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Abstract: A density-based spatial clustering of applications with noise (DBSCAN) and three distances
(TD) integrated Wi-Fi positioning algorithm was proposed, aiming to enhance the positioning
accuracy and stability of fingerprinting by the dynamic selection of signal-domain distance to obtain
reliable nearest reference points (RPs). Two stages were included in this algorithm. One was the offline
stage, where the offline fingerprint database was constructed and the other was the online positioning
stage. Three distances (Euclidean distance, Manhattan distance, and cosine distance), DBSCAN, and
high-resolution distance selection principle were combined to obtain more reliable nearest RPs and
optimal signal-domain distance in the online stage. Fused distance, the fusion of position-domain
and signal-domain distances, was applied for DBSCAN to generate the clustering results, considering
both the spatial structure and signal strength of RPs. Based on the principle that the higher resolution
the distance, the more clusters will be obtained, the high-resolution distance was used to compute
positioning results. The weighted K-nearest neighbor (WKNN) considering signal-domain distance
selection was used to estimate positions. Two scenarios were selected as test areas; a complex-layout
room (Scenario A) for post-graduates and a typical large indoor environment (Scenario B) covering
3200 m2. In both Scenarios A and B, compared with support vector machine (SVM), Gaussian process
regression (GPR) and rank algorithms, the improvement rates of positioning accuracy and stability of
the proposed algorithm were up to 60.44 and 60.93%, respectively. Experimental results show that the
proposed algorithm has a better positioning performance in complex and large indoor environments.

Keywords: fingerprint positioning; three distances; WKNN; fused distance; high-resolution distance;
DBSCAN

1. Introduction

The global navigation satellite system (GNSS) is very hard to realize the high-precision
indoor positioning because GNSS signals arrived at rooms are weak, or there are no GNSS
signals [1]. Then, some indoor positioning techniques have been proposed to achieve the
acquirement of the position of people and objects in the indoor environment. According
to various structures of buildings and layouts of indoor environments, indoor positioning
techniques can be divided into building dependence and building independence methods.
The former methods were primarily based on electromagnetic and acoustic signals, such as
ultra-wideband (UWB) [2–4], Bluetooth [5,6], wireless fidelity (Wi-Fi) [7–9], radio frequency
identification (RFID) [10–12], ultrasonic or acoustic [13,14], geo-magnetism [15,16], pseudo-
lite [17,18], and so on. The latter ones were based on computer vision [19,20] and inertial
navigation system (INS) or pedestrian dead reckoning (PDR) [21,22]. Multiple techniques
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are usually fused to obtain high-precision and continuous positioning results in large-scale
or complex indoor environments, e.g., the hybrid of electromagnetic and acoustic signals,
PDR, and computer vision [21,23,24]. The positioning methods include fingerprinting,
range-based positioning, angle-based positioning, image-based positioning, and dead
reckoning. Range-based methods, including time of flight (TOF) or time difference of
arrival (TDOA) [3,13,21], could achieve high-precision performance in a line of sight (LOS)
indoor environment, as well as angle-based methods, such as angle of arrival (AOA) [25].
Methods integrated PDR and computer vision are not easily affected by the environment
for continuous positioning requirements. Some techniques based on fingerprint have
been widely used because of their easy implementation and effectiveness, such as Wi-Fi
fingerprint positioning [26–31], Bluetooth fingerprint positioning [5], and geomagnetic
fingerprint positioning [32].

The positioning method based on Wi-Fi fingerprint has attracted extensive attention
because of the widely-used Wi-Fi equipment. Wi-Fi-based indoor positioning technology
includes two categories: fingerprint positioning [33], and multilateration [34]. The former
has a better positioning effect due to the heavy multipath effect in an indoor environment.
The Wi-Fi fingerprints mainly have two types: RSS and channel state information (CSI) [35].
However, the application of CSI-based positioning is limited since the collection of CSI
data needs special equipment. Many researchers have explored the RSS-based Wi-Fi
positioning technology due to the easy access of RSS data and have proposed many
positioning algorithms.

However, RSS measurements are easily impacted by the external environment, thus
causing non-line-of-sight (NLOS) multipaths, such as the walls, windows, human body,
obstructions, etc.; this indicates that the indoor RSS measurement has errors. Without any
process on RSS measurements, the signal-domain distance based on RSS measurements
will not be accurate, thus, it is necessary to reduce the impact of RSS measurement errors
on fingerprinting. Some methods play a limited role in weakening RSS measurement errors
such as the filtering algorithms [36]. Mostly, the mean of a group of RSS measurements is
chosen to construct the fingerprint database to increase the accuracy of fingerprint [31,37].
However, the online RSS readings are fluctuant, which may affect the precision of finger-
printing. The positioning method based on signal-domain distance will miss the reliable
reference points (RPs) when the strongly fluctuant RSS measurement appears. However,
some signal-domain distances can reduce the impact of abnormal RSS measurement and
find reliable RPs [38].

Therefore, this paper proposes a novel Wi-Fi positioning algorithm by integrating the
density-based spatial clustering of applications with noise (DBSCAN) and three distances
(TD), including the offline fingerprint database construction stage and online localization
stage. In the offline stage, the main task is to collect RSS measurements on RPs and generate
the offline fingerprint database based on the gathered RSS data. In the online stage, this
algorithm will use Euclidean distance (ED), Manhattan distance (MD), and cosine distance
(CD) to obtain more reliable nearest RPs. Then the position-domain and signal-domain
distances between these nearest RPs will be fused for clustering. DBSCAN algorithm will
use fused distances to cluster the nearest RPs, considering both the spatial structure and
signal strength of RPs. High-resolution distances which can distinguish the RPs well will be
chosen to compute the positioning results, and the weighted K-nearest neighbor (WKNN)
algorithm will be used as the positioning algorithm.

