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Abstract: Deep learning (DL) shows remarkable performance in extracting buildings from high
resolution remote sensing images. However, how to improve the performance of DL based methods,
especially the perception of spatial information, is worth further study. For this purpose, we proposed
a building extraction network with feature highlighting, global awareness, and cross level information
fusion (B-FGC-Net). The residual learning and spatial attention unit are introduced in the encoder of
the B-FGC-Net, which simplifies the training of deep convolutional neural networks and highlights
the spatial information representation of features. The global feature information awareness module
is added to capture multiscale contextual information and integrate the global semantic information.
The cross level feature recalibration module is used to bridge the semantic gap between low and
high level features to complete the effective fusion of cross level information. The performance of the
proposed method was tested on two public building datasets and compared with classical methods,
such as UNet, LinkNet, and SegNet. Experimental results demonstrate that B-FGC-Net exhibits
improved profitability of accurate extraction and information integration for both small and large
scale buildings. The IoU scores of B-FGC-Net on WHU and INRIA Building datasets are 90.04% and
79.31%, respectively. B-FGC-Net is an effective and recommended method for extracting buildings
from high resolution remote sensing images.

Keywords: deep learning; building extraction; spatial attention; global information awareness; cross
level information fusion

1. Introduction

Building extraction from high resolution remote sensing images plays a critical role in
natural disaster emergency and management [1], land resource utilization and analysis [2],
and intelligent city construction and planning [3], etc. With the ongoing development
of earth observation technology, automatically extracting buildings from high resolution
remote sensing imagery has gradually become one of the most vital research topics [4].
Despite the wealth of spectral information provided by high resolution remote sensing
imagery [5], the spectral discrepancy among the various buildings coupled with complex
background noise poses a significant challenge to automatic building extraction [6]. There-
fore, a high precision and high performance extraction method for building extraction
automation is urgently needed.

According to the different classification scales, there are two leading conventional
approaches for the extraction of buildings from high resolution remote sensing imagery:
pixel based and object based [7]. Pixel based thought regards a single pixel or its neighbour-
ing pixels as a whole, which can extract building information by the spectral similarities
principle [8]. Commonly used pixel based methods include maximum likelihood classifica-
tion [9,10], decision tree, random forest, and support vector machine [11]. However, these
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methods may result in extremely serious salt and pepper noise [12] because of the charac-
teristics of the same spectrum foreign matter and the same object heterogenic spectrum in
remote sensing imagery. An object based approach normally takes the homogeneous pixels
obtained by image segmentation [13] as basic units and classifies these homogeneous pixels
on the basis of the variability of spectral, shadow, geometric, and other characteristics [14].
Although this method exploits the spatial information of buildings and effectively avoids
the phenomenon of salt and pepper noise, the method is applicable only to the extraction
of buildings with small areas and simple types; it is rather difficult to extract buildings
with large ranges and high complexity because of the vulnerability to human factors [5].
The conventional methods may seem to have difficulty meeting the requirements of high
precision, high performance, and automatic building extraction.

Recently, with the rapid advancement of artificial intelligence technology such as deep
learning (DL), significant progress has been made in the extraction of various ground objects
using convolutional neural networks (CNNs) [6]. CNNs have the potentiality to automati-
cally learn the correlation features among ground objects from the input remote sensing
imagery, avoiding the influence of human factors in conventional methods. Therefore,
CNNs are widely applied in some files of feasibility prediction, classification extraction,
and the automatic identification of ground objects [15], such as automatic mapping of cone
karst [16], landslide susceptibility mapping [17] and automatic road extraction [18]. CNNs,
which consist of multiple interconnected layers, including convolution layers, pooling
layers, and activation functions [19], obtain hierarchical features of buildings by automati-
cally encoding remote sensing imagery with the merits of local perception and parameter
sharing [20]. CNNs have emerged as a building extraction method with high accuracy,
great performance, and excellent automation capability. Simultaneously, the large amount
of high resolution remote sensing imagery data provides sufficient training samples [21].
The performance of CNN based approaches is promoted in the data driven model, which
dramatically enhances the generalization of building extraction. Notably, some studies
showed that adding attention modules to CNNs can help the network pay more attention
to and perceive contextual information and global features [22–25].

U-Net [26], as representative of CNN based approaches, has powerful feature ex-
traction capability and superior recognition performance in the field of medical image
segmentation. However, it is still extremely challenging to directly use U-Net to extract
buildings from high resolution remote sensing images due to the spectral discrepancy,
background, and complex noise interference of different buildings. Possible issues are
as follows: (1) The difficulty of model training. U-Net acquires robust local information
using continuous convolution; nevertheless, deep stacked convolutions tend to hinder
model training and cause the degradation of the model performance [27,28]. (2) The lack
of capacity for low level features (obtained by the U-Net encoder) representation. Due to
the variety and complexity of buildings, the low level features acquired by the encoder
convey less spatial detail information about the building features with much redundant
information. Previous studies have shown that low level features may fail to convey the
spatial detail information of ground objects in the face of high complexity ground ob-
jects [29,30]. (3) The insufficient integration of global information. U-Net aggregates the
feature information extracted by the convolution layer through four max pooling steps,
which not only reduces the computational complexity but increases the receptive fields of
the feature maps. However, the standard convolution operation could capture only local
neighborhood information and not effectively perceive global semantic information, for
feature maps with large receptive fields [31]. (4) The inadequate cross level aggregation.
Although U-Net employs skip connections to enhance the utilization of low level features,
this method, with a simple concatenation operation, ignores the influence of redundant
information and the semantic gap between low and high level features, which in turn limits
the building extraction performance [6,21,32].

