geospatial Big Data Analysis in Google Earth Engine and the Historical Dengue Information-Aided Long Short Term Memory Modeling. Biology 2022, 11, 169. [Google Scholar] [CrossRef]
- Pham, D.N.; Aziz, T.; Kohan, A.; Nellis, S.; Jamil, J.b.A.; Khoo, J.J.; Lukose, D.; AbuBakar, S.; Sattar, A.; Ong, H.H. How to Efficiently Predict Dengue Incidence in Kuala Lumpur. In Proceedings of the 2018 Fourth International Conference on Advances in Computing, Communication & Automation (ICACCA), Subang Jaya, Malaysia, 26–28 October 2018; pp. 1–6. [Google Scholar]
- Mussumeci, E.; Codeco Coelho, F. Large-scale multivariate forecasting models for Dengue—LSTM versus random forest regression. Spat. Spatio-Temporal Epidemiol. 2020, 35, 100372. [Google Scholar] [CrossRef]
- Saleh, A.Y.; Baiwei, L. Dengue Prediction Using Deep Learning with Long Short-Term Memory. In Proceedings of the 2021 1st International Conference on Emerging Smart Technologies and Applications (eSmarTA), Sana’a, Yemen, 10–12 August 2021; pp. 1–5. [Google Scholar]
- Xu, J.; Xu, K.; Li, Z.; Meng, F.; Tu, T.; Xu, L.; Liu, Q. Forecast of Dengue Cases in 20 Chinese Cities Based on the Deep Learning Method. Int. J. Environ. Res. Pub. Health 2020, 17, 453. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Yin, L.; Zhang, M.; Kang, M.; Deng, A.-P.; Li, Q.-L.; Song, T. Facilitating fine-grained intra-urban dengue forecasting by integrating urban environments measured from street-view images. Infect. Dis. Poverty 2021, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Chovatiya, M.; Dhameliya, A.; Deokar, J.; Gonsalves, J.; Mathur, A. Prediction of Dengue using Recurrent Neural Network. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 926–929. [Google Scholar]
- Mustaffa, Z.; Sulaiman, M.H.; Emawan, F.; Yusof, Y.; Mohsin, M.F.M. Dengue Outbreak Prediction: Hybrid Meta-heuristic Model. In Proceedings of the 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Busan, Korea, 27–29 June 2018; pp. 271–274. [Google Scholar]
- Liu, D.; Guo, S.; Zou, M.; Chen, C.; Deng, F.; Xie, Z.; Hu, S.; Wu, L. A dengue fever predicting model based on Baidu search index data and climate data in South China. PLoS ONE 2019, 14, e0226841. [Google Scholar] [CrossRef] [Green Version]
- Carvajal, T.M.; Viacrusis, K.M.; Hernandez, L.F.T.; Ho, H.T.; Amalin, D.M.; Watanabe, K. Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines. BMC Infect. Dis. 2018, 18, 183. [Google Scholar] [CrossRef]
- Appice, A.; Gel, Y.R.; Iliev, I.; Lyubchich, V.; Malerba, D. A Multi-Stage Machine Learning Approach to Predict Dengue Incidence: A Case Study in Mexico. IEEE Access 2020, 8, 52713–52725. [Google Scholar] [CrossRef]
- Zhao, N.; Charland, K.; Carabali, M.; Nsoesie, E.O.; Maheu-Giroux, M.; Rees, E.; Yuan, M.; Garcia Balaguera, C.; Jaramillo Ramirez, G.; Zinszer, K. Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLoS Negl. Trop. Dis. 2020, 14, e0008056. [Google Scholar] [CrossRef]
- Benedum, C.M.; Shea, K.M.; Jenkins, H.E.; Kim, L.Y.; Markuzon, N. Weekly dengue forecasts in Iquitos, Peru; San Juan, Puerto Rico; and Singapore. PLoS Negl. Trop. Dis. 2020, 14, e0008710. [Google Scholar] [CrossRef]
- Bomfim, R.; Pei, S.; Shaman, J.; Yamana, T.; Makse, H.A.; Andrade, J.S., Jr.; Lima Neto, A.S.; Furtado, V. Predicting dengue outbreaks at neighbourhood level using human mobility in urban areas. J. R. Soc. Interface 2020, 17, 20200691. [Google Scholar] [CrossRef]