The contributions of this work are listed as follows.
Three distances (Euclidean distance, Manhattan distance, and cosine distance) were

used to obtain more reliable adjacent RPs, and a judgment rule was proposed to evaluate
the availability of obtained RPs corresponding three distances based on whether these
selected RPs were the same.

The fused distance, the fusion of position-domain and signal-domain distances, was
enhanced by a normalization algorithm with changeable intervals and adopted for DB-
SCAN. In this way, the online clustering could consider both the spatial layout and signal
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strength of RPs and map position-domain and signal-domain distances into the same
metrics, reserving intrinsic connection and avoiding zero value of signal-domain distance.

A high-resolution distance selection principle was proposed. The number of clusters
indicates the resolution of this distance. The larger the number, the higher the resolution
of the distance. The high-resolution distance was applied to improve the positioning
performance of Wi-Fi fingerprinting.

The rest of the paper is organized as follows. In Section 2, a review of related work
is discussed. The research motivation and several algorithms are described in Section 3.
The DBSCAN and TD integrated WKNN algorithm is presented in detail in Section 4.
Experimental description and results analysis are given in Section 5. Finally, Section 6
concludes the work.

2. Related Work

There are offline and online stages in the Wi-Fi fingerprint positioning method. The
aim of the offline stage is mainly to construct the fingerprint database. Given the huge
consumption of human and material resources in the offline stage, crowdsourcing [39],
interpolation [40], and the path loss model [41] were put forward to rapidly construct
the fingerprint database. The purpose of the online stage is to estimate the position by
real-time or post-process. Algorithms for location estimation mainly include the EWKNN
algorithm [8], GPR [42,43], artificial neural network (ANN) [41,44], probabilistic algo-
rithm [45,46], SVM [47], rank [48,49], etc.

Besides, some researchers have introduced the clustering algorithm to fingerprint
positioning [33,50]. GPR, SVM, and ANN need model training for a long time before the
establishment of positioning models. They also need a large online computation amount
when the model is very complex. Furthermore, positioning accuracy of training models can
be affected by the size of the training scenarios, such as office room, meeting room, teaching
room, corridor, stair, parking lot, etc. Therefore, the above algorithms may not be suitable
for large and complex indoor environments. However, the algorithm based on the signal-
domain distance between online and offline fingerprints can be implemented without
any training operations, such as nearest neighborhood (NN) [51], K-nearest neighborhood
(KNN) [31], WKNN, and so on. In general, WKNN has a better positioning performance
than NN and KNN [26], therefore, it is more widely used. Common fingerprinting al-
gorithms based on signal-domain distance apply the ED-based signal-domain distance
to achieve indoor positioning [52]. In fact, there are other ways to calculate the signal-
domain distances, such as MD-based signal-domain distance, CD-based signal-domain
distance, Sorensen signal-domain distance, Log Gaussian signal-domain distance, Ham-
ming signal-domain distance, Jaccard signal-domain distance, Lorentzian signal-domain
distance [37,38,53,54], etc.

Researchers have demonstrated that the positioning accuracy of various signal-domain
distance computation methods are different. Li et al. [55] showed that the MD-based signal-
domain distance behaved better than the ED-based signal-domain distance in terms of
positioning accuracy when they were utilized to estimate location. It showed that the
nearest RPs found with different signal-domain distances may be different. Literature [38]
researched fifty-three signal-domain distances by using a public dataset and found that
fingerprinting using Sorensen signal-domain distance had the best positioning performance.
Minaev et al. [37] described forty-nine signal-domain distances, compared the positioning
effects, and concluded that the performances of Hamming, Jaccard, Lorentzian signal-
domain distances were optimal. Another study [9], used Spearman signal-domain distance
to achieve relatively high-precision fingerprint positioning. Authors of [56] realized finger-
print positioning by using ED, MD, and Tanimoto signal-domain distances, respectively,
in a multi-floor environment and certified that the positioning effect of MD was better than
those of other distances. The authors of [57] compared ED, MD, and Mahalanobis signal-
domain distances, and declared that MD and Mahalanobis signal-domain distances were
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optimal in an office environment and shopping center, respectively. Therefore, it is useful
for fingerprinting to select an optimal signal-domain distance to estimate the location.

There were also some studies about reducing the influence of unreliable nearest RPs
on positioning accuracy. For example, the correlation between the K value and the RSS was
utilized to adapt the K value for each position, which could eliminate the bad influence of
unreliable nearest RPs [31]. The nearest RPs with larger signal-domain distances, maximum
and minimum coordinate values were regarded to be unreliable and removed. Then, the
remaining nearest RPs were used to calculate the positioning result [58]. Clustering was
also employed to eliminate interference from unreliable RPs by high-precision clustering
identification and avoided their participation in the computation of online location esti-
mation [59]. However, the accuracy of clustering identification might be lower due to RSS
fluctuations and thus, the positioning precision may become poor. Thus, clustering might
not be a good way to eliminate the influence of unreliable RPs on precision, especially in
huge or complex indoor environments.

3. Basic Algorithm Description

This section will introduce the research motivation, construction of the offline fin-
gerprint database, and the definitions of position-domain and signal-domain distances,
respectively. Then, the definitions and calculation methods of ED, MD, and CD will be de-
scribed in detail. Finally, the principles of WKNN, normalization, and DBSCAN algorithms
will be presented.

3.1. Research Motivation

In the radio fingerprint positioning method based on signal-domain distance, the
reliabilities of the searched nearest RPs could affect the accuracy of fingerprinting. If there
is an untrusted RP participating in the position calculation, the estimated location will have
a larger positioning error.

