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Abstract: Despite being recognized as a key component of shallow-water ecosystems, submerged
aquatic vegetation (SAV) remains difficult to monitor over large spatial scales. Because of SAV’s
structuring capabilities, high-resolution monitoring of submerged landscapes could generate highly
valuable ecological data. Until now, high-resolution remote sensing of SAV has been largely limited
to applications within costly image analysis software. In this paper, we propose an example of an
adaptable open-sourced object-based image analysis (OBIA) workflow to generate SAV cover maps in
complex aquatic environments. Using the R software, QGIS and Orfeo Toolbox, we apply radiometric
calibration, atmospheric correction, a de-striping correction, and a hierarchical iterative OBIA random
forest classification to generate SAV cover maps based on raw DigitalGlobe multispectral imagery.
The workflow is applied to images taken over two spatially complex fluvial lakes in Quebec, Canada,
using Quickbird-02 and Worldview-03 satellites. Classification performance based on training sets
reveals conservative SAV cover estimates with less than 10% error across all classes except for lower
SAV growth forms in the most turbid waters. In light of these results, we conclude that it is possible to
monitor SAV distribution using high-resolution remote sensing within an open-sourced environment
with a flexible and functional workflow.

Keywords: submerged aquatic vegetation; macrophytes; OBIA; GeOBIA; high-resolution

1. Introduction

The ecological importance of submerged aquatic vegetation (SAV; syn. hydrophytes or
macrophytes) has been recognized for a long time in both marine and freshwater sciences. It
is acknowledged that SAV provides diverse and important functions at the local, ecosystem,
and global scales. By generating productive habitats able to sustain multiple trophic
levels [1–3] and playing major roles in the biogeochemical cycles [4–9], SAV represents
a major asset for both conservation and climate change research [10,11]. Because of the
interactions between their engineering capabilities and their sensitivity to environmental
stress, SAV has been identified as a good functional group of candidates for sentinel
species [10]. On one hand, their role as ecological engineers is related to their ability to
regulate water quality through density-dependent feedback mechanisms acting as sediment
traps, nutrient sinks, and biodiversity hotspots, all of which modulate the availability of
resources to other species in the ecosystem [6,12–15]. On the other hand, at lower densities
of SAV, individuals become more exposed to the impact of multiple ecological stressors and
their distribution starts to depend on environmental factors related to ecological integrity,
including nutrient and light availability, hydrology, and climate [10,16–18].
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Despite the recognition of SAV’s importance, large-scale observations of their eco-
logical integrity are lacking, and their monitoring is generally limited to qualitative point
sampling [19]. While some efforts have been made to model SAV distribution at multiple
scales [20–23], it remains difficult to generalize, transfer and validate these results because
calibration data is rare, costly, and difficult to obtain. This lack of data can be attributed to
the inherent difficulty to observe and quantify submerged landscapes. This is especially
true in complex and dynamic systems such as fluvial lakes and estuaries. As a complement
to classical field observations, medium to high-resolution satellite remote sensing can
be used to efficiently monitor SAV cover and canopies, given the right atmospheric and
hydrological conditions [19,24]. Optical satellite remote sensing should be able to provide
environmental scientists with some level of information regarding large-scale SAV land-
scapes. However, shallow, complex, and dynamic inland waters are usually excluded from
most remote sensing products because their high variability generates large radiometry
changes that can lead to modeling errors and biases. The inherent optical properties (IOPs)
of water (turbidity, color, and dissolved organic matter), water depth, atmospheric and
meteorological conditions, phytoplankton biomass and species, adjacency to land as well
as sensor noise all play a role in modulating the quantity and quality of the remote sensing
signal of SAV [24,25]. Those issues are vastly documented in the remote sensing literature
and impose limits to current aquatic remote sensing applications. For these reasons, classi-
cal remote sensing methods that would require precise quantification of SAV’s expected
and observed reflectance spectra currently represent a very complex endeavor.

Regardless of these limitations, some of SAV’s ecological sentinel abilities do not
require precise radiometric measurements to be monitored. Indeed, large parts of SAV’s
engineering capabilities can be attributed to its structuring effects within aquatic landscapes,
which increases their spatial complexity [26–28]. While radiometric accuracy is of high
importance for tasks such as species distribution or biomass studies, shifting the focus
towards the quantification of the spatial structure of SAV landscapes using vegetation cover
maps could reveal precious information about ecosystem integrity. Some authors have
even suggested that SAV landscape patterns can be linked with ecological status, and even
act as early warning signals towards non-linear ecological transitions [29–31]. In this sense,
methods capable of detecting local reflectance gradients and contrasts generated by SAV
landscapes would represent strong candidates to generate ecologically relevant SAV maps.

As an alternative to pixel-based modeling, object-based image analysis (OBIA) offers
a framework that can be used to integrate more complex data than the raw remote sensing
signal by including different levels of spatial information related to scale, shape, and
texture [32–36]. This higher level of information offers a more robust comparative basis than
pixel-based approaches when radiometric accuracy is uncertain, such as in complex water
cases. Unfortunately, OBIA workflows in remote sensing frequently rely on proprietary
software that diminishes analysis replicability, passing through “black box” functions that
limit the interpretation of the results [37]. This is especially critical considering the delicate
nature of remote sensing over complex inland waters where calibration and validation
data are often limited. We suggest that, with sufficient understanding of the radiometric
challenges and acknowledging some limitations, large-scale SAV distribution data can be
obtained from optical remote sensing using OBIA in an open-source environment.