- Withanage, G.P.; Viswakula, S.D.; Nilmini Silva Gunawardena, Y.I.; Hapugoda, M.D. A forecasting model for dengue incidence in the District of Gampaha, Sri Lanka. Parasites Vectors 2018, 11, 262. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, Q.; Chen, Y.; Xiao, J.; He, J.; Zhang, Y.; Wang, L.; Liu, T.; Ma, W. An ensemble forecast model of dengue in Guangzhou, China using climate and social media surveillance data. Sci. Total Environ. 2019, 647, 752–762. [Google Scholar] [CrossRef]
- Fakhruddin, M.; Putra, P.S.; Wijaya, K.P.; Sopaheluwakan, A.; Satyaningsih, R.; Komalasari, K.E.; Mamenun; Sumiati; In-dratno, S.W.; Nuraini, N.; et al. Assessing the interplay between dengue incidence and weather in Jakarta via a clustering integrated multiple regression model. Ecol. Complex. 2019, 39, 100768. [Google Scholar] [CrossRef]
- Ramadona, A.L.; Tozan, Y.; Lazuardi, L.; Rocklöv, J. A combination of incidence data and mobility proxies from social media predicts the intra-urban spread of dengue in Yogyakarta, Indonesia. PLoS Negl. Trop. Dis. 2019, 13, e0007298. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, T.; Chattopadhyay, S.; Ghosh, I. Forecasting dengue epidemics using a hybrid methodology. Phys. A Stat. Mech. Appl. 2019, 14, 121266. [Google Scholar] [CrossRef]
- Cortes, F.; Turchi Martelli, C.M.; Arraes de Alencar Ximenes, R.; Montarroyos, U.R.; Siqueira Junior, J.B.; Gonçalves Cruz, O.; Alexander, N.; Vieira de Souza, W. Time series analysis of dengue surveillance data in two Brazilian cities. Acta Trop. 2018, 182, 190–197. [Google Scholar] [CrossRef]
- Jayaraj, V.J.; Avoi, R.; Gopalakrishnan, N.; Raja, D.B.; Umasa, Y. Developing a dengue prediction model based on climate in Tawau, Malaysia. Acta Trop. 2019, 197, 105055. [Google Scholar] [CrossRef]
- Tanawi, I.N.; Vito, V.; Sarwinda, D.; Tasman, H.; Hertono, G.F. Support Vector Regression for Predicting the Number of Dengue Incidents in DKI Jakarta. Procedia Comput. Sci. 2021, 179, 747–753. [Google Scholar] [CrossRef]
- Findlater, A.; Moineddin, R.; Kain, D.; Yang, J.; Wang, X.; Lai, S.; Khan, K.; Bogoch, I.I. The use of air travel data for predicting dengue importation to China: A modelling study. Travel Med. Infect. Dis. 2019, 31, 101446. [Google Scholar] [CrossRef]
- Bal, S.; Sodoudi, S. Modeling and prediction of dengue occurrences in Kolkata, India, based on climate factors. Int. J. Biometeorol. 2020, 64, 1379–1391. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Lee, F.J.; Hsu, Y.T.; Slud, E.V.; Hsiung, C.A.; Chen, C.H.; Liao, C.L.; Wen, T.H.; Chang, C.W.; Chang, J.H.; et al. Real-time dengue forecast for outbreak alerts in Southern Taiwan. PLoS Negl. Trop. Dis. 2020, 14, e0008434. [Google Scholar] [CrossRef] [PubMed]
- Buczak, A.L.; Baugher, B.; Moniz, L.J.; Bagley, T.; Babin, S.M.; Guven, E. Ensemble method for dengue prediction. PLoS ONE 2018, 13, e0189988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polwiang, S. The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003—2017). BMC Infect. Dis. 2020, 20, 208. [Google Scholar] [CrossRef] [Green Version]
- Rangarajan, P.; Mody, S.K.; Marathe, M. Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data. PLoS Comput. Biol. 2019, 15, e1007518. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, A.F.B.; Alencar, A.P.; Miraglia, S.G.E.K. Dengue outbreaks: Unpredictable incidence time series. Epidemiol. Infect. 2019, 147, e116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, H.-Y.; Wen, T.-H.; Kung, Y.-H.; Tsou, H.-H.; Chen, C.-H.; Chen, L.-W.; Lin, P.-S. Prediction of annual dengue incidence by hydro-climatic extremes for southern Taiwan. Int. J. Biometeorol. 2019, 63, 259–268. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, L.; Wang, H.; Cao, Z.; Zha, L.; Li, Z.; Ye, Z.; Zhang, J.; Song, H.; Sun, Y. Prediction model for dengue fever based on interactive effects between multiple meteorological factors in Guangdong, China (2008–2016). PLoS ONE 2019, 14, e0225811. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ong, J.H.Y.; Rajarethinam, J.; Yap, G.; Ng, L.C.; Cook, A.R. Neighbourhood level real-time forecasting of dengue cases in tropical urban Singapore. BMC Med. 2018, 16, 129. [Google Scholar] [CrossRef] [Green Version]