When the signal-domain distances were used to find nearest RPs, some unreliable
nearest RPs appeared due to the errors in the fingerprints, as shown in Figure 1. There
were four examples where the unreliable RPs took part in positioning calculation. The red
triangle, blue diamond, and green circle represented the nearest RPs, positioning result,
and true position, respectively. It can be seen that the two nearest RPs are away from the
true position in Figure 1a, and one nearest RP is away from the true position in Figure 1b.
Three nearest RPs are away from the true position in Figure 1c,d. In these examples, the
positioning results were affected with poor accuracy.

The reason for causing poor positioning accuracy was that unreliable nearest PRs
participated in the positioning estimation. Therefore, it is very necessary for fingerprint
positioning to use reliable nearest RPs. Then, three signal-domain distances were adopted
to enhance the reliability of the obtained nearest RPs.
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3.2. Offline Fingerprint Database Construction

The main task of the offline stage of Wi-Fi fingerprint positioning is to build the
fingerprint database. The precision of the fingerprint database can greatly affect the
performance of fingerprinting. Generally, most researchers apply the mean of a sequence
of RSS measurements as the signal feature of an RP, as shown in Equation (1),

µ =
∑L

i=1 RSSi

L
(1)

where µ represents the mean of a set of RSS measurements, L is the collection times, and
RSSi denotes the ith RSS measurement.

The structure of the fingerprint database is shown in Table 1, including the location
coordinates of known points and the signal features.

Table 1. The structure of fingerprint database.

Id Location MAC1 MAC2 · · · MACj · · · MACN

1 (x1, y1) µ11 µ12 · · · µ1j · · · µ1N
2 (x2, y2) µ21 µ22 · · · µ2j · · · µ2N

· · · ...
...

...
...

...
...

...
i (xi, yi) µi1 µi2 · · · µij · · · µiN
...

...
...

...
...

...
...

...
M (xM, yM) µM1 µM2 · · · µMj · · · µMN

Where M and N are the numbers of RPs and access points (APs), respectively, and
MACj denotes the media access control (MAC) address of the jth AP, and µij represents
the mean of a sequence of RSS measurements of the jth AP at the ith location.

Each RP had a location and corresponding fingerprint. The fingerprint was made up
of RSS mean of multiple APs. The online fingerprint database consisted of multiple RPs.

3.3. Position-Domain and Signal-Domain Distances

In this subsection, the position-domain and signal-domain distances will be introduced.
There are two attributes for each RP. One is position coordinates, and the other is the signal
features, i.e., RSS data gathered at one RP.

Based on these two attributes, we defined two distances: position-domain distance and
signal-domain distance. The position-domain distance is the range between the position
coordinates, as shown in Equation (2).

distposition =
√(

xi − xj
)2

+
(
yi − yj

)2 (2)
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where (xi, yi) and
(

xj, yj
)

are the coordinates of the ith and jth RPs, and distposition repre-
sents the position-domain distance between the ith and jth RPs.

The signal-domain distance represents the similarity between offline and online fin-
gerprints, which can be expressed with ED, MD, CD, Sorensen distances, etc. In other
words, the signal-domain distance is the difference between RSS measurements on RPs
and an unknown location. In the next subsection, we will take ED, MD, and CD as cases to
describe the signal-domain distance in detail.

3.4. Three Signal-Domain Distances

Through the investigation and related work, it is found that these three distances are
the most widely used and have achieved high-precision positioning accuracy. It is the main
reason for the usage of these three distances. In addition, when there was only one distance,
all the acquired RPs might be untrusted due to the errors of RSS measurements.

ED is the straight-line distance between two points in Euclidean space, which is one
of the commonly used similarity measurements in indoor positioning fields. WKNN, GPR
and SVM often apply ED as the similarity measurement. The ED-based signal-domain
similarity can be expressed as:

ED =

√
(rss1 − µi1)

2 + (rss2 − µi2)
2 + · · ·+ (rssN − µiN)

2, (3)

where (rss1, rss2, · · · rssN) and (µi1, µi2, · · · µiN) represent the online RSS readings and fin-
gerprint of the ith RP, respectively, N is the number of APs, and rssj is the RSS measurement
of the jth AP.

MD expresses absolute wheelbase summation of two points in standard coordinates.
It can also be utilized for indoor positioning based on the Wi-Fi fingerprint to find the
nearest RPs. The MD between the online RSS measurements and fingerprints can be
expressed as:

MD = |rss1 − µi1|+ |rss2 − µi2|+ · · · |rssN − µiN |, (4)

where
∣∣rssj − µij

∣∣ represents the absolute value between rssj and µij.
CD is the result of one minus the cosine similarity, which can be used to measure the

similarity between two fingerprints. Generally, the smaller the similarity between online
and offline fingerprints is, the bigger the CD of two fingerprints is. Therefore, CD is often
applied for fingerprinting. The way to acquire CD-based signal-domain distance can be
denoted as:

CD = 1−
∑N

j=1 rssj ∗ µij√
∑N

j=1 rss2
j ∗
√

∑N
j=1 µ2

ij

. (5)

3.5. WKNN Algorithm

WKNN algorithm is a common fingerprint positioning algorithm. It utilizes the signal-
domain distances to find the nearest RPs to realize the location estimation. In this paper,
with normalized signal-domain distance, it was used to estimate the location. The detailed
processes are shown, as below.

Step (1): Traverse the fingerprint database and calculate three signal-domain distances
between the online RSS readings and each fingerprint. Based on the above description,
there are many signal-domain distances, such as ED, CD, Sorensen signal-domain distance,
and so on.