Because calibration and validation data are difficult to obtain (and often non-existent,
especially for older satellite imagery), evaluating the accuracy of remotely sensed SAV
metrics can be difficult. In some cases, it might be necessary to rely upon expert knowledge
to train classifiers and determine whether the results depict an acceptable representation of
reality [32–34]. This decision relies on factors such as appropriate knowledge of the study
system, the sensitivity of the application of the results to type I and II statistical errors, and
the capacity to interpret and correctly communicate the limitations of the data generating
process (from sensing to classification). Since this process can be subjective, complete
transparency is necessary when describing methods, discussing results, and transferring
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results. Based on this principle, open data and open-source solutions should be preferred
when possible.

Here, we propose an open-source high-resolution optical remote sensing workflow
to detect SAV cover in high-resolution satellite remote sensing imagery, applicable to
optically complex waters and going from raw data processing to vegetation cover map. The
workflow is presented in the form of general and adaptable guidelines based on the use
of the R, QGIS, and Orfeo Toolbox (OTB) software [38–40]. This is followed by real-world
applications of the workflow on high-resolution DigitalGlobe imagery products in two
large shallow fluvial lakes of the Saint-Lawrence River system, Canada, with the specific
objective of generating binary vegetation cover maps from detectable SAV. The steps that
will be addressed here are pre-processing, including radiometric calibration, atmospheric
correction, and image de-striping, followed by image segmentation, feature extraction,
training set building, and finally, the application of a two-level hierarchical random forest
image classification.

2. Materials and Methods
2.1. Workflow Overview

The suggested image processing workflow is based on the concept of geographic object-
based image analysis (OBIA, or GEOBIA) where objects within an image are delineated by
segmentation, described by feature extraction, zonal statistics and landscape indices, and
identified by object classification [41] (Figure 1). As opposed to pixel-based approaches,
objects can be described not only by zonal statistics generated by pixel values, but also by
their shape, texture, and spatial relationship to one another. This allows for the generation
of highly diverse descriptors which can then be used as inputs into machine learning
methods to produce complex classification rules.
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Figure 1. Typical remote sensing object-based image analysis (OBIA) workflow, where a sequence of
classifications is performed on image segments (objects) based on training sets and large arrays of
features.

In the case of SAV remote sensing using high-resolution satellite imagery such as
DigitalGlobe satellite products, the pre-processing should at least include steps such as
radiometric calibration, atmospheric corrections, and de-striping of push-broom sensor
artifacts. Following pre-processing, image segmentation, feature extraction, and a hierar-
chical random forest image classification are used to generate the OBIA results (Figure 2).
This workflow has been scripted within the R software [39] in the R Markdown format and
is available on Github (URL: https://github.com/arthurdegrandpre/Open_HRRS_W2
(accessed on 1 November 2021)). While the following workflow could be used as is, it
should nonetheless be adapted to fit the user’s needs and resources, such as specific objec-
tives, available imagery, available calibration and validation data, and access to computing
power.

https://github.com/arthurdegrandpre/Open_HRRS_W2
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Figure 2. Detailed schematic representation of the high-resolution multispectral remote sensing
workflow of submerged aquatic vegetation (SAV) proposed in this study. The associated scripts
are available online, on Github, URL: https://github.com/arthurdegrandpre/Open_HRRS_W2
(accessed on 1 November 2021).

2.2. Pre-Processing

In this section, the process of preparing high-resolution multispectral imagery for
OBIA will be detailed, going from raw digital numbers data to surface reflectance values
using DigitalGlobe multispectral products. While OBIA is robust to radiometric errors,
absolute radiometric calibration and atmospheric correction allows us to make images
comparable and favors better interpretability of the data.

2.2.1. Metadata Extraction

In order to perform the subsequent steps, it is recommended to parse through image
and satellite metadata to extract or generate the required information for radiometric
calibration and atmospheric correction. In the case of an image collection with multiple data
sources, this includes for each image their date and time of acquisition in the appropriate
format, their product identification numbers and parts (in case it was split) for mosaic
building, the identity of the satellite used for sensing and its orientation, including the
solar zenith angle and the viewing angle. For every band, their name, effective bandwidth,
absolute calibration factor and time delay integration value (TDI) are used for radiometric
calibration, and image correction. Finally, for every satellite, the altitude, gain and offset for
every band, as well as estimated exoatmospheric radiance values, are extracted (available
from DigitalGlobe’s technical notes [42–44]).

2.2.2. Radiometric Calibration

Since the raw sensor products are typically delivered with relative digital numbers
(DN) as radiance units, radiometric calibration is necessary to generate absolute reflectance

https://github.com/arthurdegrandpre/Open_HRRS_W2
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values. Doing so is a first step towards obtaining radiometrically comparable values across
different remote sensing products. DigitalGlobe’s technical notes [42,43] recommend the
use of the following equation for radiometric calibration:

L = GAIN × DN × (abscalfactor / effectivebandwidth) + OFFSET (1)

where L is the top-of-atmosphere radiance (Wµm−1 m−2 sr−1), DN is the digital number
raw pixel value, and GAIN, OFFSET, abscal factor, and effective bandwidth are band-
specific radiometric calibration for image and sensor parameters available within the
metadata.