- Shashvat, K.; Basu, R.; Bhondekar, P.A.; Kaur, A. An ensemble model for forecasting infectious diseases in India. Trop Biomed. 2019, 36, 822–832. [Google Scholar]
- Navarro Valencia, V.; Díaz, Y.; Pascale, J.M.; Boni, M.F.; Sanchez-Galan, J.E. Assessing the Effect of Climate Variables on the Incidence of Dengue Cases in the Metropolitan Region of Panama City. Int. J. Environ. Res. Public Health 2021, 18, 12108. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.K.; Tiwari, N.; Ajaymon, S.L. Dengue Disease Spread Prediction Using Twofold Linear Regression. In Proceedings of the 2019 IEEE 9th International Conference on Advanced Computing (IACC), Tiruchirappalli, India, 13–14 December 2019; pp. 182–187. [Google Scholar]
- Nan, J.; Liao, X.; Chen, J.; Chen, X.; Chen, J.; Dong, G.; Liu, K.; Hu, G. Using Climate Factors to Predict the Outbreak of Dengue Fever. In Proceedings of the 2018 7th International Conference on Digital Home (ICDH), Guilin, China, 30 November–1 December 2018; pp. 213–218. [Google Scholar]
- Liu, K.; Zhang, M.; Xi, G.; Deng, A.; Song, T.; Li, Q.; Kang, M.; Yin, L. Enhancing fine-grained intra-urban dengue forecasting by integrating spatial interactions of human movements between urban regions. PLoS Negl. Trop. Dis. 2020, 14, e0008924. [Google Scholar] [CrossRef]
- Kurnianingsih; Wirasatriya, A.; Lazuardi, L.; Kubota, N.; Ng, N. IOD and ENSO-Related Time Series Variability and Forecasting of Dengue and Malaria Incidence in Indonesia. In Proceedings of the 2020 International Symposium on Community-centric Systems (CcS), Tokyo, Japan, 23–26 September 2020; pp. 1–8. [Google Scholar]
- Puengpreeda, A.; Yhusumrarn, S.; Sirikulvadhana, S. Weekly Forecasting Model for Dengue Hemorrhagic Fever Outbreak in Thailand. EJ 2020, 24, 71–87. [Google Scholar] [CrossRef]
- Shashvat, K.; Basu, R.; Bhondekar, A.P. Application of time series methods for dengue cases in North India (Chandigarh). J. Public Health 2021, 29, 433–441. [Google Scholar] [CrossRef]
- Mustaffa, Z.; Sulaiman, M.H.; Mohsin, M.F.M.; Yusof, Y.; Ernawan, F.; Rosli, K.A.M. An Application of Hybrid Swarm Intelligence Algorithms for Dengue Outbreak Prediction. In Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amann, Jordan, 9–11 April 2019; pp. 731–735. [Google Scholar]
- Baquero, O.S.; Santana, L.M.R.; Chiaravalloti-Neto, F. Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. PLoS ONE 2018, 13, e0195065. [Google Scholar] [CrossRef]
- Anggraeni, W.; Abdillah, A.; Pujiadi; Trikoratno, L.T.; Wibowo, R.P.; Purnomo, M.H.; Sudiarti, Y. Modelling and Forecasting the Dengue Hemorrhagic Fever Cases Number Using Hybrid Fuzzy-ARIMA. In Proceedings of the 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH), Kyoto, Japan, 5–7 August 2019; pp. 1–8. [Google Scholar]
- Baker, Q.B.; Faraj, D.; Alguzo, A. Forecasting Dengue Fever Using Machine Learning Regression Techniques. In Proceedings of the 2021 12th International Conference on Information and Communication Systems (ICICS), Valencia, Spian, 24–26 May 2021; pp. 157–163. [Google Scholar]