Step (2): Sort the signal-domain distances and find K RPs with minimum signal-
domain distances. The weight of the nearest RP was calculated with the signal-domain
distance by Equation (6);

wi =
1

distsignal
(6)

where distsignal represents the signal-domain distance between online fingerprint and the
ith RP, and wi is the weight of the ith RP.
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Step (3): Compute the weighted mean coordinates of K nearest RPs, which was
regarded as the positioning result. It can be expressed as:

(xwknn, ywknn) =
K

∑
i=1

wi ∗ (xi, yi)/
K

∑
i=1

wi, (7)

where (xwknn, ywknn) is the estimated location, and (xi, yi) is the position of the ith near-
est RP.

3.6. DBSCAN Algorithm

DBSCAN algorithm is a classic density-based clustering algorithm proposed by Martin
and Hans in 1996 [60]. It is to find the cluster and noise based on the density. There are two
important definitions: the Eps neighborhood of a point and density threshold, respectively.
The Eps neighborhood of a point p can be denoted by NEps(p) and the points in the
neighborhood can be expressed as:

NEps(p) = {q ∈ PS|dist(p, q) ≤ Eps}, (8)

where PS represents the point set, p and q present the points in the set, dist(p, q) represents
the distance between two points, and Eps is the radius of the neighborhood. When the
distance dist(p, q) is lower than Eps, indicating the point q is the direct density-reachable
form p. If the point g is direct density-reachable from q and the distance dist(p, g) is lower
than Eps, and p is density-reachable from q.

Suppose the Eps-neighborhood of a point contains at least a minimum number of
particles, then the point is a core point, as shown in Equation (9);∣∣NEps(p)

∣∣≥ MinPts (9)

where | NEps(p)
∣∣ denotes the number of points in the Eps-neighborhood of the point p, and

MinPts represents the minimum number of points in the neighborhood of a core particle.
When a point had several points in its Eps-neighborhood and the number of these

points was smaller than MinPts, this point was a border particle, and there was no point in
the Eps-neighborhood of noise point.

Initially, the DBSCAN algorithm may start with an arbitrary point p and retrieve all
points that were density-reachable from the given point p, as shown in Figure 2a. When
the number of density-reachable points was greater than or equal to MinPts, a cluster
composed of point p and its density-reachable points could be obtained, as shown in
Figure 2b. When the search of density-reachable points of the current point was over, the
DBSCAN algorithm would visit the next core point until all core points were traversed.
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Figure 2. The principle of the DBSCAN algorithm. (a) All points density-reachable from the given 
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Figure 2. The principle of the DBSCAN algorithm. (a) All points density-reachable from the given
point p, (b) the given point p and its density-reachable points forming the cluster.
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Two clusters were merged into one cluster when the minimum distance between them
was lower than Eps. And the minimum distance was the separation between two closest
points in two clusters, which can be denoted as:

dist
(
Si, Sj,

)
= min{dist(p, q)}

∣∣p ∈ Si, q ∈ Sj, (10)

where Si and Sj represent a cluster, respectively, dist
(
Si, Sj,

)
presents the minimum distance

between Si and Sj, and p and q are the particles of Si and Sj, respectively.

4. The Proposed Algorithm
4.1. Overview

The system overview of the proposed algorithm is illustrated in Figure 3, including
the offline and online stages. The signal-domain distances based on ED, MD, and CD
between online fingerprint and offline fingerprints in fingerprint database were calculated,
respectively. For one signal-domain distance, K RPs corresponding to K minimum distances
can be found. In other words, three group of K RPs would be obtained. According to
whether these K RPs were the same, the subsequent procedures could be divided into two
cases. When the K RPs based on ED are the same as those based on MD and CD, these K
nearest RPs could be treated as reliable ones, which would be used for further position
calculation. When there were differences among three groups of K RPs, there might be
unreliable RPs for further selection.

The position-domain distances between RPs were computed and combined with three
signal-domain distances to generate the fused distance based on ED, fused distance based
on CD, and fused distance based on CD. Then, these three fused distances were employed
by DBSCAN algorithm to cluster the corresponding K RPs, respectively. Based on the
high-resolution distance selection principle, the optimal signal-domain distances could be
determined by the maximum number of clusters. Since WKNN was better than KNN and
NN, the location estimation was achieved with WKNN.
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4.2. Fused Distance

In this paper, the concept of fused distance enhanced by a normalization algorithm
with changeable intervals was proposed. It was the fusion of position-domain and signal-
domain distances. Initially, the position-domain and signal-domain distances were adjusted
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to the same metric with normalization algorithm. Then, their weighted sum was the fused
distance, as shown below:

dist f usion = α ∗ Nor
(

distsignal

)
+ (1− α) ∗ Nor

(
distposition

)
, (11)

where dist f usion denotes the fused distance, distsignal and distposition represent the signal-
domain and position-domain distances, respectively.α is the fusion parameter between 0
and 1, and Nor(·) is the normalization algorithm.

Normalization algorithm is to transform the dimensional expression is transformed
into a dimensionless expression. It can adjust different metrics data to the same metric.
Since position-domain and signal-domain distances belong to different metrics, the nor-
malization algorithm is introduced to process the three signal-domain distances and a
position-domain distance.

Generally, normalization will map the data into a value between 0 to 1. However, it was
inappropriate to have a zero normalized distance, because the reciprocal of normalized
distance was regarded as the weight of the nearest RP. Thus, we improved the traditional
normalization algorithm. The transformed interval of the revised normalization algorithm
could be changed based on actual demands. The computation method of the improved
normalization is shown in Equation (12), which could map the data into a value between 1
to P

distnor = k ∗ dist− distmin
distmax − distmin

+ 1, (12)

where distnor presents the normalized distance, dist represents the distance to be normal-
ized, k denotes the slope, distmax and distmin are the maximum and minimum distances.
The change of the interval could be realized based on the selection of slope. The value of
slope k should be P− 1.