2.2.3. Atmospheric Correction and Mosaic Building

Atmospheric correction is a controversial topic over complex inland waters, even
more so when shallow waters and submerged aquatic vegetation are expected. Since the
state-of-the-art methods are very context-dependent, heavily debated, and often rely on
large amounts of external cal/val inputs [45,46], an image-based empirical atmospheric
correction has been implemented, based on the dark object subtraction method (DOS) and
the cosine of the solar zenith angle (COST) [47]. This correction is based on the assumptions
that (i) a dark object exists within an image, and that its remote sensing signal can be
attributed to atmospheric effects, (ii) the atmospheric signal is relatively homogeneous
across the image, and (iii) that the cosine of the solar zenith angle represents an accept-
able approximation of the atmospheric transmittance. Because of those assumptions, it
is recommended to build mosaics of compatible images, i.e., by grouping (tiling) and
correcting images from the same satellite overpass together, thus providing more dark
pixel candidates to smaller tiles. Once the images are grouped accordingly, the following
equation is used to apply the correction:

ρ (BOA)λ = ((Lλ − min(Lλ)) × d2 × π)/(Eλ × cos(θS) × TAUZ) (2)

where ρ(BOA)λ is the bottom of atmosphere reflectance (ρ) at a given wavelength (λ), Lλ is
the at sensor radiance as previously calculated, d is the distance between the earth and the
sun given in astronomical units, Eλ is the exoatmospheric radiance (here the mean of the
three values estimated by DigitalGlobe was used), θS is the solar zenith angle and TAUz
is the estimated atmospheric transmittance along the path from the sun to the surface,
which is roughly equal to cos(θS) according to the COST model. More recent and promising
methods such as dark spectrum fitting (DSF) are currently under development but have
yet to be tested on DigitalGlobe products [48].

2.2.4. Image De-Striping

While push-broom optical scanners are very efficient tools for generating high-resolution
multispectral imagery, they also bring some challenges. Over areas with low remote sensing
signals such as water, even small sensor noise and irregularities can have great effects on the
quality of the data. The push broom architecture is composed of multiple side-by-side scanners
that together generate a larger image, and while the image is corrected and calibrated as a
whole, it is not perfectly calibrated for the radiometric differences that can occur between each
parallel sensor, sometimes generating striping artifacts along the orbital line that can be quite
significant. Correction of such artifacts over complex waters is difficult because homogeneity
between stripes cannot be assumed. For this reason, we suggest the application of an empirical
correction based on Marmorino & Chen’s work [49] where “jumps” between contiguous
stripes are identified manually, and their height estimated by comparing homogeneous objects
on both sides of the jumps. Using QGIS, jumps were identified as line vectors, and for every
line, 3 to 5 homogeneous polygon objects were drawn on each side. In R, a function was built
to retrieve the values on both sides of every jump and to apply an offset to fix the height
difference, effectively correcting most of the striping effect.
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2.3. Object-Based Image Analysis

Pixel-based classification of submerged features being a very complex task across com-
plex water environments, alternative object-based approaches offer a wide variety of spatial
descriptors that can inform on landscape composition. Object-oriented workflows depend
on three major steps: Image segmentation, feature extraction, and object classification. A
wide variety of methods exist for each of these steps, and they should be adapted to fit
the end-users needs. OBIA is often applied in a hierarchical workflow, defining broader
regions, and then working towards more precise identifications. To apply it efficiently over
SAV, two levels of OBIA classification have been performed: land masking and vegetation
mapping.

2.3.1. Image Segmentation

Segmentation separates the image into a mosaic of smaller objects based on various
homogeneity criteria that varies greatly between algorithms. A great variety of methods
exists, the broader categories being edge- or region-based algorithms, respectively detecting
steep gradients or homogeneous regions [50]. For its ease of implementation, speed,
scalability, support of multiband rasters, and open code, we used OTB’s region-based
mean-shift segmentation algorithm [38] to perform image segmentation, calling it from
R software’s shell function. Segmentation parameters were tuned to fit the spatial and
radiometric range of expected objects, with the spatial range set to 5 pixels (~10 to 12 m,
depending on the sensor resolution), the radiometric range set between 0.001 and 0.003
depending on the intensity of the water-leaving reflectance, a spectral threshold of 0.0005,
and a minimum size of 5 pixels.

2.3.2. Feature Extraction

Feature extraction can be described as the generation of information describing the ob-
jects. Features can include radiometric indices such as the normalized difference vegetation
index (NDVI), local statistical moments, zonal statistics, shape and size of the object, and its
spatial relationships to its neighbors, textural information such as grey-level co-occurrence
matrix (GLCM) based metrics, etc. Due to the high diversity of possible features, many
OBIA applications end up using very large arrays of features that could be useful when
generating end results, relying on machine learning and computing capabilities to prune
the less important candidates [32,33]. In this paper, we used a conservative array of features
to favor the interpretability of the results, preventing a black-box effect (Tables 1 and 2).

2.3.3. Image Classification

Image classification needs to be able to deal with a high number of predictors (hun-
dreds) over a high number of objects (millions). For those reasons, supervised machine
learning algorithms are preferred, such as support vector machines (SVM), random-forest
classifiers (RF), or deep learning-based methods such as convoluted neural networks (CNN).
The main difficulty of using such methods is the construction of an appropriate training
set, which is often built upon expert knowledge and image interpretation. While the use
of ground validation data is to be preferred, especially for validation purposes, such data
is often non-existent or unreliable. Because of its ease of use, both high interpretability
and performance, and strong robustness to large amounts of predictors, we have used R
package Caret’s parallel random forest (parRF) algorithm. The training sets were built
manually by expert image interpretation using the segmentation output and QGIS with
classes determined prior to the process. To reduce the number of classes and generate more
relevant out-of-bag accuracy estimates, two levels of classification were performed. The
first one is for masking terrestrial objects, including wetlands, forests, agriculture, and
human structures, and the second is for discriminating objects within the aquatic part of
the scene, such as canopy-forming or submerged macrophytes, shallow or deep water, and
water masses. An additional 10 folds cross-validation was performed on the final training
set for each image to better explore risks of overfitting.
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Table 1. Parameters, features and classes used for object-based image analysis level 1 classification
(land masking).