To solve the issues mentioned, a building extraction network (B-FGC-Net) based
on residual learning, aggregated spatial attention (SA) units, global feature information
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awareness (GFIA) modules, and cross level feature recalibration (CLFR) modules is pro-
posed in this work. The residual learning and SA unit is introduced in the encoder, which
accelerates the convergence rate of gradient descent and highlights the features of spatial
detail information of the buildings. The GFIA module captures the contextual information
and improves the global awareness capability. The CLFR module, thoroughly considering
the semantic gap between low and high level features, completes the effective fusion of
cross level feature information from the channel dimension, suppresses the redundant
information of low level features, and improves the building extraction performance of
the model. Compared with the conventional building extraction methods, the B-FGC-Net,
integrating residual learning, SA, GFIA, and CLFR, outperforms the capacity of feature
highlighting, global awareness, and cross level information fusion, achieving superior
performance in the building extraction from high resolution remote sensing imagery.

2. Related Work

Since fully convolutional neural network (FCN) [33] was proposed, the end to end
deep convolutional neural network (DCNN) has received great attention. To solve the
problem that spatially detailed information is difficult to recover in image segmentation,
the low level features are mapped gradually by skip connection [26,34–36] and decoded
in the decoder part. The methods based on skip connection allow the direct utilization of
detailed low level features to restore the spatial resolution without additional parameters.
However, using too much and stacked convolution in the encoder while obtaining more
effective and sufficient low level features poses a risk of hindering the convergence speed
and decreasing the prediction performance of the model. On this basis, residual learning
was introduced into the end to end DCNN to alleviate the degradation problem due to
multiple convolutional layers [31,37,38]. This scheme not only speeds up the training of
the model but also effectively facilitates the utilization of low level features [39].

The DCNN with residual learning obtains rich low level features (e.g., semantic
information) but the semantic information is less strong with significant redundant infor-
mation [29]. The simple convolution operator, with the characteristic of focusing only on
local regions, in addition to the difficulty of obtaining the spatial location relationship of
each feature point, may fail to effectively capture detail rich spatial location information
in low level features [40]. Therefore, it is urgent to design a new scheme in the encoder to
capture the spatial relationship of feature points and highlight the expression of building
features at the spatial level. The self attention mechanism [41], for example, was applied in
the encoder of the GCB-Net [30] and the NL-LinkNet [42], which filtered the interference of
noisy information and constructed the long range dependencies among each pixel. Fur-
thermore, due to the semantic gap between low and high level features in the end to end
DCNN, a simple cross level fusion method, such as channel concatenation in U-Net [26]
and pixel addition in LinkNet [37], may cause the model to ignore the usefulness of all
features and limit the propagation of spatial information between the encoder and decoder.
For instance, LANet proposed an attention embedding module to bridge the gap in spatial
distribution between high and low level features [43].

The encoder part of the end to end DCNN generates a feature map with small spatial
resolution and large receptive fields. Actually, the standard convolution is weak in global
information awareness for this feature map. A possible way to remedy the issues is to
apply multiparallel dilated convolution or other submodules, which could capture the
multiscale contextual and global semantic information, and enlarge the receptive fields to
improve global information awareness. For instance, the pyramid pooling module (PPM)
of PSPNet [44] captures multiscale information; DeepLabV3+ [45] constructs the atrous
spatial pyramid pooling (ASPP) module based on dilated convolution to obtain contextual
information; D-LinkNet [31] designs a specific cascaded operation of the dilated convo-
lution unit (DCU) according to the spatial resolution of feature maps, which effectively
obtains a larger range of feature information; HsgNet [46] proposes the high order spatial
information global perception module to adaptively aggregate the long range relationships
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of feature points. However, the above methods have low extraction accuracy, excessive
memory consumption, or computational complexity, which make it difficult to promote
their application.

3. Methodology

In this section, we will describe the proposed method in detail. Firstly, the overall
architecture of the model is described. Then, the spatial attention units, global feature
information awareness modules, and cross level feature recalibration modules, and loss
functions are elaborated.

3.1. Model Overview

The B-FGC-Net, consisting of the encoder, GFIA module, and decoder, is a standard
end to end DCNN model, as shown in Figure 1. First, the method takes remote sensing
images of buildings as the input to the encoder, which uses the residual learning block
(Res-Block) and SA unit to obtain the feature information of the buildings automatically.
Continuously, GFIA modules aggregate the contextual information by the self attention
unit and the dilated convolution. Finally, the decoder uses multiple effective decoder blocks
and CLFR modules to restore feature maps to the final building segmentation maps.
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Figure 1. Overall of the proposed framework. (a) Structure of the B-FGC-Net, in which 1©, 2©,
and 3© denote the encoder, the GFIA module, and the decoder, respectively, Down sample denotes
downsampling, Up-layer denotes upsampling; (b) Res-Block; (c) Decoder-Block, where C denotes
the number of channels of the feature map, and p is the probability of an element being zeroed. The
addition and ReLU represent the pixel addition and the Rectified Linear Unit, respectively. The 1 × 1
and 3 × 3 denote the convolution kernel size.
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The encoder takes ResNet-34 as the backbone network to extract low level features
and removes the 7 × 7 convolution and max-pooling of the initial layer and the global
average pooling and fully connected layer of the final layer. The input data is processed by
four repeated groups of convolution layers, each of which contains multiple Res-Blocks
(see Table 1) to generate different hierarchical low level features. At the end of each
group of convolution layers, those low level features are delivered into the SA unit in
four groups to further highlight potential information such as space, shape, and edge
features of the building and to suppress backgrounds such as roads, trees, and farmland.
A detailed description of the SA unit is provided in Section 3.2. Additionally, the stride
of the convolution of downsampling is set to 2, achieving the goal of reducing the spatial
resolution of feature maps by 1

4 and doubling the number of channels. Although the
receptive fields of feature maps are increased due to several downsampling operations,
some rich spatial information is lost. It is rather difficult to recover the detailed and global
semantic information by using only upsampling and standard convolution operations. In
this work, we fuse the low level features generated in stages 1, 2 and 3 with high level
features, expecting to recover the spatial information of feature maps. The GFIA module
utilizes the low level features generated in stage 4 with the large receptive fields, which is
helpful to obtain the semantic information of building features and improve the sensing
ability of the global information. The encoder structure and the dimension variation of low
level features are shown in Table 1.

