Estimating Carbon, Nitrogen, and Phosphorus Contents of West–East Grassland Transect in Inner Mongolia Based on Sentinel-2 and Meteorological Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Field Data
2.2.2. Remote Sensing Data
2.3. Methods
2.3.1. Method Overview
2.3.2. Sentinel-2 Spectral Information Enhancement
2.3.3. Regional Characteristic Enhancement
2.3.4. Spectral Features Enhancement
2.3.5. Model Construction and Accuracy Assessment
3. Results
3.1. Correlation Analysis of Climatic Factors and C, N, and P
3.2. Comparison of Raw Spectra, Enhanced Spectra, and Fusion Spectra
3.3. The Distribution of Weak Spectral Information in Different FD Transform Scales of Fused Spectra
3.4. C, N, and P Content Estimation Model
3.5. Spatial Distribution and Trend of C, N, and P
4. Discussion
4.1. Contribution of Information Enhancement Method to C, N, P Estimation
4.2. Spatial Distribution Characteristics of C, N, and P
4.3. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, L.; Dou, Z.; Liu, Z.; Zuo, X.; Lei, Y.; Li, J.; Zhao, X.; Zhai, X.; Pan, X.; Li, W. Hyperspectral Inversion of Phragmites Communis Carbon, Nitrogen, and Phosphorus Stoichiometry Using Three Models. Remote Sens. 2020, 12, 1998. [Google Scholar] [CrossRef]
- Wang, M.; Gong, Y.; Lafleur, P.; Wu, Y. Patterns and drivers of carbon, nitrogen and phosphorus stoichiometry in Southern China’s grasslands. Sci. Total Environ. 2021, 785, 147201. [Google Scholar] [CrossRef]
- Paassen, J.G.v.; Britton, A.J.; Mitchell, R.J.; Street, L.E.; Johnson, D.; Coupar, A.; Woodin, S.J. Legacy effects of nitrogen and phosphorus additions on vegetation and carbon stocks of upland heaths. New Phytol. 2020, 228, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Hessen, D.O.; Ågren, G.I.; Anderson, T.R.; Elser, J.J.; de Ruiter, P.C. Carbon sequestration in ecosystems: The role of stoichiometry. Ecology 2004, 85, 1179–1192. [Google Scholar] [CrossRef]
- Din, M.; Ming, J.; Hussain, S.; Ata-Ul-Karim, S.T.; Rashid, M.; Tahir, M.N.; Hua, S.; Wang, S. Estimation of Dynamic Canopy Variables Using Hyperspectral Derived Vegetation Indices Under Varying N Rates at Diverse Phenological Stages of Rice. Front. Plant Sci. 2019, 9, 1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Crabbe, M.J.C.; Xu, F.; Wang, W.; Niu, R.; Gao, X.; Zhang, P.; Chen, H. Seasonal Variations in Carbon, Nitrogen and Phosphorus Concentrations and C:N:P Stoichiometry in the Leaves of Differently Aged Larix principis-rupprechtii Mayr. Plantations. Forests 2017, 8, 373. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Liang, T.; Liu, J.; Yin, J.; Ge, J.; Hou, M.; Feng, Q.; Wu, C.; Xie, H. Potential of hyperspectral data and machine learning algorithms to estimate the forage carbon-nitrogen ratio in an alpine grassland ecosystem of the Tibetan Plateau. ISPRS J. Photogramm. Remote Sens. 2020, 163, 362–374. [Google Scholar] [CrossRef]
- Cernusak, L.A.; Winter, K.; Turner, B.L. Leaf nitrogen to phosphorus ratios of tropical trees: Experimental assessment of physiological and environmental controls. New Phytol. 2010, 185, 770–779. [Google Scholar] [CrossRef]
- Bui, E.N.; Henderson, B.L. C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant Soil 2013, 373, 553–568. [Google Scholar] [CrossRef]