Meanshift Segmentation and Haralick
Texture Extraction Parameters. Features per Objects Object Classes

Meanshift

• Spatial range = 5
• Spectral range = 0.0025
• Treshold = 0.001
• Max. iterations = 100
• Min. size = 5

Haralick (NIR band)

• Min. = 0
• Max. = 1
• X radius = 5
• Y radius = 5
• X offset = 10
• Y offset = 10
• N bins = 64

Zonal statistics for all spectral bands (4 or 8)

• Min/Max
• Mean/Standard deviation

Simple Haralick textures for NIR band

• Energy
• Entropy
• Correlation
• Inverse difference moment
• Inertia
• Cluster shade
• Cluster prominence
• Haralick correlation

Vegetation indices 1

• Normalized difference vegetation index
(NDVI)

• Submerged aquatic vegetation index
(SAVI)

• Enhanced vegetation index (EVI)
• Normalized difference aquatic

vegetation index (NDAVI)
• Water adjusted vegetation index (WAVI)

Land

• Anthropological (buildings/roads)
• Boats
• Wetlands (high NDVI, attached to land)
• Shadows
• Agriculture/grasslands
• Forest
• Sand/soil

Water

• Blue/green-deep
• Blue/green-shallow
• Brown
• Dark

Aquatic vegetation

• Floating (debris in deep water)
• Emergent (high NIR signal)
• Submerged—high (NIR signal)
• Submerged—low (no NIR signal)

Other

• Boat waves
• Floating foam

Table 2. Parameters, features and classes used for object-based image analysis level 2 classification
(vegetation cover mapping).

Meanshift Segmentation and
Haralick Texture Extraction

Parameters (Image 1/Image 2)
Features per Objects Object Classes, Image 1 Object Classes, Image 2

Meanshift

• Spatial range = 5
• Spectral range =

(0.0025/0.001)
• Threshold = 0.001
• Max. iterations = 100
• Min. size = 5

Haralick (NIR, blue and NDVI
bands)

• Min. = 0
• Max. = 0.3
• X radius = 5
• Y radius = 5
• X offset = 10
• Y offset = 10
• N bins = 64

Zonal statistics for all spectral
bands (4 or 8)

• Min/Max
• Mean/Standard deviation
• Simple Haralick textures for

NIR, blue and NDVI bands
• Energy
• Entropy
• Correlation
• Inverse difference moment
• Inertia
• Cluster shade
• Cluster prominence
• Haralick correlation

Vegetation indexes 1

• Normalized difference
vegetation index (NDVI)

• Submerged aquatic
vegetation index (SAVI)

• Enhanced vegetation index
(EVI)

• Normalized difference
aquatic vegetation index
(NDAVI)

• Water adjusted vegetation
index (WAVI)

Water

• Blue/green-deep
• Shallow
• Brown
• Dark
• Dark—adjacency effect

Aquatic vegetation

• Emergent (high NIR signal)
• Emergent—adjacency effect

(very high NIR signal due to
land adjacency)

• Submerged—high (NIR
signal)

• Submerged—low (no NIR
signal)

Water

• Deep
• Shallow
• Aquatic vegetation
• Floating (debris in deep

water)
• Submerged—high (NIR

signal)
• Submerged—low (no NIR

signal)

1 See [51].

To construct the training sets, object candidates were selected one class at a time,
by manual photointerpretation by an observer familiar with the SAV distribution at the
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study sites. Objects were identified by overlapping the segmentation results to the color-
composite image, alternating between true-color and false-color using blue, green, and
NIR, and then assigning a class to the selected objects. A representative sample of high
confidence identifications was collected across the scene, looking for candidates of multiple
sizes, shapes, and positions. To favor the independence of training objects, non-adjacent
objects were preferred. While a single classification was usually satisfactory for level-1
classification, level-2 training sets were built iteratively, adding objects into the training
sets in areas where obvious classification errors were observed. The sampling effort for
every class should be proportional to their importance in the image and their importance
relative to the classification objectives. In cases where adjacency effects were observed such
as certain types of emergent vegetation, classes were split into two sub-classes, identifying
“regular” object candidates and “adjacency affected” candidates. When relevant, distinct
water masses were also separated in the training set to facilitate discrimination of SAV,
especially in cases where high turbidity differences were expected.

2.4. Application to Real Ecosystems

The workflow was applied to produce vegetation cover maps for two fluvial lakes of
the Saint-Lawrence River system, Quebec, Canada (Figure 3). The first scene classified is a
Quickbird-2 four bands multispectral image of the lake Saint-Pierre (lat. 46.2◦, lon. −72.8◦),
a shallow enlargement of the Saint-Lawrence River fed by multiple watersheds, creating a
complex and dynamic mosaic of water masses varying in color and turbidity (Figure 3).
The image was taken on 5 September 2009T15:50:00 GMT with a mean off-nadir view angle
of 12.3◦ and a ground sampling distance of 2.4 m. Because of its complexity and high NIR
signal near the shores, additional classes were created in the training set to favor narrower
classes and diminish classification errors. The second scene is a WorldView-03 eight bands
multispectral image of the lake Saint-François (lat. 45.15◦, lon. −74.4◦) a shallow fluvial
lake mostly fed by clear water coming from the Great Lakes (Figure 3). It was taken on 2
August 2019T16:12:16 GTM with a mean off-nadir view angle of 7.3◦, a ground sampling
distance of 2 m, and shows traces of wave-generated sun glint and push-broom striping
artifacts.

2.4.1. Level 1 Classification (Land Masking)

Land masking, while being in principle optional, highly facilitates subsequent clas-
sifications. The goal of this step is to exclude terrestrial objects, reducing the expected
reflectance range and the global number of objects to classify for computation purposes.
Because of the high reflectance differences between emerged and submerged objects, level
1 classification is relatively robust to poor segmentation optimization and training set cali-
bration. Performance is evaluated by an expert observer based on random forest out-of-bag
accuracy and visual validation of the results. For both test images, the same parameters
have been used for segmentation, feature selection, and object classes (see Table 1 for
details).