Table 1. The encoder structure and the dimension variation of low level features. SA_1, SA_2, SA_3, and
SA_4 denote the SA units of stages 1, 2, 3, and 4, respectively. Here, 3× 256× 256 represents the number
of channels, height, and width, respectively. In addition, 3× Res-Block denotes three Res-Blocks.

Stage Template Size

Input - 3 × 256 × 256

1
1 × 1 Conv + BN + ReLU

64 × 256 × 2563 × Res-Block
SA_1

2
4 × Res-Block

128 × 128 × 128SA_2

3
6 × Res-Block

256 × 64 × 64SA_3

4
3 × Res-Block

512 × 32 × 32SA_4

The GFIA module perceives a larger range of feature maps to capture the effective con-
textual information of the buildings by dilated convolution. Meanwhile, the self attention
mechanism focuses on the spatial relationship of each feature point. The combination of
the above two methods enables the high level features to enter the decoder to complete the
decoding operation. The decoder perceives the global information and restores the spatial
detail information of the features. Section 3.3 presents the GFIA module.

Bilinear interpolation and 1 × 1 convolution were adopted to recover the resolution of
feature maps in the decoder. To overcome the semantic gap between low and high level
features, we use the CLFR module described in Section 3.4 to focus on the complementary
relationship between them, to diminish the interference of noise information and to improve
the utilization of useful low level feature information. Thereafter, the decoder block decodes
the fused feature maps through two convolution operations to output the final building
extraction result. To prevent overfitting, dropout [47] and batch normalization (BN) [48] are
introduced after each convolution operation of the decoder block to simplify the decoding
structure and improve the training speed, respectively.
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3.2. Spatial Attention

For the natural properties of buildings and the complexity of the background, such as
roofs of various colors and shape features, the standard convolution operation focuses on
neighborhood pixels and may fail to accurately obtain the distribution of each pixel and
explore the spatial relationships on the overall space. Based on this observation, our study
proposed an SA unit inspired by the convolutional block attention module (CBAM) [49], as
shown in Figure 2. The SA unit aims to explore the spatial distribution regularity of pixels,
highlight the building feature expression, and suppress the interference of background.

The SA consists of three major components: pooling, convolution, and excitation.
Through three key steps, the SA automatically learns the feature expressions in spatial
dimensions and adaptively acquires the spatial weights of each feature.

(1) Pooling: the feature map x ∈ RC×H×W is compressed in the channel dimension by
the global average pooling and the global max pooling to optimize the spatial distribution
information of each feature point. The pooling can be defined by Equation (1).

z = fC( fGAP(x), fGMP(x)) (1)

where fC(·) represents the channel concatenate operation, fGAP(·) and fGMP(·) represent
the global average pooling and global max pooling, respectively, and W and H are the width
and height of the feature map, respectively.

(2) Convolution: 7× 7 convolution and sigmoid activation function can autonomously
learn the spatial distribution relationship of features and optimally assign weights to each
feature point. The spatial attentional feature map s ∈ R1×W×H is obtained by Equation (2).

s = fconv2d(z) = σs(w(z)) (2)

where fconv2d(·) is a two-dimensional convolution operation, w denotes the convolution
kernel parameters, and σs represents the sigmoid activation function.

(3) Excitation: the spatial attentional feature map s highly expresses the spatial distri-
bution of feature points. Then, it performs point multiplication with the input feature map
x. In this manner, the model focuses on learning building features and highlighting the
spatial information expression during the training. The calculation process is as follows:

y = fm(x, s) + x (3)

where fm(·) denotes the point multiplication. In summary, the SA successively completes
the adaptive acquisition of spatial weights for each feature point by pooling, convolution
and matrix dot product operations, which highlights the expression of building features in
the spatial dimension and suppresses noise information interference.
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3.3. Global Feature Information Awareness

To capture multiscale contextual information and aggregate global information, we
proposed the GFIA module, as illustrated in Figure 3, consisting of a dilated convolution
(DC) unit and a self attention (also called nonlocal) unit. As shown in (b), compared with
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the standard convolution operation, the DC perceives a larger range of feature information
by expanding the interval of convolution kernels. The DC unit uses five convolutions with
different dilation rates to efficiently integrate the neighborhood information of the building
features, which is calculated as follows:

F = ∑i σr(wi(Li−1)) (4)

where F ∈ RC×W×H denotes the output of the DC unit, i = {0, 1, 2, 3, 4} is the index of
the values of the dilation rate, σr is the ReLU activation function, wi is the parameters of
the DC kernel and Li−1 ∈ RC×W×H represents the output of the previous DC. Specifically,
Li−1 represents the input feature map x of the GFIA module when i = 0. In this work,
the dilation rate was set to dilation = {1, 2, 3, 4, 8}, and the corresponding receptive fields
of their convolutions were 3 × 3, 7 × 7, 11 × 11, 15 × 15, and 31 × 31, respectively. On
the one hand, the DC with the continuous dilation rate avoids the omission extraction
of feature information and effectively obtains multiscale contextual information. On the
other hand, the convolution with a dilation rate of 8 can perceive a 31 × 31 feature area,
which is basically able to cover the whole range of feature maps and complete the effective
acquisition of global semantic information. In addition, depthwise separable convolution is
introduced in the DC unit to reduce the complexity of the convolution operation. The non-
local unit constructs three feature maps, B ∈ RC×H×W , C ∈ RC×H×W and D ∈ RC×H×W ,
with global information to capture the long range dependence between each feature point.
The calculation process of the nonlocal unit is shown as Equations (5) and (6).