4.3. Description of TD

TD was defined as the fusion of three signal-domain distances, and it was the sum of
three normalized signal-domain distances, which can be expressed as:

TD = Nor(ED) + Nor(MD) + Nor(CD)=



EDNor
1 + MDNor

1 + CDNor
1

EDNor
2 + MDNor

2 + CDNor
2

EDNor
3 + MDNor

3 + CDNor
3

...
EDNor

3 + MDNor
3 + CDNor

3


, (13)

where TD denotes the sum of three normalized signal-domain distances, and ED, MD,
and CD represent the signal-domain distances based on ED, MD, and CD, respectively,
and EDNor

i ,EDNor
i , and EDNor

i represent the normalized values of ED, MD, CD between
the online fingerprint and the ith offline fingerprint.

4.4. DBSCAN and TD Integrated WKNN Algorithm

In order to enhance the performance of fingerprinting, this paper proposed the DB-
SCAN and TD integrated WKNN algorithm, which applied TD to enhance the probability
of obtaining reliable RPs, and adaptively selected an optimal signal-domain distance to
achieve the positioning computation, and used the proposed rule to judge whether RPs
were credible. There were two stages in the proposed algorithm: offline and online stages.
In the offline stage, the RSS measurements on existing RPs were collected with the smart-
phone. Then, the mean of a sequence of RSS and coordinates of RPs were utilized to
build the fingerprint database. The online stage included three steps: same RPs judgment,
clustering and distance selection, and positioning calculation.
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Initially, the offline fingerprints were gathered, as shown below:

RSS = {rss1, rss2, · · · rssN}. (14)

Based on the signal-domain distance computation method, ED, MD, and CD between
the offline fingerprints and fingerprint databases were calculated. Then, the normalization
algorithm with an interval of 1 to 10 (P in Equation (6) is 10, the slope k is 9) was used to
adjust the ED, MD, and CD to the same metric, which can be expressed as: Nor(ED)

Nor(MD)
Nor(CD)

 =

 distE_N
1 , distE_N

2 , · · · distE_N
M

distM_N
1 , distM_N

2 , · · · distM_N
M

distC_N
1 , distC_N

2 , · · · distC_N
M

. (15)

We could obtain K nearest RPs according to single normalized signal-domain distance,
as shown in Equation (16). In Equation (17), the nearest RP found by each signal-domain
distance was available and the RP corresponding to the minimum distance was credible.
Finally, these credible RPs were used to obtain the positioning results, and WKNN was
employed as the positioning algorithm. RPED

RPMD
RPCD

 =

 {(
xED

1 , yED
1
)
,
(
xED

2 , yED
2
)
, · · · ,

(
xED

K , yED
K
)}{(

xMD
1 , yMD

1
)
,
(
xMD

2 , yMD
2
)
, · · · ,

(
xMD

K , yMD
K
)}{(

xCD
1 , yCD

1
)
,
(
xCD

2 , yCD
2
)
, · · · ,

(
xCD

K , yCD
K
)}

 (16)

RPED = RPMD = RPCD (17)

However, the nearest RPs searched by ED, MD and CD are often different, indicating
that there may be unreliable RPs. Thus, we should choose the optimal distance to perform
positioning to reduce the probability of getting unreliable RPs. That is, one, two, or three
distances can be used in each localization process to realize high-precision fingerprinting
according to the actual situation.

In this paper, we used the number of clusters as the index of distinction degree of
signal-domain distance. A greater number of clusters indicated more resolution. DBSCAN
and fused distance were used for clustering of RPs, and there were three fused distances,
which can be denoted as:

 DistE_P
DistM_P
DistC_P

 =


(

distE_P
1 , distE_P

2 , · · · , distE_P
K

)(
distM_P

1 , distM_P
2 , · · · , distM_P

K

)(
distC_P

1 , distC_P
2 , · · · , distC_P

K

)
. (18)

where distE_P
i is the fused distance of the ith signal-domain ED and position-domain

distance, and distM_P
i presents the fused distance of the ith signal-domain MD and position-

domain distance, and distC_P
i presents the fused distance of the ith signal-domain CD and

position-domain distance.
Based on these fused distances, we could obtain three groups of clustering results, as

shown below:

 ClusterE_P

ClusterM_P

ClusterC_P

 =


(

clusterE_P
1 , clusterE_P

2 , · · · , clusterE_P
l1

)(
clusterM_P

1 , clusterM_P
2 , · · · , clusterM_P

l2

)(
clusterC_P

1 , clusterC_P
2 , · · · , clusterC_P

l3

)
. (19)

where ClusterE_P, ClusterM_P, and ClusterM_P represent the cluster sets based on three
fused distances, respectively, and clusterE_P

i present the ith cluster in ClusterE_P, and l1, l2,
and l3 are the number of clusters. Theoretically, the larger the number of clusters is, the
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higher resolution of distance used for clustering is. This rule can be utilized to select the
optimal signal-domain distance and improve the positioning accuracy.

We designed an adaptive selection strategy of the optimal signal-domain distance and
reliable RPs according to three cases of l1, l2, and l3, as shown below.

Case 1: l1 = l2 = l3.
In this situation, the degree of differentiation between ED, MD, and CD was considered

to be consistent. TD (ED, MD, and CD) were simultaneously applied to calculate the
positioning results, as shown in Equation (20).

Distoptimal = TD = Nor(ED) + Nor(MD) + Nor(CD) (20)

Then, we sorted the Distoptimal and found the nearest RPs of density threshold quantity.
The coordinates and signal-domain distance of these nearest RPs were utilized to estimate
the location. WKNN algorithm was used as the positioning algorithm.

Case 2: li > l j = lk ||li < l j = lk , (i 6= j 6= k, i, j, k = 1, 2, 3) .
There were two situations under this case. One was that there was two maximum

number of clusters, and the other was that there was a maximum number of clusters.
We chose the signal-domain distance corresponding to the maximum number of clusters,
as shown below.