Following visual validation of the results, land classes are excluded from the dataset,
a land mask is built from the polygons, and a new raster image is extracted to perform the
level 2 classification.
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Canada (map data © 2022 Google). Purple is (a), green is (b) and the red square in the insert shows
the location within Canada.
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2.4.2. Level 2 Classification (Vegetation Cover Mapping)

Vegetation mapping is a very sensitive step because reflectance spectra overlap be-
tween different classes of objects. In cases where direct validation data is non-existent
or insufficient, performance is evaluated by an expert observer based on random forest
out-of-bag accuracy and visual validation of the results. For this reason, we suggest an
iterative modeling approach where the training set is manually adjusted three to six times
or until the end results are satisfactory. When adjusting the training set, the focus should
be put on the most obvious type 1 and 2 errors concerning the classes of higher interest.
Such obvious error cases include water objects wrongly classified as vegetation because of
the presence of optical edges within the image (laminar water masses, steep bathymetry
changes, etc.). To facilitate accuracy assessment, simple metrics are computed from the
confusion matrices, called meaningful false positives (mFP) and meaningful false negatives
(mFN). Those metrics exclude the same group classes from the error rate calculations, thus
giving a better representation of the actual performances relative to the objectives. As an
example, confusion between submerged and emerged vegetation would not be considered
meaningful errors in this case, since we are ultimately seeking to produce a vegetation
cover map. In contrast to level 1 classification, segmentation parameters are important to
capture the right spatial scale for the end-user. Hence, object classes should be defined in
accordance with the context of the scene and their potential for differentiation, and special
attention should be given to training set calibration, reducing bias in out-of-bag accuracy
estimation. This may mean creating additional classes to balance for steep turbidity gradi-
ents, different vegetation types, or in some cases zones of high environmental noise caused
by wind. The parameters, features, classes, and training sets used are defined in Table 2.

2.5. R Libraries

Scripts used in the suggested R workflow are highly dependent on external libraries
published by open source developers. At the moment of submitting this paper, the work-
flow is based on the following packages and their own dependencies: Caret, data.table,
doParallel, foreach, gdalUtils, GeoLight, GSIF, kableExtra, landscapemetrics, plyr, raster,
rgdal, satellite, sf, snowfall, sp, spatialEco, tidyverse, randomForest and velox [52–72].

3. Results
3.1. Radiometric Calibration and Atmospheric Correction

Concerning radiometric corrections and calibration, the radiometric spectra of deep-
water pixels across all products (raw, absolute radiometric correction, top and bottom-of-
atmosphere reflectances) of both images behaved as expected across all pre-processing,
resulting in similar bottom-of-atmosphere reflectance (Figure 4). The raw level 1 prod-
uct displays high DN values optimized for product visualization. Absolute radiometric
calibration performed with Equation (1) generates radiance values very similar for both im-
ages, which translates into top-of-atmosphere (TOA) reflectance that are high in the lower
wavelengths due to aerosol scattering and lower in the higher wavelengths due to aerosol
absorption. The COST method (Equation (2)) for atmospheric correction used to generate
bottom of atmosphere reflectances appears to efficiently correct those biases, effectively
flattening the signal of both images into a comparable range close to 0.05 reflectance units
for deep-water pixels.

3.2. Empirical Image De-Striping

Because of the architecture of push-broom sensors, noticeable striping artifacts can
sometimes appear over low reflectance areas (i.e., water). While no noticeable reflectance
jumps were observed in the 2009 Quickbird-02 image, severe reflectance jumps were
observed in the 2019 Worldview-03 image (Figure 5a). Those jumps happened approxima-
tively every 1110 m, and their height varied between 0.00001 and 0.00389 reflectance units,
the worst offenders being in the green, red, and near-infrared wavelengths with mean
jumps of 0.00127, 0.00092, and 0.00076, respectively. The method adapted from Marmorino
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& Chen (2019) generated a product with noticeably fewer striping artifacts, equalizing the
image to the mean of all objects used for jump height quantification (Figure 5b).
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3.3. Level 1 OBIA, Land Masking

The first level of OBIA is a coarse classification of land and aquatic objects to narrow
the scope of subsequent classifications. Using OTB’s Meanshift segmentation with the
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parameters described in Table 1, image 1, the 2009 Quickbird-02 image generated 206,890
segments of (mean ± 1 S.D.) 83.3 ± 75.6 m2 in size while image 2, the 2019 Worldview-03
image, generated 450,941 segments of 39.3 ± 39.9 m2. This difference is associated with the
different image spatial resolutions, but also different segmentation parameters. Because
land and water reflectance are very different, a single random forest classification based
run on a simple training set using the features from Table 1 was sufficient to generate a
robust land mask for both images (Figure 6).
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Figure 6. Visualisation of the coarse initial segmentation of the 2009 (a) and 2019 (b) images and their
corresponding land masked products (c,d) (© 2022, 2019 Maxar Technologies).

For image 1, the most important features used in the land masking random forest
models were largely based on the NIR signal and vegetation indexes zonal statistics,
with the most important features being mean EVI, NIR, NDAVI, and maximum WAVI
(Figure S1a). On the other hand, image 2 used more contrasting features, led by mean
red reflectance and including NIR-based Haralick textures such as energy and entropy,
green, NIR, blue, yellow, and red-edge region zonal statistics, as well as the NDVI indice
(Figure S1b).