B = σr(wb(x)), C = σr(wc(x)), D = σr(wd(x)) (5)

N = fm(D, fm(C, B)) (6)

where wb, wc and wd denote the parameters of the convolution kernel, and N ∈ RC×H×W

is the output of the nonlocal unit. As the model is continuously trained, the nonlocal unit
automatically learns the correlation between arbitrary features and reweighs each feature
to promote the concern of the model for the global information of the features.
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3.4. Cross Level Feature Recalibration

The direct feature fusion of low and high level features in the form of concatenated
channels or pixel addition may cause the model to fail to learn effective complementary
information among cross level features, and even inherent noise, as well as redundant
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information, which could affect the extraction performance of the model. Therefore, we
were inspired by efficient channel attention (ECA) [50] and designed the CLFR module,
as shown in Figure 4, to fuse low and high level features, which not only removes a large
amount of redundant information but also eliminates the semantic gap between the pieces
of redundant information.
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The CLFR module first compresses the high level features Dk ∈ RC×H×W in spatial
dimensions by global average pooling to generate one-dimensional vectors and obtains
the global semantic information of the channel dimension. Thereafter, a one-dimensional
convolution is applied to obtain the weight parameters of feature points automatically.
Then, the sigmoid activation function is used to highlight the correlation between the
weights. In this manner, the building features in low level feature Ek ∈ RCk×Hk×Wk are
highlighted, and the semantic gap between Dk and Ek is eliminated. Finally, the fused
feature map is fed into the decoder block for the decoding operation. The CLFR module is
defined by Equations (7) and (8).

yk = fm(Ek, σs(wk( fGAP(Dk)))) (7)

outCLFR = [yk, Dk] (8)

in which yk ∈ RC×H×W denotes the low level feature after channel recalibration, wk is
the parameter of the one-dimensional convolution, and [·] is the channel concatenate
operation. The CLFR module adaptively acquires the channel weight parameters of the
high level feature Dk and eliminates the large amount of redundant information in the
channel dimension of the low level feature Ek by a dot product operation. Meanwhile, it
also re-evaluates the degree of the contribution of each feature point, which makes the
model learn the complementary information between Dk and Ek and overcome the semantic
gap between them to maximize the effective information utilization of cross level features.

3.5. Loss Function

The binary cross entropy (BCE) loss, the boundary error (BE) loss [21], and the auxiliary
loss were utilized to train the model, as shown in Figure 5.

BCE loss: given a couple of labels, ylab, and prediction results, ypro, the loss, lbce,
among them is calculated by Equation (9).

lbce = −
1

HW ∑H
i ∑W

j

(
ylab log ypro + (1− ylab) log(1− ypro

))
(9)

BE loss: while the BCE loss enables the model to focus on the correct classification
of each pixel in the prediction results, there are still challenges in building boundary
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refinement. Thus, we use the BE loss to force the model to pay more attention to the
boundary information of buildings. The boundary loss lbe is defined by Equation (10).

lbe = −
1

HW ∑H
i ∑W

j

(
N

P + N
zlab log zpro +

P
P + N

(1− zlab) log(1− zpro)

)
(10)

where zlab and zpro denote the label and the prediction result after processing by the
Laplacian operator, respectively, and P and N denote the number of positive and negative
pixels in the label, respectively.

Auxiliary loss: To facilitate model training, the output of ResNet34 in stage 3 is
upsampled to the same size as the label, and then the auxiliary loss, laux, between the label
and prediction result is calculated by the BCE loss.

Thus, the final total loss of our network is:

l = λ1 × lbce + λ2 × lbe + λ3 × laux (11)

in which λ1 = λ2 = 1 and λ3 = 0.4.
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4. Experiments and Results
4.1. Datasets

In this work, the WHU building dataset and the INRIA aerial image labeling dataset
were used to train and evaluate our proposed method.

The WHU building dataset, open source shared by Ji et al. [51], has become a very
popular dataset in the field of remote sensing building extraction due to its wide coverage,
high spatial resolution, and volume of data. This dataset covers 450 km2 in Christchurch,
New Zealand, with a spatial resolution of 7.5 cm and contains about 22,000 independent
buildings with high image quality. The WHU building dataset consists of 4736, 1036 and
2416 images for training, validation and testing, respectively. Considering the limitation
of computer graphics memory, we resized the original images and the ground truth from
512 × 512 pixels to 256 × 256 pixels. Figure 6 shows the processed training set, validation
set, and test set data.

The INRIA aerial image labeling dataset [52] provides 360 remote sensing images with
a size of 5000 × 5000 pixels and a spatial resolution of 0.3 m. The dataset contains various
building types, such as dense residential areas in ten cities around the world. This dataset
only provides ground truth in the training set but not in the testing set. Therefore, we
selected the first five images of five cities in the training set for the testing set according
to suggestions by the data organizers and [3]. Due to the large size of images and the
limitation of the computer GPU memory, we cropped them into 500 × 500 pixels and
resized them to 256 × 256 pixels to meet the input dimension requirements of the model.
The original INRIA images and the preprocessed images are shown in Figure 7.
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4.2. Experimental Settings

As shown in Table 2, the proposed B-FGC-Net was implemented based on Python-3.7
and PyTorch-1.7 in the CentOS 7 environment. We adopted an Adam optimizer [53] with
an initial learning rate of 0.0001, which decayed at a rate of 0.85 after every five epochs.
Additionally, we accelerated the training with two NVIDIA RTX 2080Ti GPUs. To avoid
the risk of overfitting, data augmentation approaches were used during training, including
random horizontal–vertical flipping and random rotation.

Table 2. Experimental environment and parameter settings.

Hardware Configuration Parameter Settings

Operating system CentOS 7 Epoch 100
DL framework Pytorch 1.7 Batch size 16

Language Python 3.7 Optimizer Adam
GPU 24G Initial learning rate 1 × 10−4

4.3. Evaluation Metrics

To objectively evaluate the performance of the proposed method, on the basis of [3,4,54,55],
we use five evaluation metrics, including overall accuracy (OA), precision (P), recall (R), F1
score (F1), and intersection over union (IOU), to comprehensively evaluate the building
extraction performance.

4.4. Result
4.4.1. Experiment Using the WHU Building Dataset

Figure 8 shows several extraction results of B-FGC-Net on the WHU building dataset.
We randomly selected six typical images for testing, including both small scale buildings
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and large scale buildings, to verify the extraction performance of the proposed method.
For the small scale buildings displayed in Columns 1 to 3 in Figure 7, the B-FGC-Net
with SA introduced can accurately locate the spatial position of buildings and effectively
identify the background as nonbuildings. Additionally, for the large scale buildings dis-
played in Columns 4 to 6 in Figure 7, B-FGC-Net with GFIA can extract the buildings
quite completely and avoid building omission as much as possible. Comprehensively
observing the labels and extraction results, although there are very few cases of building
omission and error extraction, the B-FGC-Net proposed in this work can effectively and ac-
curately extract most of the building information in both cases and shows superior building
extraction performance.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 26 
 

 

epochs. Additionally, we accelerated the training with two NVIDIA RTX 2080Ti GPUs. To 
avoid the risk of overfitting, data augmentation approaches were used during training, 
including random horizontal–vertical flipping and random rotation. 