- Chakraborty, A.; Chandru, V. A robust and non-parametric model for prediction of dengue incidence. arXiv 2020, arXiv:2008.03943. [Google Scholar] [CrossRef]
- Saptarini, N.G.A.P.H.; Dillak, R.Y.; Pakan, P.D. Dengue Haemorrhagic Fever Outbreak Prediction using Elman Levenberg Neural Network and Genetic Algorithm. In Proceedings of the 2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT), Makassar, Indonesia, 6–7 November 2018; pp. 188–191. [Google Scholar]
- Kerdprasop, N.; Kerdorasop, K.; Chuaybamroong, P. A Multi-criteria Scheme to Build Model Ensemble for Dengue Infection Case Estimation. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 8–9 November 2020; pp. 214–218. [Google Scholar]
- Ganapathi Raju, N.V.; Krishna, P.G.; Manognya, K.; Raj Kiran, G.S.S.; Rohit, P.; Likhith, K. Evolution of predictive model for Dengue incidence by using machine learning algorithms. In Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES), Coiambatore, India, 17–19 July 2019; pp. 51–59. [Google Scholar]
- Thiruchelvam, L.; Dass, S.C.; Mathur, N.; Asirvadam, V.S.; Gill, B.S. Inclusion of Climate Variables for Dengue Prediction Model: Preliminary Analysis. In Proceedings of the 2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Terengganu, Malaysia, 13–15 September 2021; pp. 162–166. [Google Scholar]
- Jayasani, C.; Dammalage, P.; Sarathchandra, S.; Godaliyadda, R.; Ekanayake, P.; Herath, V.; Ekanayake, J.; Dharmaratne, S. Limited Data Forecasting for Dengue Propagation. In Proceedings of the 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS), Negambo, Sri Lanka, 11–13 August 2021; pp. 416–421. [Google Scholar]
- Stolerman, L.M.; Maia, P.D.; Kutz, J.N. Forecasting dengue fever in Brazil: An assessment of climate conditions. PLoS ONE 2019, 14, e0220106. [Google Scholar] [CrossRef] [Green Version]
- Koh, Y.-M.; Spindler, R.; Sandgren, M.; Jiang, J. A model comparison algorithm for increased forecast accuracy of dengue fever incidence in Singapore and the auxiliary role of total precipitation information. Int. J. Environ. Health Res. 2018, 28, 535–552. [Google Scholar] [CrossRef]
- Nguyen, V.-H.; Tuyet-Hanh, T.T.; Mulhall, J.; Minh, H.V.; Duong, T.Q.; Chien, N.V.; Nhung, N.T.T.; Lan, V.H.; Minh, H.B.; Cuong, D.; et al. Deep learning models for forecasting dengue fever based on climate data in Vietnam. PLoS Negl. Trop. Dis. 2022, 16, e0010509. [Google Scholar] [CrossRef]
- Estallo, E.L.; Benitez, E.M.; Lanfri, M.A.; Scavuzzo, C.M.; Almirón, W.R. MODIS Environmental Data to Assess Chikungunya, Dengue, and Zika Diseases Through Aedes (Stegomia) aegypti Oviposition Activity Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5461–5466. [Google Scholar] [CrossRef]
- Jain, R.; Sontisirikit, S.; Iamsirithaworn, S.; Prendinger, H. Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data. BMC Infect. Dis. 2019, 19, 272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, T.; Liu, K.; Xia, Y.; Lu, Y.; Jing, Q.; Yang, Z.; Hu, W.; Lu, J. Developing a Time Series Predictive Model for Dengue in Zhongshan, China Based on Weather and Guangzhou Dengue Surveillance Data. PLoS Negl. Trop. Dis. 2016, 10, e0004473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codeco, C.; Coelho, F.; Cruz, O.; Oliveira, S.; Castro, T.; Bastos, L. Infodengue: A nowcasting system for the surveillance of arboviruses in Brazil. Rev. Épidémiologie St. Publique 2018, 66, S386. [Google Scholar] [CrossRef]
- NOAA. Dengue forecasting project website. Available online: https://dengueforecasting.noaa.gov/ (accessed on 8 June 2022).