- Canadell, J.G.; Steffen, W.L.; White, P.S. IGBP/GCTE terrestrial transects: Dynamics of terrestrial ecosystems under environmental change. J. Veg. Sci. 2002, 13, 298–300. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.; Lu, X.; Zhao, X.; Yang, L.; Sun, Z.; Bai, Y. Hyperspectral retrieval of leaf physiological traits and their links to ecosystem productivity in grassland monocultures. Ecol. Indic. 2021, 122, 107267. [Google Scholar] [CrossRef]
- Yule, I.; Pullanagari, R.; Irwin, M.; Mcveagh, P.; Kereszturi, G.; White, M.; Manning, M. Mapping nutrient concentration in pasture using hyperspectral imaging. J. N. Z. Grassl. 2015, 77, 47–50. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Sahoo, R.N.; Pandey, R.N.; Gupta, V.K.; Kumar, D. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precis. Agric. 2014, 15, 499–522. [Google Scholar] [CrossRef]
- Baia, S.H.; Tahmasbian, I.; Zhou, J.; Nevenimo, T.; Hannet, G.; Walton, D.; Randall, B.; Gama, T.; Wallace, H.M. A non-destructive determination of peroxide values, total nitrogen and mineral nutrients in an edible tree nut using hyperspectral imaging. Comput. Electron. Agric. 2018, 151, 492–500. [Google Scholar] [CrossRef]
- Homolová, L.; Malenovský, Z.K.; Clevers, J.G.P.W.; Garcıá-Santos, G.; Schaepman, M.E. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 2013, 15, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Skidmore, A.K.; Darvishzadeh, R.; Wang, T. Mapping forest canopy nitrogen content by inversion of coupled leaf-canopy radiative transfer models from airborne hyperspectral imagery. Agric. For. Meteorol. 2018, 253, 247–260. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, M.; Xu, Z.; Yang, T.; Su, Y.; Zhou, T.; Wang, H.; Wang, Y.; Lin, Y. Estimation of leaf nutrition status in degraded vegetation based on field survey and hyperspectral data. Sci. Rep. 2020, 10, 4361. [Google Scholar] [CrossRef] [Green Version]
- Watt, M.S.; Buddenbaum, H.; Leonardo, E.M.C.; Estarija, H.J.; Bown, H.E.; Gomez-Gallego, M.; Hartley, R.J.L.; Pearse, G.D.; Massam, P.; Wright, L.; et al. Monitoring biochemical limitations to photosynthesis in N and P-limited radiata pine using plant functional traits quantified from hyperspectral imagery. Remote Sens. Environ. 2020, 248, 112003. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Xu, Z.; Abdullah, K.; Zhou, J.; Esmaeilani, R.; Nguyen, T.T.N.; Abdullah, K.; Bai, S.H. The potential of hyperspectral images and partial least square regression for predicting total carbon, total nitrogen and their isotope composition in forest litterfall samples. J. Soils Sediments 2017, 17, 2091–2103. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K.; Prins, H.H.T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens. Environ. 2004, 89, 393–408. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y.; Wang, C.; Xu, F.; Li, X.; Tan, C.; Chen, D.; Wang, G.; Shi, L. Estimation of Corn Canopy Chlorophyll Content Using Derivative Spectra in the O2-A Absorption Band. Front. Plant Sci. 2019, 10, 1047. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Skidmore, A.K.; Wang, T.; Darvishzadeh, R.; Heiden, U.; Heurich, M.; Latifi, H.; Hearne, J. Canopy foliar nitrogen retrieved from airborne hyperspectral imagery by correcting for canopy structure effects. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 84–94. [Google Scholar] [CrossRef]
- Ramoelo, A.; Skidmore, A.K.; Schlerf, M.; Mathieu, R.; Heitkönig, I.M.A. Water-removed spectra increase the retrieval accuracy when estimating savanna grass nitrogen and phosphorus concentrations. ISPRS J. Photogramm. Remote Sens. 2011, 66, 408–417. [Google Scholar] [CrossRef]