Table 2. Experimental environment and parameter settings. 

Hardware Configuration Parameter Settings 
Operating system CentOS 7 Epoch 100 

DL framework Pytorch 1.7 Batch size 16 
Language Python 3.7 Optimizer Adam 

GPU 24G Initial learning rate 1 × 10−4 

4.3. Evaluation Metrics 
To objectively evaluate the performance of the proposed method, on the basis of 

[3,4,54,55], we use five evaluation metrics, including overall accuracy (OA), precision (P), 
recall (R), F1 score (F1), and intersection over union (IOU), to comprehensively evaluate 
the building extraction performance. 

4.4. Result 
4.4.1. Experiment Using the WHU Building Dataset 

Figure 8 shows several extraction results of B-FGC-Net on the WHU building dataset. 
We randomly selected six typical images for testing, including both small scale buildings 
and large scale buildings, to verify the extraction performance of the proposed method. 
For the small scale buildings displayed in Columns 1 to 3 in Figure 7, the B-FGC-Net with 
SA introduced can accurately locate the spatial position of buildings and effectively iden-
tify the background as nonbuildings. Additionally, for the large scale buildings displayed 
in Columns 4 to 6 in Figure 7, B-FGC-Net with GFIA can extract the buildings quite com-
pletely and avoid building omission as much as possible. Comprehensively observing the 
labels and extraction results, although there are very few cases of building omission and 
error extraction, the B-FGC-Net proposed in this work can effectively and accurately ex-
tract most of the building information in both cases and shows superior building extrac-
tion performance. 

 
Figure 8. Building extraction results of the B-FGC-Net on the WHU building dataset. The first to
third rows are the original images, labels, and results, respectively. The numbers 1–6 represent the
index in which the image is located.

Figure 9 quantitatively evaluates the building extraction results of B-FGC-Net in
Figure 8. According to Figure 9, the OA of B-FGC-Net is above 98.1% in both cases,
indicating that B-FGC-Net can correctly distinguish between buildings and background.
Extracting small scale buildings is still challenging because of their few building pixels.
Nevertheless, the method proposed in this work achieves remarkable performance, with
an F1 score above 96.7% and an IOU score above 93.6%. In addition, the F1 score and IOU
of 97.6% and 95.4%, respectively, further demonstrate the high accuracy of the method for
large scale building extraction. In short, B-FGC-Net possesses high accuracy for both small
scale and large scale building extraction.

4.4.2. Experiment Using the INRIA Aerial Image Labeling Dataset

The building extraction results of randomly selected images from the INRIA aerial im-
age labeling dataset are shown in Figure 10. From the results of Columns 1–3, B-FGC-Net is
seen to show excellent recognition performance for small scale buildings and can accurately
detect spatial location information. Similar results are observed in Figure 10 for large scale
buildings, in which the proposed method can extract most of the buildings completely
and avoid the phenomenon of missing extraction or incorrect extraction. In the extraction
results of Column 4, B-FGC-Net exhibits excellent building extraction capability and avoids
interference from noise information such as building shadows and trees. Particularly, in the
case of complex urban building scenes (see Column 5), the B-FGC-Net model accurately
extracts the vast majority of building information by fusing multiscale feature information.
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Figure 11 presents the accuracy evaluation results of B-FGC-Net for five cities on the
INRIA aerial image labeling. As shown in Figure 11, the OA score of B-FGC-Net exceeds
94% in all five cities, which indicates that the method proposed in this work can correctly
distinguish between buildings and background. Since there are nonbuilding pixels of
97.89% and fewer building pixels of 2.11% in Kitsap County, this extreme imbalance among
positive and negative sample numbers results in an OA of 99.19%, but is imprecise. In
contrast, the F1 score of 80.44% and IOU of 67.28% in Kitsap County indicate that the
method still achieves excellent extraction accuracy in this case. Observing the F1 score
(90.5%) and IOU (82.65%) of Vienna thoroughly shows that the method performs well for
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buildings with high complexity. In sum, B-FGC-Net scored over 80.4% F1 on the five cities,
with high extraction accuracy on small scale, large scale, and high complexity buildings.
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5. Discussion
5.1. Comparison of Different Classical Methods

To further examine the performance and accuracy of the proposed method, we used
several different classical methods for semantic segmentation to compare and analyze, such
as U-Net, LinkNet, SegNet, and DeepLabV3. These methods were trained at the same learn-
ing rate and optimized on two public building datasets. We also comprehensively analyzed
the extraction accuracy of each method, and the experimental results were as follows.

5.1.1. On the WHU Building Dataset

Figure 12 exhibits the building extraction results of different methods on the WHU
building dataset, including U-Net, Res-UNet, LinkNet, LinkNet*, and B-FGC-Net, where
the encoder of Res-UNet is ResNet18 and LinkNet* removes the initial convolutional layer
and max pooling in LinkNet.