- da Silva Neto, S.R.; Tabosa de Oliveira, T.; Teixiera, I.V.; Medeiros Neto, L.; Souza Sampaio, V.; Lynn, T.; Endo, P.T. Arboviral disease record data—Dengue and Chikungunya, Brazil, 2013–2020. Sci. Data 2022, 9, 198. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 1998, 06, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [Google Scholar] [CrossRef]
- Hajirahimi, Z.; Khashei, M. Hybrid structures in time series modeling and forecasting: A review. Eng. Appl. Artif. Intell. 2019, 86, 83–106. [Google Scholar] [CrossRef]
- Hashizume, M.; Dewan, A.M.; Sunahara, T.; Rahman, M.Z.; Yamamoto, T. Hydroclimatological variability and dengue transmission in Dhaka, Bangladesh: A time-series study. BMC Infect. Dis. 2012, 12, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, M.E.; Carvajal, T.M.; Ryo, M.; Nukazawa, K.; Amalin, D.M.; Watanabe, K. Dengue disease dynamics are modulated by the combined influences of precipitation and landscape: A machine learning approach. Sci. Total Environ. 2021, 792, 148406. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Sun, J.; Liu, X.; Ren, D.; Liu, Q.; Xiao, X.; Lu, L. Spatial analysis of dengue fever and exploration of its environmental and socio-economic risk factors using ordinary least squares: A case study in five districts of Guangzhou City, China, 2014. Int. J. Infect. Dis. 2018, 75, 39–48. [Google Scholar] [CrossRef]
- Kummu, M.; Taka, M.; Guillaume, J.H.A. Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015. Sci. Data 2018, 5, 180004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef] [PubMed]
- Viana, J.; Santos, J.; Neiva, R.; Souza, J.; Duarte, L.; Teodoro, A.; Freitas, A. Remote Sensing in Human Health: A 10-Year Bibliometric Analysis. Remote Sens. 2017, 9, 1225. [Google Scholar] [CrossRef] [Green Version]
- Parselia, E.; Kontoes, C.; Tsouni, A.; Hadjichristodoulou, C.; Kioutsioukis, I.; Magiorkinis, G.; Stilianakis, N.I. Satellite Earth Observation Data in Epidemiological Modeling of Malaria, Dengue and West Nile Virus: A Scoping Review. Remote Sensing 2019, 11, 1862. [Google Scholar] [CrossRef] [Green Version]
- Ceccato, P.; Ramirez, B.; Manyangadze, T.; Gwakisa, P.; Thomson, M.C. Data and tools to integrate climate and environmental information into public health. Infect. Dis. Poverty 2018, 7, 126. [Google Scholar] [CrossRef] [PubMed]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Dong, J. Suggestive Data Annotation for CNN-Based Building Footprint Mapping Based on Deep Active Learning and Landscape Metrics. Remote Sens. 2022, 14, 3147. [Google Scholar] [CrossRef]
- Frake, A.N.; Peter, B.G.; Walker, E.D.; Messina, J.P. Leveraging big data for public health: Mapping malaria vector suitability in Malawi with Google Earth Engine. PLoS ONE 2020, 15, e0235697. [Google Scholar] [CrossRef]