The random forest model for the 2009 image predicted the training set with an average
accuracy of 98.17%, with the most confused classes being within the land and water-based
classes, which is a non-issue for land masking purposes (Table S1). Boats (l_boats) were
wrongly classified as emerged vegetation (v_em), but this was mainly linked to their low
representation in the training set and the image. The 2019 training set was predicted
with an average accuracy of 98.29%, again with low confusion between land and water
classes (Table S2). The most confused classes were shallow water (w_shallow), deep water
(w_deep), and boat waves (o_boatwave), all of which could be dealt with in the level 2
OBIA.
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3.4. Level 2 OBIA, Vegetation Cover Mapping

The second level of OBIA is an iterative process of object classification targeted to-
wards the identification of submerged aquatic vegetation. Using OTB’s Meanshift segmen-
tation with the parameters described in Table 2, the 2009 Quickbird-02 image generated
(mean ± 1 S.D.), 112,615 segments of 94 ± 98.2 m2 size while the 2019 Worldview-03 image
generated 1,152,826 segments of 42.8 ± 32.5 m2 size. Since water objects tend to have low
reflectance across all wavelengths, differentiating between classes can represent a challenge
both for the expert building the training set, and the algorithm building classification rules.
For this reason, the training and predictions of object classes are performed multiple times,
until the results are satisfactory (Figure 7). For images 1 and 2, four and six runs were
required, respectively, to obtain results satisfactory to the expert observer (Figure 8).
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Figure 7. Visualization of the iterative classification process over image 1, the 2009 lake Saint-Pierre
Quickbird-2 image (© 2022 Maxar Technologies). From top to bottom, we see the first to the last
classification attempt, where the main difficulty was to prevent overestimation of vegetated areas in
low contrast areas. On the left we see the predicted classes for all objects using the random forest
model, where the orange boxes represent areas to be corrected in the next iteration by adjusting the
training set. On the right we see the proportions of meaningful classification errors (false negatives
and false positives) for every class with the total OOB model accuracy. The classes prefixes stand for
vegetation (v) and water (w), and the suffixes for emergent (em), submerged (sub), blue-green (bg),
and proximity to land (p).
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The most important features used in the random forest for SAV cover mapping for the
2009 image were again largely based on the NIR signal and vegetation indexes, but with
the addition of blue-based Haralick correlation (Figure S2a). The 2019 image again used
more contrasting features, led by minimum yellow, green and blue reflectance, followed by
some vegetation indexes and blue-based Haralick inertia (Figure S1b).

The random forest model for the first image predicted the training set with an average
OOB accuracy of 92.74% and a 10 folds accuracy of 93.6%, which suggests a low probability
of overfitting. While the global performance is very high, some classes of interest had large
errors, with meaningful false negatives and positives up to 23.46% and 10.62%, respectively,
for the low submerged vegetation class (v_sub_low), which was mainly confused with
blue-green water (w_bg) (Figure 7, Table S3), suggesting an underestimation of the total
vegetation cover. The second most confused classes were high submerged vegetation
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(v_sub_high) and dark water (w_dark), with comparable amounts of false negatives and
positives (Table S3), suggesting a trade-off between both classes. As for the second image,
the average random forest model OOB accuracy for SAV cover mapping was 96.87% and
93.8% for the k-fold cross-validation. Again, the highest error rates were associated with
the low submerged vegetation class (v_sub_low), which was often confused with shallow
(w_shallow) and deep water (w_deep) (Table S4). Nevertheless, meaningful false negatives
were more important than meaningful false positives (8.86% vs. 5.88%) for low submerged
vegetation, indicating conservative SAV cover estimates.

4. Discussion

The proposed workflow allowed the production of image-based submerged aquatic
vegetation cover maps for two different high-resolution multispectral sensors. By using
open-source OBIA methods, the need for precise radiometric measurements was circum-
vented, shifting the modeling effort towards the quantification of local gradients and
textural information.

Pre-processing generated radiometrically comparable images, as shown by the bottom
of atmosphere reflectance spectra (Figure 4b). Although the lack of field radiometric
measurements prevented the validation of the observed reflectance values, the magnitude
and general shape of the deep-water reflectance spectra are in accordance with what has
been found elsewhere for inland waters when compared with the literature. Our deep-
water spectra show fewer variations and a higher baseline, but the peak values appear at
the expected wavelengths, with around 0.05 surface reflectance units around the 500–600
nm region [24,25,73]. The high reflectance baseline and the flatness of the reflectance spectra
could be attributed to a combination of the simple atmospheric correction, adjacency effects,
traces of bottom reflection, and the IOPs of the target water bodies, which are subject to
high loads of suspended matter, especially in the case of the lake Saint-Pierre [74].

De-striping offered a visually satisfying result, despite minor hiccups at closer inspec-
tion. Because the distance between every stripe jump, and their orientation is estimated
and assumed constant, some pixels located very close to the jumps can remain problematic
and be under/overcorrected. Also, the jumps do not occur over a single pixel, but rather
over a range of about 7 pixels [49], so that the ideal correction would take into account this
transition.

Level-1 OBIA random forest classification generated robust land masks despite low
object counts within the training set together with low attention put into classes equalization
(large variations between the number of objects per class). As expected, NIR reflectance-
based features were of great importance for distinguishing between land and water objects,
although a more complex array of features was used in the lake Saint-François (Figure S1),
including lower wavelength bands such as red, green, yellow, and blue. This might be
related to higher amounts of noise within the 2019 lake Saint-François image, partly due
to boat waves and higher water transparency. In other studies, land-masking is often not
discussed and land is roughly excluded [33,75]. On the other hand, in a knowledge-based
OBIA classification of SAV, Visser et al. [34] used NDVI, mean NIR, and red reflectance
thresholds as classification rules to classify exposed bank and bank vegetation, generating
similar rules to our random forest. The confusion matrices for both images show low
confusion between land and water-based classes (respectively identified by the l_ and w_
or v_ prefixes; Tables S2 and S3). Looking at meaningful misclassifications, classes with low
object count are the most prone to errors, but they are also the less important in terms of
cover, such as foam formations, boats, and boat waves, which could be compensated on
level-2 OBIA.