As displayed in Figure 12, B-FGC-Net obtains superior visual results for building
extraction compared with classical building extraction methods. Although UNet, Res-
UNet, LinkNet, and LinkNet* can reasonably extract some building information, there is
still a considerable number of results about building incorrect extraction and background
error recognition. U-Net ignores the interference of building shadows in the fifth row
in Figure 11 (see the blue rectangular box) and identifies the majority of building pixels.
However, U-Net has a poor performance in locating small scale buildings and integrating
large scale buildings, as shown in the red rectangular box in Figure 11. The extraction
result of Res-UNet in the fourth row seems to be slightly better than the extraction result
of UNet, but the majority of the buildings are misclassified as background, reflecting the
poor extraction performance of Res-UNet. LinkNet, as a lightweight image segmentation
network, greatly reduces the training time by reducing the image spatial resolution in
the initial layer. From the extraction results, LinkNet identifies several building pixels
in the fourth row, but too many holes occur. Therefore, we removed the LinkNet initial
layer 7 × 7 convolution and max-pooling, called LinkNet*, to verify whether the excessive
downsampling causes poor extraction performance and to reflect the rationality of the
initial layer design of the B-FGC-Net. As displayed in Figure 12g, LinkNet* shows better
integration ability for large scale buildings than the previous three methods but poorer
capability for identifying small scale buildings and overcoming building shadows.
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B-FGC-Net, with the merit of the SA, GFIA, and CLFR modules, effectively overcomes
the interference of building shadows and performs favorably in extracting small scale and
large scale buildings. From the yellow box, we find that the proposed method, with the
support of SA, distinguishes the background and buildings properly and recognizes small
scale buildings easily. Furthermore, almost all large scale building pixels are correctly
and completely detected by B-FGC-Net, mainly because the CLFR module enhances the
ability of global perception. Especially in the extraction results of the fourth row, compared
with [4], B-FGC-Net extracts most of the buildings more completely. In the blue box, the
proposed method can handle the interference of building shadows better, which makes the
extraction results precise.
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Table 3 quantifies the building extraction accuracy of several methods in the WHU
building dataset. In contrast to other methods, B-FGC-Net achieved excellent accuracy in
all evaluation metrics. In terms of OA score, the proposed method obtains 98.90%, which
performs favorably against other methods and acquires the optimum extraction accuracy
in distinguishing building and background. Compared with U-Net, the F1 score and IOU
of B-FGC-Net were improved by 1.7% and 3.02%, respectively, indicating that the SA,
GFIA, and CLFR can effectively improve the model precision. In particular, the result of
the second best method (i.e., LinkNet*) proves that excessive downsampling can decrease
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the precision of the DL model and reflects the reasonableness of the B-FGC-Net design.
Compared with LinkNet*, B-FGC-Net exhibited the best extraction performance on the
test set with an increase in F1 score and IOU of 0.82% and 1.47%, respectively. Compared
with recent work such as PISANet [56] and Chen’s method [4], the evaluation results of
this method are still optimal.

Table 3. Accuracy evaluation results of different methods on the WHU building dataset. PISANet
and Chen’s model are implemented by [56] and [4] respectively. ‘-’ denotes that the paper did not
provide relevant data.

Methods OA (%) P (%) R (%) F1 (%) IOU (%)

U-Net 98.54 93.42 92.71 93.06 87.02
Res-UNet 98.49 91.44 94.00 92.70 86.40
LinkNet 97.99 92.16 89.09 90.60 82.82
LinkNet* 98.72 94.88 93.02 93.94 88.57
SegNet 97.15 85.90 86.78 86.33 75.95

DeeplabV3 97.82 88.93 90.16 89.54 81.06
PISANet 96.15 94.20 92.94 93.55 87.97
Chen’s - 93.25 95.56 94.40 89.39

B-FGC-Net 98.90 95.03 94.49 94.76 90.04

5.1.2. On the INRIA Aerial Image Labeling Dataset

Figure 13 exhibits the extraction results of B-FGC-Net and five other methods on
the INRIA aerial image labeling dataset. From the results, we find that UNet, Res-UNet,
LinkNet, SegNet, and DeepLabV3 identify most of the background, such as trees and
roads, but suffer from error extraction and missing extraction compared with B-FGC-Net.
Building extraction presents a great difficulty and challenge for classical methods due to
the similar spectral features between buildings and backgrounds in the red rectangular
box of Rows 1–3. Conversely, the proposed method extracts large scale buildings more
completely and overcomes the interference of similar spectral features excellently. The
extraction results of the classical methods can be seen in the red rectangular boxes in
Row 4–5 of Figure 13, which are still unsatisfactory in terms of small and large scale
buildings and serious building error extraction phenomena remain. However, B-FGC-Net
almost perfectly eliminates the “sticking phenomenon” of small scale building extraction
results by highlighting the building features in spatial and channel dimensions through
the SA unit and the CLFR module. In other challenging building scenes, such as building
shadows (the sixth row of Figure 13), tree shading (the seventh row of Figure 13) and
complex urban architecture (the eighth row of Figure 13), the other five classical methods
all present the disadvantages of incomplete extraction results and inaccurate location of
the outer boundary of the building. Fortunately, B-FGC-Net achieved satisfactory visual
performance through the SA unit, the GFLA module, and the CLFR module, to suppress
the representation of noise information, to integrate multiscale contextual information, and
to complete the effective fusion of cross level information.

The accurate results on the INRIA aerial image labeling dataset are shown in Table 4.
We clearly found that the OA, F1 score, and IOU of all methods were above 95%, 83%, and
71%, respectively, further demonstrating the good performance of the end to end DCNN
in the field of building extraction. Compared with other methods, the proposed method
achieves the best performance in all metrics and obtains the highest OA, F1, and IOU, of
96.7%, 88.46%, and 79.31%, respectively. Furthermore, the IOU and F1 score of LinkNet*
was increased by 5.65% and 3.67%, respectively, on this dataset compared to LinkNet, again
showing that excessive downsampling in the initial layer may affect the extraction accuracy
of the model and reflecting the rationality of removing downsampling in the initial layer
in the proposed method. The F1 score and IOU of B-FGC-Net improved by 0.58% and
0.93%, respectively, over LinkNet*. In detail, when compared with U-Net, B-FGC-Net
achieves a large increase in IOU and F1 scores, of 3.51% and 2.22%, indicating that the
attention mechanism and dilated convolution are effective. As described in Section 4.4.2,
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the excessive sample imbalance makes the OA of AMUNet [32] slightly better than our
method, but it is not accurate. In terms of IOU score, B-FGC-Net is 2.35% and 2.11% higher
than AMUNet and He’s model [3], respectively. These improvements demonstrate that the
B-FGC-Net is robust enough to handle sample imbalances and complex buildings.
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Table 4. Accuracy evaluation results of different methods on the INRIA aerial image labeling dataset.
AMUNet and He’s model are implemented by [32] and [3] respectively. Here, ‘-’ denotes the unknown
results that were not given by the authors.