- Yin, J.; Dong, J.; Hamm, N.A.S.; Li, Z.; Wang, J.; Xing, H.; Fu, P. Integrating remote sensing and geospatial big data for urban land use mapping: A review. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102514. [Google Scholar] [CrossRef]
- Yin, J.; Fu, P.; Hamm, N.A.S.; Li, Z.; You, N.; He, Y.; Cheshmehzangi, A.; Dong, J. Decision-Level and Feature-Level Integration of Remote Sensing and Geospatial Big Data for Urban Land Use Mapping. Remote Sens. 2021, 13, 1579. [Google Scholar] [CrossRef]
- McGough, S.F.; Clemente, L.; Kutz, J.N.; Santillana, M. A dynamic, ensemble learning approach to forecast dengue fever epidemic years in Brazil using weather and population susceptibility cycles. J. R. Soc. Interface 2021, 18, 20201006. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Aik, J.; Ng, L.C. Short Report: Adult Aedes abundance and risk of dengue transmission. PLoS Negl. Trop. Dis. 2021, 15, e0009475. [Google Scholar] [CrossRef]
- Sanchez, L.; Vanlerberghe, V.; Alfonso, L.; Marquetti, M.d.C.; Guzman, M.G.; Bisset, J.; van der Stuyft, P. Aedes aegypti larval indices and risk for dengue epidemics. Emerg. Infect. Dis. 2006, 12, 800–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelo, M.; Ramalho, W.M.; Gurgel, H.; Belle, N.; Pilot, E. Dengue Surveillance System in Brazil: A Qualitative Study in the Federal District. Int. J. Environ. Res. Public Health 2020, 17, 2062. [Google Scholar] [CrossRef] [PubMed]
Predictors and Datasets | Spatial Resolution | Temporal Resolution | Period | ||
---|---|---|---|---|---|
Climate | Temperature | GLDAS-2.1 | 27,000 m | 3-hourly | 2000 to present |
Rainfall | GLDAS-2.1 | 27,000 m | 3-hourly | 2000 to present | |
Humidity | GLDAS-2.1 | 27,000 m | 3-hourly | 2000 to present | |
Environment | NDVI | MOD09GA | 500 m | Daily | 2000 to present |
EVI | MOD09GA | 500 m | Daily | 2000 to present | |
NDWI | MOD09GA | 500 m | Daily | 2000 to present | |
dLST | MOD11A1 | 1000 m | Daily | 2000 to present | |
nLST | MOD11A1 | 1000 m | Daily | 2000 to present | |
Transmission areas | Population density | GPW v4.0 | 1000 m | 5-year | 2000, 2005, 2010, 2015, 2020 |
Imperious surface | GAIA | 30 m | Annual | 1985–2018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Dong, J. Big Geospatial Data and Data-Driven Methods for Urban Dengue Risk Forecasting: A Review. Remote Sens. 2022, 14, 5052. https://doi.org/10.3390/rs14195052
Li Z, Dong J. Big Geospatial Data and Data-Driven Methods for Urban Dengue Risk Forecasting: A Review. Remote Sensing. 2022; 14(19):5052. https://doi.org/10.3390/rs14195052
Chicago/Turabian StyleLi, Zhichao, and Jinwei Dong. 2022. "Big Geospatial Data and Data-Driven Methods for Urban Dengue Risk Forecasting: A Review" Remote Sensing 14, no. 19: 5052. https://doi.org/10.3390/rs14195052
APA StyleLi, Z., & Dong, J. (2022). Big Geospatial Data and Data-Driven Methods for Urban Dengue Risk Forecasting: A Review. Remote Sensing, 14(19), 5052. https://doi.org/10.3390/rs14195052