- Hong, Y.; Guo, L.; Chen, S.; Linderman, M.; Mouazen, A.M.; Yu, L.; Chen, Y.; Liu, Y.; Liu, Y.; Cheng, H.; et al. Exploring the potential of airborne hyperspectral image for estimating topsoil organic carbon: Effects of fractional-order derivative and optimal band combination algorithm. Geoderma 2020, 365, 114228. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Wang, J.; Ge, X. Prediction of soil organic matter in northwestern China using fractional-order derivative spectroscopy and modified normalized difference indices. Catena 2020, 185, 104257. [Google Scholar] [CrossRef]
- Wei, L.; Yu, M.; Zhong, Y.; Zhao, J.; Liang, Y.; Hu, X. Spatial–Spectral Fusion Based on Conditional Random Fields for the Fine Classification of Crops in UAV-Borne Hyperspectral Remote Sensing Imagery. Remote Sens. 2019, 11, 780. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Anderegg, J.; Mikaberidze, A.; Karisto, P.; Mascher, F.; McDonald, B.A.; Walter, A.; Hund, A. Hyperspectral Canopy Sensing of Wheat Septoria Tritici Blotch Disease. Front. Plant Sci. 2018, 9, 1195. [Google Scholar] [CrossRef] [Green Version]
- Arellano, P.; Tansey, K.; Balzter, H.; Boyd, D.S. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environ. Pollut. 2015, 205, 225–239. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, W.; Wang, X.; Jin, S.; Zhang, L. Satellite-ground integrated destriping network: A new perspective for EO-1 Hyperion and Chinese hyperspectral satellite datasets. Remote Sens. Environ. 2020, 237, 111416. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, A.; Kang, X.; He, N.; Dong, G. Estimation of the Grassland Aboveground Biomass of the Inner Mongolia Plateau Using the Simulated Spectra of Sentinel-2 Images. Remote Sens. 2020, 12, 4155. [Google Scholar] [CrossRef]
- Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and Multispectral Data Fusion: A Comparative Review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [Google Scholar] [CrossRef]
- Lu, B.; Proctor, C.; He, Y. Investigating different versions of PROSPECT and PROSAIL for estimating spectral and biophysical properties of photosynthetic and non-photosynthetic vegetation in mixed grasslands. GISci. Remote Sens. 2021, 58, 354–371. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Zhang, A.; Cui, X.; Zhao, A. Spatiotemporal variations and its influencing factors of grassland net primary productivity in Inner Mongolia, China during the period 2000–2014. J. Arid Environ. 2019, 165, 106–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, R.; Xu, L.; Li, M.; Liu, Z.; Wu, Z.; Zhang, J.; Yu, G.; He, N. Spatial Variation of Leaf Chlorophyll in Northern Hemisphere Grasslands. Front. Plant Sci. 2020, 11, 1244. [Google Scholar] [CrossRef]
- Tangkesi; Wulantuya; Dash, D.; Surina. RS-Based Monitoring of NDVI Spatial Variations: A Case Study of Typical Grasslands on Mongolian Plateau. Nat. Inn. Asia 2019, 116, 69–86. [Google Scholar] [CrossRef]
- Zhao, N.; Yu, G.; He, N.; Wang, Q.; Guo, D.; Zhang, X.; Wang, R.; Xu, Z.; Jiao, C.; Li, N.; et al. Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Glob. Ecol. Biogeogr. 2016, 25, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Muhuri, A.; Gascoin, S.; Menzel, L.; Kostadinov, T.S.; Harpold, A.A.; Sanmiguel-Vallelado, A.; Lopez-Moreno, J.I. Performance Assessment of Optical Satellite-Based Operational Snow Cover Monitoring Algorithms in Forested Landscapes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7159–7178. [Google Scholar] [CrossRef]