Model OA (%) P (%) R (%) F1 (%) IOU (%)

U-Net 96.10 84.76 87.76 86.24 75.80
Res-UNet 95.95 83.94 87.49 85.68 74.95
LinkNet 95.48 83.61 84.82 84.21 72.73
LinkNet* 96.55 86.85 88.93 87.88 78.38
SegNet 95.46 80.72 86.89 83.69 71.96

DeepLabV3 95.80 84.58 86.04 85.30 74.37
AMUNet 96.73 - - - 76.96

He’s - 83.50 91.10 87.10 77.20
B-FGC-Net 96.70 87.82 89.12 88.46 79.31

According to the visual results and the accuracy analysis above, we can conclude that
B-FGC-Net highlights building features in the spatial dimension, aggregates multiscale
contextual information and global semantic information, and effectively removes redun-
dant information through SA, GFIA, and CLFR. Thus, B-FGC-Net achieved better visual
extraction results in two datasets, especially in small scale, large scale, and complicated
buildings, and overcame the noise information interference from building shadows and
tree occlusions.

5.2. Effectiveness Comparison of Different Levels of Spatial Attention

To represent the effectiveness of different levels of spatial attention, we explored the
mechanism and effects of spatial attention through contribution experiments and feature
visualization operations on the WHU building dataset.

The evaluation results of different levels of SA units on the WHU Building Dataset
are listed in Table 5. Compared with the No. 1 model, the No. 5 model (i.e., B-FGC-
Net) achieved the best performance, with IOU and F1 score improving by 0.64% and
0.34%, respectively, indicating that the SA can increase the classification accuracy of the
model. Comparing models No. 1–5 with each other, their IOU variations are 0.32%, 0.03%,
0.07% and 0.32%, respectively, demonstrating that the SA unit in layers 4 and 1 brings the
most significant improvement but the importance of spatial attention in layers 2–3 cannot
be neglected because Experiments 1–5 were performed gradually as the SA was added
at different levels. As the SA unit is added gradually to the encoder, the F1 score and
IOU gradually increase, further indicating that SA can highlight the relevant features of
buildings in the spatial dimension and ignore the interference of other information.

Table 5. Evaluation results of different levels of SA units on the WHU building dataset. Note: the No.
1 model has no SA unit, and the No. 5 model is the B-FGC-Net.

No. SA_4 SA_3 SA_2 SA_1 F1 (%) IOU (%)

1 94.38 89.30
2 X 94.52 89.62
3 X X 94.54 89.65
4 X X X 94.58 89.72
5 X X X X 94.76 90.04

Figure 14 displays the feature visualization comparison of the B-FGC-Net model,
where different brightnesses indicate different levels of attention to building features by
the model. According to Figure 14, after adding the SA unit, the feature maps all appear
to have different degrees of variation in brightness. The brightness of the building area is
significantly increased after adding the SA unit, as shown in Figure 14b,c, suggesting that
the SA unit in the first layer effectively ameliorates the overseeking of building boundary
information, forcing the model to focus on building features and ignore other backgrounds.
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Especially in the fourth row of visualization results, the SA highlights the representation
of building features in the spatial dimension, more importantly, attenuates the brightness
of building shadows, and effectively suppresses the interference of background. With the
addition of the SA unit, the spatial semantic information of building features is gradually
abstracted. However, the SA unit can easily be seen to increase the brightness contrast be-
tween buildings and nonbuildings, and make B-FGC-Net concentrate on learning building
features. From the feature maps in Columns (h)–(j), we find that the features in the fourth
layer are the most abstract, and the SA identifies buildings as red color, which enhances the
ability of the B-FGC-Net to perceive the spatial information of the building features.
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5.3. Comparison of Different Global Feature Information Awareness Schemes

To verify the performance of the proposed GFIA module, we compared it with several
well verified global feature information awareness schemes, i.e., the PPM in PSPNet, the
ASPP in DeepLabV3+, and the DCU in D-LinkNet. The giga floating-point operations per
second (GFLOPs), parameters, and the speed (i.e., the image throughput per second) [57]
are also reported, to analyze their computational complexity. According to Table 6, the GFIA
module, although slightly slower than PPM, outperforms other global feature information
awareness schemes in terms of GFLOPs, parameters, F1 scores and IOU. While PPM and
ASPP can effectively improve the accuracy of the model in maintaining lower GFLOPs
and parameters, the accuracy increments seem far from adequate compared to GFIA.
Despite DCU aggregating the global information by dilated convolution, its GFLOPs and
parameters are much larger and speed is much slower, which brings a greater computational
complexity and reduces inference speed. On the basis of DCU, GFIA adds the depthwise
separable convolution, greatly reducing GFLOPs and parameters and alleviating the model
training complexity, despite the reduced inference speed. In addition, GFIA uses the
nonlocal unit to enhance the spatial relationships between global semantic information and
effectively aggregates building features. In comparison, GFIA obtained the best accuracy
while maintaining a lower complexity, demonstrating that the GFIA module captures the
multiscale contextual information of building features by dilated convolution and nonlocal
units and accomplishes the effective aggregation of global semantic information.
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Table 6. Evaluation results of different global feature information awareness schemes on the WHU
Building Dataset. Note: GFLOPs and parameters are computed from a tensor with a size of
1 × 512 × 32 × 32. The speed is tested with a batch size of 2, full precision (fp32), input resolu-
tion of 3 × 256 × 256, and measured in examples/second.