Level-2 OBIA random forest classification performed relatively well across the classes
of interest, with errors distributing as expected among classes and deeper growth forms
displaying relatively high confusion with optically deep-water objects. The most important
features for classification were quite different between the two images, being heavily reliant
upon vegetation indices and NIR reflectance for the lake Saint-Pierre image, and again
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much more diverse for the lake Saint-François, including zonal statistics from the yellow,
green, and blue bands (Figure S2). This is probably related to the higher turbidity of the
lake Saint-Pierre, which limits the growth of SAV species with short height and favors
canopy-forming species that can reach the top of the water column. Accordingly, image
exploration reveals a much higher proportion of SAV showing traces of NIR reflectance
(higher when SAV is close or at the surface) in the lake Saint-Pierre, especially within
the brown and mixed water masses (see Figure 3a), as opposed to the blue-green waters
from the main channel which is similar to the lake Saint-François, where most SAV is
truly submerged, reflecting almost no NIR signal. This suggests that the features fed to
the random forest account for enough variation to be robust across optically different
fluvial ecosystems. Although SAV cover mapping is more sensitive to error than land
masking, the confusion matrices show satisfactory classification results, with less than 10%
meaningful false positives and negatives for all vegetation classes, except low submerged
vegetation in the lake Saint-Pierre. Understandably, low submerged vegetation has the
weakest remote sensing signal and is expected to be the least performing class. Ecologically,
this weakness is partially compensated by the fact that shorter SAV would be expected
to perform less as an engineer (i.e., generating smaller environmental feedbacks) than
taller SAV growth forms [76], making them less important as sentinels, but nonetheless
valuable as indicators. This also justifies that it is acceptable in this context for parts of
the SAV landscape to be completely undetectable because of high turbidity. For the lake
Saint-François image, floating/drifting vegetation generates large errors, is often confused
with optically deep water. This is acceptable to us because drifting vegetation debris
are not an object of interest to this classification despite their observed abundance in the
field. Their large classification errors are associated with the size of the detached debris
which is often smaller than the minimum segmentation object size, behaving similarly to
white caps or NIR remote sensing noise. Finally, and more importantly, false negatives
appear to be more common than false positives for SAV classes (Figure 7, Tables S3 and S4),
suggesting overall conservative estimates of SAV cover. Further examination of Figure 7
also shows that visual validation criteria can be of higher importance than prediction
accuracy over the training set, where an actual decrease in accuracy estimates can result in
more satisfactory cover maps, especially for submerged aquatic vegetation in low contrast
regions. To further validate the performance of the classification for a specific application,
a multi-observer approach should be used to either estimate the error of the expert training
set object identification, or the variability of resulting vegetation cover maps from multiple
observers.

Despite acceptable classification results for routine monitoring of SAV, this paper
represents a basic application of a very adaptable workflow, which could be improved
and optimized in multiple ways. Furthermore, for the sake of the exercise, we used only
image-based information and expert knowledge to calibrate and validate the model, which
represents a worst-case scenario in terms of data availability. From calibration to validation,
field observations should be capitalized upon whenever possible, although their availability
and relevancy rapidly decrease with time passed since image capture. For those reasons, the
rest of this section will serve as application guidelines, discussing best practices and limits
regarding the state-of-the-art methods in the context of highly limited data availability.

Starting with data acquisition, multiple factors can affect classification results and
require further consideration. These factors include sensor noise, spatial resolution, spectral
resolution, and off-nadir angle, as well as environmental factors such as sun elevation angle,
atmospheric conditions, wind, waves, water level, turbidity, the progress of macrophytes
growing season, and terrain. Concerning sensor choice, Mouw et al. [45] offer an in-depth
review of how and why most current water sensors are ill-fitted to study inland complex
waters, leading researchers to use terrestrial earth observation missions such as Landsat, or
in this case, Quickbird-2 and Worldview-3. The main issues with this approach are that
those satellites were not built for low reflectance targets such as submerged objects, generat-
ing high signal-to-noise ratios (SNR) [25], and that their slow revisit time can be problematic
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for dynamic systems such as temperate fluvial lakes. Water level variations, water mass
mixing, turbidity spikes, and growth phenology all affect how much plant canopy can
be detected by satellite remote sensing. Nonetheless, methods such as multi-temporal,
high-resolution OBIA based remote sensing of SAV have been successfully performed in the
past in coastal ecosystems using appropriate field validation and proprietary software [35].
Understanding the effects of such environmental conditions on the temporal variability of
the remote sensing signal is crucial for the correct use of remotely sensed SAV cover maps
and represents one of the major challenges of this method.