- Touzi, R. Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters. IEEE Trans. Geosci. Remote Sens. 2007, 45, 73–84. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Tian, A.; Zhao, J.; Xiong, H.; Gan, S.; Fu, C. Application of Fractional Differential Calculation in Pretreatment of Saline Soil Hyperspectral Reflectance Data. J. Sens. 2018, 2018, 8017614. [Google Scholar] [CrossRef]
- Fu, C.; Xiong, H.; Tian, A. Fractional Modeling for Quantitative Inversion of Soil-Available Phosphorus Content. Mathematics 2018, 6, 330. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shi, T.; Yu, D.; Teng, D.; Ge, X.; Zhang, Z.; Yang, X.; Wang, H.; Wu, G. Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China. Environ. Pollut. 2020, 266, 115412. [Google Scholar] [CrossRef]
- Bhadra, S.; Sagan, V.; Maimaitijiang, M.; Maimaitiyiming, M.; Newcomb, M.; Shakoor, N.; Mockler, T.C. Quantifying Leaf Chlorophyll Concentration of Sorghum from Hyperspectral Data Using Derivative Calculus and Machine Learning. Remote Sens. 2020, 12, 2082. [Google Scholar] [CrossRef]
- Xia, N.; Tiyip, T.; Kelimu, A.; Nurmemet, I.; Ding, J.; Zhang, F.; Zhang, D. Influence of Fractional Differential on Correlation Coefficient between EC1:5 and Reflectance Spectra of Saline Soil. J. Spectrosc. 2017, 2017, 1236329. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2021, 755, 142661. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.Y.; Chen, H.Y.H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Chang. 2015, 5, 465–469. [Google Scholar] [CrossRef]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ. 2006, 101, 181–193. [Google Scholar] [CrossRef]
- Abulaiti, Y.; Sawut, M.; Maimaitiaili, B.; Chunyue, M. A possible fractional order derivative and optimized spectral indices for assessing total nitrogen content in cotton. Comput. Electron. Agric. 2020, 171, 105275. [Google Scholar] [CrossRef]
- Gao, J.; Meng, B.; Liang, T.; Feng, Q.; Ge, J.; Yin, J.; Wu, C.; Cui, X.; Hou, M.; Liu, J.; et al. Modeling alpine grassland forage phosphorus based on hyperspectral remote sensing and a multi-factor machine learning algorithm in the east of Tibetan Plateau, China. ISPRS J. Photogramm. Remote Sens. 2019, 147, 104–117. [Google Scholar] [CrossRef]
- Wei, Y.; Li, X.; He, Y. Generalisation of tea moisture content models bsased on VNIR spectra subjected to fractional differential treatment. Biosyst. Eng. 2021, 205, 174–186. [Google Scholar] [CrossRef]
- Lin, X.; Su, Y.-C.; Shang, J.; Sha, J.; Li, X.; Sun, Y.-Y.; Ji, J.; Jin, B. Geographically Weighted Regression Effects on Soil Zinc Content Hyperspectral Modeling by Applying the Fractional-Order Differential. Remote Sens. 2019, 11, 636. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Batistella, M. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Nayak, A.K.; Rahman, M.M.; Naidu, R.; Dhal, B.; Swain, C.K.; Nayak, A.D.; Tripathi, R.; Shahid, M.; Islam, M.; Pathak, H. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Sci. Total Environ. 2019, 665, 890–912. [Google Scholar] [CrossRef]
- Chen, D.; Chang, N.; Xiao, J.; Zhou, Q.; Wu, W. Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms. Sci. Total Environ. 2019, 669, 844–855. [Google Scholar] [CrossRef]