Distoptimal =



Nor(ED) + Nor(MD) (l1 = l2 > l3)
Nor(ED) (l1 > l2 = l3)

Nor(MD) + Nor(CD)(l2 = l3 > l1)
Nor(MD)(l2 > l1 = l3)

Nor(ED) + Nor(CD)(l2 = l3 > l1)
Nor(CD)(l3 > l1 = l2)

 (21)

Then, we sorted the Distoptimal and found the nearest RPs. The coordinates and
signal-domain distance of these nearest RPs were utilized to estimate the location. WKNN
algorithm was applied for positioning, and K value was Minpts, i.e., density threshold.

Case 3: li > l j > lk , (i 6= j 6= k, i, j, k = 1, 2, 3).
There was a maximum number of clusters. We selected the signal-domain distance

corresponding to the maximum number of clusters, as shown below.

Distoptimal =

 Nor(ED) (l1 = max(l1, l2, l3))
Nor(MD) (l2 = max(l1, l2, l3))
Nor(CD) (l3 = max(l1, l2, l3))

 (22)

Then, the nearest RPs could be found and used to estimate the location. WKNN with
K value of Minpts was the positioning algorithm.

In this paper, the parameter α of the fused distance was 0.7, and the value of MinPts
was 3, and the neighborhood radius Eps was 3.1 m, because the position-domain distance
accounted for 30% of the fusion distance. The above parameters will remain changeless in
the following tests to prove the universality of the proposed algorithm.

5. Experiment

All positioning algorithms were achieved based on the MATLAB 2021b simulation
platform. SVM, GPR, and rank algorithms were selected as the comparison methods to
assess the positioning performance of the proposed algorithm. Mean absolute error (MAE)
and root mean square error (RMSE) were used as the indexes of accuracy and stability,
respectively. MAE is the arithmetic average of the absolute errors between estimated values
and true values. RMSE is the square root of the quadratic mean of differences between
estimated values and true values.

Offline fingerprints and their corresponding coordinates were utilized as the training
data to construct positioning models for SVM, GPR, and rank algorithms. A Bayesian
optimization algorithm was employed to solve the parameters of SVM. The parameters of
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GPR model were solved with the quasi-Newton algorithm. Rank algorithm applied the
sorting results of RSS measurements to achieve the position calculation.

5.1. Experiment Area and Experimental Description

There were two classic scenarios for experimental tests, Scenarios A and B, as shown
in Figures 4 and 5.
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Figure 4. Scenario A. The wooden desk is in orange, the wooden cabinet is in red, the plastic chair is
in blue. Wireless signal station denotes access point, reference points, and test points are illustrated
in different colors.

Scenario A was a large room, the graduate student’s laboratory, with a complex layout,
and easily seen in the existing indoor environment. The maximum length and width were
19.43 m and 18 m, respectively. In this scenario, there were 67 RPs marked by orange
circles and 24 TPs marked by blue circles. The interval of most RPs was 1.2 m, while that
of some RPs was 1.8 m. Both the existing layout and the tiles with the length and width
of 60 cm determined the interval, facilitating the establishment of indoor grids. TPs were
arranged randomly, and the 24th TP was outside the indoor grid. Eight APs using a Wi-Fi
6th generation protocol with a dual frequency band were pre-placed in different heights in
the large room. Six APs were fixed on the wall at a height of 4 m, and one AP was placed at
a height of 2 m on a steel filing cabinet, which was marked by the letter F. These seven APs
were on the left of the large room. The another one was set on a big wooden table on the
right of the room. Besides, another 17 APs were outside the room and arranged at different
locations, such as in the long corridor, meeting room, and office room. The collection time
and frequency of each RP were 80 s and 1Hz, respectively, and those at each TP were 40 s
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and 1 Hz, respectively. During RSS collection, all personnel in this room and somewhere
else were moving normally. Many MAC addresses could be heard at each RP and TP. The
lost RSS was replaced by −100 dBm.

Scenario B was a corridor with an overall length of 211 m and had almost 3200 m2. The
black solid squares and green solid circles represent RP and TP, respectively. The distance
between two adjacent RPs was 1.2 m and the total number of RPs was 379. The RSS data
were collected on every RP and used to generate the fingerprints. The sampling time was
60 s and the sampling frequency was 1 Hz.

The test data should be collected to evaluate the performance of the proposed algo-
rithm after the RSS data collection on RPs was completed. The total number of TPs was 86.
The acquisition time and frequency were 10 s and 1 Hz, respectively. The data of 10 s was
taken as one set of test data.
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5.2. Stability of RSS Measurement

This subsection will mainly study the stability of RSS measurements by applying
RMSE of ten minutes RSS measurements at a fixed location. The approximate true value
of RSS was hard to acquire due to the complexity of radio propagation and the lack of
high-precision measuring equipment. Thus, the accuracy analysis of RSS measurements
was hard to conduct. While the mean of RSS measurements for a long time could be seen
as true value. Based on the mean of RSS measurements, RMSE of RSS measurements might
be obtained and regarded as an index of stability of RSS measurements.