Remote sensing noise can originate from multiple sources, including sensor architec-
ture (as seen in Figure 5), wind and waves generating localized glint, white caps, water
depth, and surface angle variations, as well as atmospheric and adjacency effects [77]. In
addition, different bands can have slightly different sensing times, as indicated by the time
delay integration (TDI) in DigitalGlobe’s products, thus visualizing different waves at dif-
ferent wavelengths. An example of high noise can be seen by observing deep-water areas of
the lake Saint-François Worldview image, where a sub-scene can generate reflectance values
ranging from 0.02 to 0.1 just in the 725 nm band due to what appears to be dominantly wave
action and despite the absence of identifiable submerged features (Figure 9). While glint can
be corrected over optically deep waters, shallow, and turbid waters glint correction applica-
tions are very complex and challenging, and it is usually preferred to select images where
the sun and off-nadir angles minimize glinting [78]. Because of low SNR, atmospheric
correction becomes disproportionately important over water pixels [25,46]. While this
remains valid, the narrow swath width of high-resolution sensors allows the assumption
that atmospheric conditions are homogeneous across a single scene, arguably allowing
whole-image atmospheric corrections as opposed to pixel-based methods [48]. One last
source of noise that should be considered is the presence of adjacency effects caused by
nearby landmasses that can have strong effects on the radiometry of close-by water objects
because of the atmospheric scattering of upwelling signals. While some methods, such as
the dark spectrum fitting, tend to limit those effects [48], no generalized solution currently
exists for adjacency effect correction. For the lake Saint-Pierre image, additional object
classes were thus included such as “v_p_em” and “w_p_dark”, to represent emerging
vegetation and dark water objects in proximity to land and diminish errors associated with
adjacency effects and emergent vegetation.
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Figure 9. Value range for all bands in a deep-water area affected by surface waves. (a) Shows
a seemingly homogenous area of deep water in the eastern part of lake St-François. (b) Shows
minimum, mean (dot) and maximum pixel values at every wavelength within this area.
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Regarding the OBIA workflow, segmentation tuning, feature selection/engineering,
training set building, and interpretation of results all add considerable flexibility to its
applications, but also make it more vulnerable to inconsistent usage. Despite the growing
interest towards OBIA in remote sensing, guidelines for the correct application of these
steps are scarce and rarely generalizable across studies. We believe that further research is
required to truly understand the importance of segmentation methods, spatial and spectral
resolution, the choice of spectral, textural, and contextual indices included in the predictors,
and the construction of robust and standardized training sets. In previous vegetation
studies, different segmentation methods were used, including ENVI’s watershed segmenta-
tion [33] and eCognition’s multi-resolution segmentation [34,36,79], with little justification
to their choice of segmentation solution despite their licensing fees. Following the same
pattern, little information is available to guide feature selection in building the modeling
data sets, with similar sets of features being widely used (zonal statistics plus vegetation
and textural indexes), despite little apparent research to understand the effects of the feature
array, especially regarding their specific tuning (such as scale parameters when calculating
Haralick texture indexes) [33,36,79,80]. While machine learning-based models allow for
some robustness despite wild arrays of inputs, widespread routine monitoring of SAV
would highly benefit from a stronger understanding of feature engineering for its detection.
In this paper, relative feature importance as estimated by the random forest algorithm
provides some insight regarding feature selection in contrasted systems (Figure S4), where
NIR-based metrics performed better in SAV-rich, turbid water, while shorter wavelengths
and texture-based metrics were more appropriate in clear waters where SAV rarely reaches
the surface.

In terms of modeling, the building of the training sets represents a critical task that
would ideally require large amounts of field observations designed for training and vali-
dation of such methods, which is non-existent for most water bodies across time. While
this paper suggests that it is possible to use Earth observation tools to estimate SAV cov-
erage using only expert visual observation, this exercise would be hardly transposable
to ecosystems unknown to the observer or the study of more complex metrics such as
community composition. Additionally, little is known about the importance of the number
of end members to the random forest classifier, the balancing of the training sets, or the
error associated with the expert training approach. Further investigations regarding the
transferability of models between dates and ecosystems could give us access to proper
tools for large-scale monitoring of SAV landscapes across time and space. Finally, attention
should also be given to quantify the impact of different observers on the classification
results. Many of the issues inherent to expert or knowledge-based approaches are well
discussed in the study by Visser et al. [34] about the knowledge-based mapping of SAV,
which further reinforces the arguments for establishing open standards for SAV monitoring

Given the many challenges and knowledge gaps yet to be addressed, we believe
high-resolution remote sensing of SAV would highly benefit from more open-source-based
research, allowing true testing and validation of methods. The workflow proposed in
this study represents a useful step in this direction. By adapting generic methods to
the specific needs of SAV remote sensing, not only highlights the potential of OBIA for
SAV mapping, but also the large amount of work remaining before achieving a truly
generalizable high-resolution remote sensing framework for SAV. Until then, this workflow
offers a foundation for further open-source research, and acts as a testimony for better
SAV field monitoring programs in complex waters, built to accommodate calibration and
validation of high-resolution remote sensing products.

5. Conclusions

In this paper, we propose an adaptable framework and an open-sourced workflow to
map SAV cover in complex waters using OBIA. By shifting the focus of the classification
efforts from precise radiometric measurements to local gradient quantification, we were able
to conduct satisfactory SAV mapping in two contrasted fluvial lakes, using two different
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high-resolution multi-spectral sensors. By using an iterative expert approach, conservative
estimates of SAV cover area could be extracted both for a recent image acquisition and
an older image from over 10-years back, despite the absence of ground-truthing data,
hinting towards the large potential of similar methods for long-term monitoring of aquatic
ecosystems. To better calibrate and validate this process, we argue for the importance of
implementing and maintaining remote-sensing appropriate field observations and call for
more transparent research in aquatic remote sensing OBIA applications. By proposing a
workflow for high-resolution remote sensing of SAV covers in complex systems, we hope
to enable better monitoring of sensible ecosystems and facilitate landscape-level research
about SAV dynamics in a changing world.
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10.3390/rs14020267/s1, Table S1: level 1 confusion matrix for image 1, Table S2: level 1 confusion
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for image 2, Figure S1: most important features for level 1 classification, Figure S2: most important
features for level 2 classification.
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