- Chaneton, E.J.; Lemcoff, J.H.; Lavado, R.S. Nitrogen and Phosphorus Cycling in Grazed and Ungrazed Plots in a Temperate Subhumid Grassland in Argentina. J. Appl. Ecol. 1996, 33, 291–302. [Google Scholar] [CrossRef]
- He, J.-S.; Wang, L.; Flynn, D.F.B.; Wang, X.; Ma, W.; Fang, J. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia 2008, 155, 301–310. [Google Scholar] [CrossRef]
- Hailing, Y.; Jiangwen, F.; LiYuzhe. Foliar carbon, nitrogen, and phosphorus stoichiometry in a grassland ecosystem along the Chinese Grassland Transect. Acta Ecol. Sin. 2017, 37, 133–139. [Google Scholar] [CrossRef]
- Meyer, T.; Okin, G.S. Evaluation of spectral unmixing techniques using MODIS in a structurally complex savanna environment for retrieval of green vegetation, nonphotosynthetic vegetation, and soil fractional cover. Remote Sens. Environ. 2015, 161, 122–130. [Google Scholar] [CrossRef]
- Rumpel, C.; Chabbi, A. Plant-Soil Interactions Control CNP Coupling and Decoupling Processes in Agroecosystems with Perennial Vegetation. In Agroecosystem Diversity; Academic Press: Cambridge, MA, USA, 2019; pp. 3–13. [Google Scholar] [CrossRef]
Sites | Mean | Std | Min | Max | Sites | Mean | Std | Min | Max | |
---|---|---|---|---|---|---|---|---|---|---|
C | Z1 | 51.67 | 12.82 | 40.23 | 67.60 | Z6 | 31.58 | 11.07 | 20.78 | 55.73 |
Z2 | 41.75 | 11.89 | 22.82 | 61.30 | Z7 | 18.13 | 4.24 | 14.76 | 24.95 | |
Z3 | 65.54 | 15.06 | 44.42 | 91.43 | Z8 | 14.52 | 3.57 | 10.78 | 20.34 | |
Z4 | 35.88 | 14.42 | 20.56 | 60.01 | Z9 | 5.65 | 1.59 | 3.96 | 8.95 | |
Z5 | 14.27 | 4.84 | 5.40 | 19.62 | Z10 | 4.99 | 1.17 | 3.32 | 7.02 | |
N | Z1 | 2.83 | 1.01 | 1.99 | 5.03 | Z6 | 1.68 | 0.63 | 1.14 | 3.08 |
Z2 | 2.43 | 0.69 | 1.31 | 3.54 | Z7 | 1.18 | 0.30 | 0.92 | 1.69 | |
Z3 | 3.54 | 0.78 | 2.41 | 4.90 | Z8 | 1.21 | 0.24 | 0.99 | 1.60 | |
Z4 | 1.92 | 0.74 | 1.14 | 3.05 | Z9 | 0.57 | 0.12 | 0.42 | 0.75 | |
Z5 | 0.95 | 0.30 | 0.34 | 1.29 | Z10 | 0.54 | 0.13 | 0.34 | 0.75 | |
P | Z1 | 230.51 | 59.45 | 167.21 | 323.05 | Z6 | 74.10 | 27.60 | 46.35 | 133.47 |
Z2 | 139.30 | 42.52 | 77.25 | 215.57 | Z7 | 64.61 | 16.04 | 51.99 | 95.50 | |
Z3 | 203.97 | 44.84 | 142.69 | 279.45 | Z8 | 52.95 | 13.95 | 37.83 | 74.28 | |
Z4 | 112.17 | 47.93 | 64.22 | 181.72 | Z9 | 44.99 | 9.33 | 33.33 | 61.16 | |
Z5 | 45.10 | 14.35 | 16.09 | 62.28 | Z10 | 33.21 | 8.65 | 19.78 | 47.57 |
Sampling Regions | Sampling Times | Image Scanning Time | Image Names (Sentinel-2) |
---|---|---|---|
Z1 | 10 July 2018 | 1 July 2018 | S2B_MSIL2A_20180701T024549_N0206_R132_T51TWK |
Z2 | 9 July 2018 | 10 July 2018 | S2A_MSIL2A_20180719T025551_N0206_R032_T51TUK |
Z3 | 11 July 2018 | 19 July 2018 | S2A_MSIL2A_20180709T025551_N0206_R032_T50TQR |
Z4 | 8 July 2018 | 9 July 2018 | S2A_MSIL2A_20180709T025551_N0206_R032_T50TPQ |
Z5 | 6 July 2018 | 12 July 2018 | S2A_MSIL2A_20180712T030541_N0206_R075_T50TMQ |
Z6 | 5 July 2018 | 12 July 2018 | S2A_MSIL2A_20180712T030541_N0206_R075_T50TMQ |
Z7 | 7 July 2018 | 12 July 2018 | S2A_MSIL2A_20180712T030541_N0206_R075_T50TNQ |
Z8 | 12 July 2018 | 10 July 2018 | S2B_MSIL2A_20180710T031539_N0206_R118_T50TLP |
Z9 | 14 July 2018 | 13 July 2018 | S2B_MSIL2A_20180713T032539_N0206_R018_T49TGJ |
Z10 | 13 July 2018 | 13 July 2018 | S2B_MSIL2A_20180713T032539_N0206_R018_T49TEJ |
Station Site | Measured Moisture Index | Kriging Interpolation Moisture Index |
---|---|---|
1 | −0.61 | −0.53 |