Figure 6 presented the RMSEs of 600 groups of RSS measurements from 12 APs.
All RMSEs are greater than 2 dBm, which indicated that there were wide fluctuations
in the RSS measurements. In order to analyze the change of the RSS measurements, the
RSS measurement of AP 6 was selected as experimental data, as shown in Figure 7. The
difference between the maximum and minimum RSS measurements was 30 dBm, which
could cause a large positioning error. When facing the above huge changes, the acquired
nearest RPs of each positioning request might be different even if at the same position,
which caused the changes of multiple localization results of the same position. Thus,
it is necessary to select an optimal signal-domain distance to reduce the impact of RSS
fluctuations in terms of positioning accuracy and stability.
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5.3. Impact of the Number of APs and RPs on Positioning Accuracy

In this subsection, we firstly studied the impact of the number of APs on positioning
accuracy. The number of deployed APs in the scenario was 8. The number of corresponding
MAC addresses was 16. Because there were 17 APs displayed outside the scenario A,
50 MAC addresses could be detected in total at RP and TP. Therefore, 16 and 50 MAC
addresses were used for estimating position, respectively, and WKNN was the localization
algorithm. Figure 8 gives the MAEs of WKNN positioning method with 16 and 50 MAC
addresses under different K values from 1 to 10. The MAE of WKNN positioning method
with 50 MAC addresses was smaller than that with 16 APs on any K value. However, with
the increase of K value, the difference of MAE between positioning method with 50 and
16 MAC addresses under the same K value was getting smaller gradually. At some large K
value, the difference may become very small—close to zero. When K was between 1 and
10, the more the number of APs was, the higher the positioning accuracy was.
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Then, the influence of the number of RPs on positioning accuracy was studied. The
test area was Scenario B, and the number of RPs used in fingerprinting localization were
352, 126, 62 and 36. NN was the positioning algorithm. The experimental results were
shown in Table 2. We could find a trend that the accuracy would become better with the
increasing number of RPs.

Table 2. The MAEs of positioning method with different number of RPs.

Number of RPs MAE (m)

352 3.011
126 4.017
62 3.636
36 5.096

5.4. Differences among ED, MD, and CD

The experiment was conducted to study the positioning effect under different signal-
domain distances, and the test area was Scenario B. The ED-based signal-domain distances,
MD-based signal-domain distances and CD-based signal-domain distances were calculated
with the online fingerprint and fingerprint database, respectively, and the nearest RPs
were found based on different signal-domain distances, respectively. Then, the positioning
results were obtained with the NN algorithm.

The positioning errors of WKNN based on ED, MD, and CD, respectively, are shown
in Figure 9. The positioning results varied when the signal-domain distance was different.
To show the positioning effects based on different signal-domain distances, two small areas
including multiple points were chosen to show the positioning performance, as illustrated
in Figure 9a,b. In Figure 9a, the ED-based signal-domain distance was best at Point 22, while
in Figure 9b, the CD-based signal-domain distance might be best at Point 46. And Figure 9b
presented that the optimal signal-domain distance was MD at Point 47. The experimental
results showed that the positioning results were different when the signal-domain distance
was different. However, when three signal-domain distances were simultaneously used
for positioning estimation, more reliable nearest RPs could be acquired. Thus, this paper
proposed the WKNN algorithm based on TD, aiming to get more reliable nearest RPs.
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5.5. Positioning Performance by Using TD

TD aims to increase the possibility of getting reliable nearest RPs and improve posi-
tioning precision. The experiment was conducted to research the positioning effect of TD,
and NN was the positioning algorithm. TD was compared with ED, MD, and CD. The
experimental results were shown in Figure 10. It could be seen that the positioning effect of
TD was better than those of ED, MD, and CD.
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The positioning effect of TD was the best among the four algorithms, with an MAE of
2.784 m and a standard deviation (STD) of 2.472 m. The MEs of MD, CD, ED were 3.092 m,
2.796 m, and 3.038 m, respectively. Besides, the RMSE of TD was lower than those of MD,
CD, and ED.
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Besides, the results indicated that the use of TD could improve the positioning effect
and apply the advantages of three signal-domain distances. However, the TD-based
fingerprinting could not select the optimal signal-domain distance for each localization,
which might be the reason that the MAE of TD was similar to MD. Therefore, the realization
of high-precision positioning needs to select optimal signal-domain distances.

5.6. Clustering Effect of DBSCAN

In this subsection, we will introduce the clustering effect of DBSCAN. Figure 11 shows
the clustering effect of three positioning methods. In this paper, the value of MinPts
was three.

Fused distances based on ED, MD, and CD were the fusion of position-domain distance
and one of three signal-domain distances, ED-based signal-domain distance, MD-based
signal-domain distance and CD-based signal-domain distance, respectively. The clustering
results showed that DBSCAN using the fused distance had good clustering effects. The
number of clusters was different when fused distances were different. This denoted the
distinction degree of the fused distance was different in once localization.
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In Figure 11a, the number of clusters based on three fused distances, respectively,
was the same. The clustering results of fused distances based on CD, MD, and ED were
similar. This indicated that there was a small difference among the three fused distances.
In Figure 11b,c, the bigger the distinction degree of the fused distance was, the more the
number of clusters was.
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5.7. Performance of the Proposed DBSCAN-TD Integration WKNN Algorithm in Scenario A

In this subsection, we will evaluate the proposed method in Scenario A. Based on
the collected testing data, the positioning experiment was conducted to study the stability
and accuracy of the proposed method. The MAE was regarded as the index of accu-
racy. The stability of the positioning algorithm was measured with the RMSE. In order
to rate the performance of the proposed algorithm, SVM, GPR, and rank were used as
comparison algorithms.

The experimental results are shown in Figure 12. The MAE and RMSE of the pro-posed
algorithm were 3.721 and 4.227 m, respectively, and those of SVM were 5.077 and 5.734 m,
respectively. The MAEs of GPR and rank were 4.313 and 4.979 m, respectively, and RMSEs
of those were 4.835 and 5.607 m, respectively. Note that the K of rank was 21.
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More detailed errors are shown in Table 3. Compared with SVM, the stability and
accuracy of the proposed algorithm were improved by 26.71% and 26.29%. The positioning
precision of the proposed algorithm was improved by 13.72% and 25.26%, respectively,
compared with GPR and rank. The stability of the proposed algorithm had an improvement
of 12.58% and 24.61%, respectively, compared with GPR and rank.