No. Methods GFLOPs Parameters (M) Speed F1 (%) IOU (%)

1 PPM 0.5417 0.7895 18.90 94.32 89.24
2 ASPP 4.0969 4.1318 17.19 94.39 89.37
3 DCU 12.082 11.799 16.93 94.60 89.75
4 GFIA 0.3036 0.2939 18.61 94.76 90.04

5.4. Comparison of Different Cross Level Feature Fusion Schemes

Figure 15 displays the comparison of different cross level feature fusion schemes based
on B-FGC-Net, including the concatenate channel, pixel addition, CLFR-SE module, and
proposed CLFR module. The CLFR-SE module replaces channel attention in the CLFR
proposed in this paper with the squeeze and excitation (SE) module [58]. According to the
results, the F1 and IOU of the concatenated channel and pixel addition are significantly
lower than the F1 and IOU of the CLFR-SE and CLFR modules, mainly because of the
large semantic gap between low and high level features and the extensive redundant noise
information contained in the low level features. Considering the semantic gaps of low
level features and the redundancy characteristics, our study designed a cross level feature
recalibration scheme. The CLFR module can automatically pick up the complementary
information from channel dimensions, completing the effective utilization of low level
features and significantly enhancing the model performance. To choose superior channel
attention in the CLFR module, we compared the learning ability of SE and ECA. The
experimental results show that the latter achieves significant performance gains with only a
few additional parameters. The comprehensive comparison of the four different cross level
feature fusion schemes demonstrates that the ECA based CLFR completes the recalibration
of the channel information of low level features and aggregates the cross level feature
information by learning the channel semantic information of high level features.
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5.5. Ablation Study

Ablation experiments were performed to verify the rationality and validity of each
component of the B-FGC-Net on the WHU Building Dataset. U-Net with ResNet-34 was
chosen as the baseline model, and the F1 score and IOU were adopted to quantitatively
assess the effectiveness. The detailed results are shown in Table 7. The F1 and IOU are
improved by 0.96% and 1.69% after ResNet34 was introduced in U-Net, demonstrating
the robust feature extraction capability of ResNet34 as the encoder. The addition of the SA
unit improves the baseline from 94.02% and 88.71% to 94.44% and 89.46% in terms of F1
and IOU, respectively, implying that the SA unit concentrates on building features in the
spatial dimension and ignores other irrelevant backgrounds, such as building shadows.
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After inserting the GFIA module with the DC and nonlocal units, the F1 score and IOU
are improved by 0.54% and 0.97% compared with the baseline, indicating that larger scale
building features are effectively captured and that global features are usefully integrated. By
adding the CLFR module, the F1 score and IOU are improved by 0.74% and 1.33% compared
with the basic model, meaning that the CLFR module eliminates the semantic gap between
low and high level features and makes full use of the detailed spatial information of low
level features. In summary, the SA, the GFIA, and the CLFR are proven to be able to
effectively improve the performance through the ablation experiments of each module.
Most importantly, to obtain the best building extraction results, each component of the
proposed method is required.

Table 7. Ablation study with different component combinations on the WHU Building Dataset.

No. Baseline SA GFIA CLFR F1 (%) IOU (%)

1 X 94.02 88.71
2 X X 94.44 89.46
3 X X X 94.56 89.68
4 X X X X 94.76 90.04

5.6. Limitations and Future Research Work

Although the proposed method has achieved excellent extraction performance with
superior extraction capability for small and large scale buildings on WHU and INRIA
building datasets, there are still some difficulties in data dependence and the characteristics
of the same spectrum foreign matter that should not be ignored.

Figure 16 displays examples of error extraction for U-Net and B-FGC-Net. According
to the results, both methods suffer from partial building misidentification, which may
be attributed to two main reasons: (1) Some nonbuildings (e.g., light gray concrete plots,
containers, etc.) are similar to buildings in terms of spectral features and geometric features.
End to end DCNN methods have extreme difficulty learning the potential difference in fea-
tures between them from limited RGB image data, which is prone to misclassification. Thus,
future work should use auxiliary information such as digital surface models (DSMs) [59]
or multispectral images for building extraction to improve the extraction precision. (2)
Some of the labels are mistaken, making it rather difficult for the model to learn all the
information about buildings, resulting in the possible underfitting of the model. For this
reason, semisupervised or unsupervised learning methods are suggested for future research
to reduce the reliance on labeled data.
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The comparison of the GFLOPs, parameters of several methods, and inference speed
is illustrated in Figure 17. The B-FGC-Net model has larger GFLOPs (98.75) and model
parameters (24M) and lower inference speed (18.61). Therefore, DL based DCNN models
need to make a good trade off between computational complexity and precision in future
work. For instance, smaller models can be used to extract buildings quickly in the deploy-
ment stage of various intelligent terminals (e.g., UAV identification terminals, handheld
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information collection terminals); larger models can be used to extract buildings accurately
in the field of precision mapping. Furthermore, further work can pay more attention to the
knowledge distillation scheme [60] that reduces the parameters of the model with good
accuracy and high computational complexity and facilitates the deployment of the model.
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6. Conclusions

This study proposed a building extraction network (B-FGC-Net) for high resolution
remote sensing imagery. The encoder combined the SA unit to highlight the spatial level of
building feature representation, the GFIA module was applied to capture the multiscale
contextual information and global semantic information, and the decoder used the CLFR
module to achieve the effective fusion of cross level information. The proposed method
was implemented and evaluated on two public datasets. The experimental results indicate
that: (1) B-FGC-Net is a building extraction model with an outstanding extraction effect and
high accuracy, especially in small and large scale buildings, and overcomes the influence of
building shadows and tree shading. (2) Comparison from different perspectives reveals
that the SA, GFIA, and CLFR can highlight building features, perceive global semantic
information and recalibrate cross layer channel information, respectively. SA is able to
autonomously learn the spatial distribution relationship of feature points, significantly
improving the attention on building features in the form of weight assignment and weak-
ening the representation of background noise such as building shadows; GFIA perceives
a wider range of feature information with superior contextual information aggregation
capability and brings greater accuracy gain through dilated convolution and self attention
mechanisms; CLFR eliminates the semantic gap in low level features through adaptively
acquiring channel information contributions from high level features and achieves signifi-
cant performance gains by the effective fusion of different hierarchical features. (3) Future
research should pay more attention to auxiliary information and semi supervised learning
methods to improve extraction accuracy and reduce the dependence on labeled data.
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