2 | −0.07 | −0.03 |
3 | −0.43 | −0.38 |
4 | −0.69 | −0.64 |
5 | −0.63 | −0.65 |
6 | −0.48 | −0.47 |
7 | −0.78 | −0.53 |
8 | −0.12 | −0.31 |
9 | −0.57 | −0.53 |
10 | −0.30 | −0.39 |
Evaluating indicator | R = 0.88 | RMSE = 0.11 |
RS-ES_Resample | ES-RealHRS | |||||
---|---|---|---|---|---|---|
Site | SN | SD | R | SN | SD | R |
Z1-1 | 0.0145 | 0.0097 | 0.9994 | 0.1282 | 5.1279 | 0.9823 |
Z1-2 | 0.0137 | 0.0091 | 0.9995 | 0.0925 | 5.1148 | 0.9881 |
Z1-3 | 0.0174 | 0.0115 | 0.9992 | 0.1006 | 5.0035 | 0.9894 |
Z1-4 | 0.0103 | 0.0068 | 0.9997 | 0.0699 | 5.0221 | 0.9964 |
Z1-5 | 0.0165 | 0.0110 | 0.9993 | 0.0740 | 5.0070 | 0.9944 |
Z1-6 | 0.0043 | 0.0026 | 0.9999 | 0.1353 | 4.6826 | 0.9853 |
Z1-7 | 0.0100 | 0.0064 | 0.9997 | 0.0873 | 4.7217 | 0.9934 |
Z1-8 | 0.0072 | 0.0046 | 0.9999 | 0.0591 | 4.7055 | 0.9937 |
Z2-1 | 0.0128 | 0.0097 | 0.9997 | 0.1313 | 5.7027 | 0.9815 |
Z2-2 | 0.0090 | 0.0068 | 0.9998 | 0.1305 | 5.7138 | 0.9836 |
Z2-3 | 0.0323 | 0.0260 | 0.9982 | 0.1268 | 5.7158 | 0.9781 |
Z2-4 | 0.0121 | 0.0093 | 0.9997 | 0.1148 | 5.8078 | 0.9844 |
Z2-5 | 0.0101 | 0.0079 | 0.9998 | 0.1075 | 5.4887 | 0.9891 |
Z2-6 | 0.0116 | 0.0087 | 0.9998 | 0.1376 | 5.6971 | 0.9772 |
Z2-7 | 0.0174 | 0.0132 | 0.9995 | 0.1398 | 5.7303 | 0.9727 |
Z2-8 | 0.0084 | 0.0063 | 0.9999 | 0.1254 | 5.6746 | 0.9807 |
Models | C | N | P | |||
---|---|---|---|---|---|---|
R2 | RMSE (g/m2) | R2 | RMSE (g/m2) | R2 | RMSE (mg/m2) | |
RS | 0.74 | 10.99 | 0.64 | 0.65 | 0.67 | 42.65 |
RS-M | 0.73 | 11.15 | 0.65 | 0.64 | 0.73 | 38.25 |
ES | 0.85 | 8.37 | 0.73 | 0.57 | 0.80 | 33.00 |
FS | 0.88 | 7.57 | 0.78 | 0.51 | 0.85 | 28.92 |
RealHRS | 0.93 | 5.54 | 0.93 | 0.30 | 0.92 | 20.49 |
RealHRS-M | 0.96 | 4.52 | 0.94 | 0.26 | 0.95 | 15.76 |
Elements | Relative Humidity | Raw Spectra Features | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B8a | B9 | B11 | B12 | ||
C | 0.71 | 0.34 | 0.32 | 0.52 | 0.41 | 0.38 | 0.26 | 0.36 | 0.31 | 0.26 | 0.17 | 0.52 | 0.87 |
N | 0.59 | 0.27 | 0.33 | 0.44 | 0.35 | 0.37 | 0.26 | 0.15 | 0.29 | 0.33 | 0.33 | 0.46 | 0.81 |
P | 0.67 | 0.16 | 0.30 | 0.31 | 0.40 | 0.37 | 0.36 | 0.23 | 0.30 | 0.22 | 0.07 | 0.27 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, H.; Zhang, A.; Yin, S.; Zhang, J.; Dong, G.; He, N.; Qin, W.; Wei, D. Estimating Carbon, Nitrogen, and Phosphorus Contents of West–East Grassland Transect in Inner Mongolia Based on Sentinel-2 and Meteorological Data. Remote Sens. 2022, 14, 242. https://doi.org/10.3390/rs14020242
Pang H, Zhang A, Yin S, Zhang J, Dong G, He N, Qin W, Wei D. Estimating Carbon, Nitrogen, and Phosphorus Contents of West–East Grassland Transect in Inner Mongolia Based on Sentinel-2 and Meteorological Data. Remote Sensing. 2022; 14(2):242. https://doi.org/10.3390/rs14020242
Chicago/Turabian StylePang, Haiyang, Aiwu Zhang, Shengnan Yin, Jiaxin Zhang, Gang Dong, Nianpeng He, Wenxuan Qin, and Dandan Wei. 2022. "Estimating Carbon, Nitrogen, and Phosphorus Contents of West–East Grassland Transect in Inner Mongolia Based on Sentinel-2 and Meteorological Data" Remote Sensing 14, no. 2: 242. https://doi.org/10.3390/rs14020242
APA StylePang, H., Zhang, A., Yin, S., Zhang, J., Dong, G., He, N., Qin, W., & Wei, D. (2022). Estimating Carbon, Nitrogen, and Phosphorus Contents of West–East Grassland Transect in Inner Mongolia Based on Sentinel-2 and Meteorological Data. Remote Sensing, 14(2), 242. https://doi.org/10.3390/rs14020242