Table 3. The maximum errors, MAEs, and RMSEs of SVM, GPR, rank, and the proposed algo-
rithm (m).

Algorithm Maximum Error MAE RMSE

SVM 9.562 5.077 5.734
GPR 8.729 4.313 4.835
Rank 9.737 4.979 5.607

Proposed algorithm 8.256 3.721 4.227

Besides, the maximum errors of SVM, GPR, rank and proposed algorithm were 9.562,
8.729, 9.737, and 8.256 m. The maximum error of the proposed algorithm was lower than
those of SVM, GPR, and rank. Therefore, the proposed algorithm was better than SVM,
GPR, and rank, which is more suitable in a room with a complex layout for positioning.

Actually, the positioning performances of SVM, GPR, rank and the proposed algorithm
were not ideal in Scenario A, and the minimum MAE was only 3.721 m. Based on the
description of Section 5.1, the number of APs in Scenario A was enough for relatively
high fingerprint localization in theory. However, the actual positioning effect was not very
good. The reason should be that the Wi-Fi signals were seriously disturbed by the complex
layout of Scenario A, pedestrians, etc. The proposed algorithm still had great improvement,
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compared with SVM, GPR, and rank, indicating that the proposed algorithm could perform
better in a complex scenario.

5.8. Performance of the Proposed DBSCAN-TD Integration WKNN Algorithm in Scenario B

This subsection will mainly illustrate the performance of the proposed algorithm
in Scenario B. SVM, GPR, and rank were also utilized as comparison algorithms. The
experimental results are shown in Figure 13, which were the cumulative distribution
functions (CDFs) of the SVM, GPR, rank, and proposed algorithm. The maximum errors
were 16.696, 19.992, 22.615, and 8.461 m, respectively. This indicated that the proposed
method could avoid large errors and had better stability. In addition, the minimum errors
were 0.138, 0.444, 0.209, and 0.014 m, proving that the proposed algorithm had decimeter-
level positioning ability.

Besides, the experimental area was a relatively huge opening-working area, so many
external factors, such as multipath, non-line of sight, pedestrians, may influence the accu-
racy of fingerprinting. Generally, the fingerprint positioning in a larger indoor environment
has poor performance. However, the probability of positioning error of the proposed
method lower than 1 m reached 33.7%, and those probabilities of SVM, GPR, and rank
were 10.47%, 12.79%, and 12.79%, respectively. Obviously, the proposed method achieved
a bigger probability that made positioning errors below 1 m.
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Figure 13. CDFs of SVM, GPR, rank, and the proposed method.

Figure 14 shows the positioning effects of SVM, GPR, rank, and the proposed method.
The upper quartile, median, and lower quartile of the proposed method were better than
those of SVM, GPR and rank. Therefore, the positioning effects of the pro-posed method
was better than those of SVM, GPR, and rank.
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Table 4 shows the detailed statistical results of positioning errors of SVM, GPR, rank
and proposed method. The cumulative error probabilities (50%, 70% and 90%) and corre-
sponding errors are shown for comprehensive comparison. For example, the 50% errors of
SVM, GPR, rank, and the proposed method were 3.215, 3.127, 4.515, and 1.745 m, which
indicated that the proposed algorithm owned a better performance.

Table 4. Statistical results of positioning errors of SVM, GPR, rank and the proposed method (m).

Algorithm 50% Error 70% Error 90% Error MAE RMSE

SVM 3.215 4.238 7.414 3.820 4.735
GPR 3.127 4.095 6.328 3.630 4.583
Rank 4.515 6.208 11.407 5.293 6.753

Proposed algorithm 1.754 2.636 3.970 2.094 2.638

Besides, the MAEs and RMSEs of SVM, GPR, rank and the proposed method were also
displayed in Table 4. The MAE and RMSE of the proposed method were 2.094 and 2.638 m,
respectively. The MAEs of SVM, GPR and rank were 3.82, 3.63, and 5.293 m, respectively,
and the RMSEs of SVM, GPR, and rank were 4.735, 4.583, and 6.753 m, respectively.
Obviously, rank had the worst positioning effect, with a poor accuracy and stability.

Compared with SVM, GPR, and rank, the MAE of the proposed method was reduced
by 45.18, 42.31, and 60.44%, respectively. The RMSE of the proposed method had a great im-
provement of 44.29, 42.44, and 60.94%, respectively. This indicated that SVM, GPR, and rank
were not suitable for a large indoor environment, compared with the proposed method.

Therefore, the positioning performance of the proposed method was better than that
of SVM, GPR, and rank in both complex and large indoor environments.

6. Conclusions

This paper proposed a novel DBSCAN and three distances (TD) integrated Wi-Fi
positioning algorithm. Three distances, DBSCAN, and high-resolution distance selection
principle were combined to obtain more reliable adjacent RPs and optimal signal-domain
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distance in the online stage with the improvement of positioning performance. And the
fused distance was enhanced by a normalization algorithm with changeable intervals,
which could not only consider both the spatial layout and signal strength of RPs, but
also map position-domain and signal-domain distances into the same metrics. Since the
proposed method needs a period of observation time, while the speed of a walking person
or moving object is larger than 1 m/s. So, our proposed method is applicable only for the
location of devices or objects in semi-stationary conditions.

Scenario A is a complex-layout room with many post-graduates and a complex layout,
and Scenario B is a large indoor environment covering 3200 m2. Scenarios A and B are
typical representatives of large and complex indoor environment. Compared with SVM,
GPR and rank positioning methods, the improvement rates of positioning accuracy and
stability of the proposed algorithm in Scenarios A and B were up to 60.44% and 60.93%,
respectively. Therefore, the proposed algorithm has a better positioning performance in
large and complex indoor environment.
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