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Abstract: Aiming at the problem of high-precision positioning of mass-pedestrians with low-cost
sensors, a robust single-antenna Global Navigation Satellite System (GNSS)/Pedestrian Dead Reck-
oning (PDR) integration scheme is proposed with Gate Recurrent Unit (GRU)-based zero-velocity
detector. Based on the foot-mounted pedestrian navigation system, the error state extended Kalman
filter (EKF) framework is used to fuse GNSS position, zero-velocity state, barometer elevation, and
other information. The main algorithms include improved carrier phase smoothing pseudo-range
GNSS single-point positioning, GRU-based zero-velocity detection, and adaptive fusion algorithm of
GNSS and PDR. Finally, the scheme was tested. The root mean square error (RMSE) of the horizontal
error in the open and complex environments is lower than 1 m and 1.5 m respectively. In the indoor
elevation experiment where the elevation difference of upstairs and downstairs exceeds 25 m, the
elevation error is lower than 1 m. This result can provide technical reference for the accurate and
continuous acquisition of public pedestrian location information.

Keywords: pedestrian navigation; GRU-based zero-velocity detection; integration navigation

1. Introduction

The joint application of low-cost inertial sensors, miniature global navigation satellite
system (GNSS) receivers, and barometers has been one of the research hotspots in the
field of navigation in the past decade [1–3]. Accurate and continuous pedestrian location
information is widely used in professional applications such as armed police duty, field
walking, pipeline maintenance, etc. The satellite navigation system can provide users with
good location services in an open outdoor environment [4,5]. However, the system cannot
work well in some scenarios where GNSS signals are unavailable [6,7]. Other information
sources such as wireless local area networks (WLAN) [8], ultra-wideband (UWB) [9], radio
frequency identification (RFID) [10], etc., can directly provide location information. How-
ever, there is a problem of signal occlusion in indoor scenarios. Generally, WiFi positioning
and UWB positioning require extensive installation of signal receiving devices during the
actual operation. Whether fingerprint positioning or trilateral measurement, WiFi posi-
tioning cannot be separated from offline surveying and mapping, limiting its application
mode. Cameras [11] and radar [12] can improve the robustness of the system, however,
these sensors only work effectively when there are enough features in the environment,
which limits their application.

Some solutions such as multi-source information fusion have been proposed around
the demand for continuous and reliable pedestrian navigation. Zhu et al. proposed a novel
pedestrian navigation system (PNS) integrating RTK/Pseudolite/LAHDE/IMU, which
uses manmade landmarks deployed at the entrance of the corridor to determine whether
pedestrians are in an indoor corridor. If pedestrians do not follow a route with landmarks,
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the error will accumulate quickly [13]. Xin et al. presented a joint positioning scheme com-
bining Bluetooth and inertial navigation systems, which provides meter-level positioning
services without additional facilities [14]. Cavallo et al. introduced a solution which uses
global position system (GPS) and Bluetooth to assist pedestrian trajectory calculation. This
solution can continuously provide reliable positioning results for pedestrians in indoor or
outdoor environments [15]. In [16], Polak et al. extended the power level measurement
by using multiple anchors and multiple radio channels and focuses on the employing of
machine learning methods to improve localization accuracy in an indoor environment
under different conditions. In [17], Sun et al. integrated ultra-wideband technology and
PDR to solve the problem of accumulated errors in inertial navigation systems. Compared
with traditional methods, the positioning accuracy has been effectively improved.

As pedestrian movement patterns are complex, providing high-precision positioning
in a complex environment is difficult by using a single navigation technology. With
the continuous development of micro electro mechanical system (MEMS) technology,
many sensor modules can be highly integrated into a small, low-power module, which
provides natural advantages for public pedestrian navigation [18]. Magnetometer-assisted
pedestrian navigation has long been widely studied [19,20]. To make magnetometer
information play an active role in the system, the soft and hard magnetic effects must be
calibrated, and the geomagnetic interference must be modeled and compensated [21,22].
Although the pedestrian navigation system based on inertial measurement units (IMU)
can continuously provide positioning information, the positioning accuracy will quickly
accumulate over time [23]. Mining pedestrian motion constraint information is of great
significance for improving the performance of low-cost sensors. Pedestrians have natural
zero-velocity information constraints during walking. Therefore, a zero-velocity update
(ZUPT) algorithm can be widely used to suppress error accumulation [24]. In the zero-
velocity phase of a gait cycle, the ZUPT algorithm combined with the extended Kalman
filter (EKF) can effectively improve the positioning accuracy [25,26].

For this reason, various gait detection schemes have been proposed [27–33]. Skog
et al. used the output of IMU to offer a zero-velocity detection method based on a general
likelihood ratio test (GLRT) [27]. Experiments show that this method achieves good results
at a slow walking speed. Wang et al. proposed an adaptive stance-phase detection method
based on inertial sensor, which deals with the measurement fluctuations in swing and stance
phases differently and performs well in the presence of measurement fluctuations [28]. Liu
et al. adjusted the threshold of zero-velocity detection dynamically according to the output
of the accelerometer [29]. In [30], Wang et al. designed an algorithm to adjust the length
of the window without changing the threshold. These methods do not clearly explain the
connection with the existing zero-velocity detection methods based on maximum likelihood
detection. In recent years, many researchers have proposed some detection methods based
on artificial intelligence (hidden Markov model (HMM) [31], support vector machine
(SVM) [32], long short term memory (LSTM) [33]) without threshold of zero-velocity
detection in the pedestrian navigation system. Compared with traditional zero-velocity
detection methods, these methods do not need to set specific thresholds. Although these
methods require a lot of data to train the model and have a high computational cost, they
are more robust than the traditional methods.

Although the traditional zero-velocity detection method can detect the zero-velocity
state of pedestrians, it is hard to set the threshold of zero-velocity detection appropriately.
The GNSS/SINS integrated navigation system can provide reliable positioning results in
outdoor open environment, but it is not available in an indoor environment as the GNSS
signal is interrupted. In this article, a robust single-frequency GNSS/PDR pedestrian
navigation system is proposed. The error state Kalman filter is used to fuse GNSS posi-
tioning information, zero-velocity state, barometer elevation, and other information. The
zero-velocity detector based on GRU can accurately detect the motion state of pedestrians.
The adaptive robustness algorithm and lever arm model are used to make the system more
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robust. Experiments show that the proposed algorithm can obtain reliable positioning
results in complex environments.

The rest of this article is arranged as follows. The second section presents the
GNSS/PDR integration scheme architecture. In the third section, the main algorithms
of the scheme are introduced, including improved carrier phase smoothing pseudo-range
GNSS single-point positioning algorithm, GRU-based zero-velocity gait detection, and
adaptive fusion algorithm of GNSS and PDR. The fourth section introduces the experiment
results and analysis. The conclusion of this paper is given in the fifth section.

2. GNSS/PDR Integration Scheme Architecture

A robust integration scheme for single-frequency single-antenna GNSS/PDR in com-
plex environments is proposed. It is designed to provide reliable, continuous, and accurate
positioning results for low-cost mass pedestrian positioning in complex environments.
Algorithmically, this integration scheme uses the error state EKF as the algorithm frame-
work, considering the gait characteristics of pedestrian walking, and fusing GNSS position,
barometer height, and other information. From the point of view of program realization,
the high efficiency of calculation, the scalability of code, and modular programming are
evaluated. The code structure is clear, which is convenient for developers to maintain,
update, and collaborate. The scheme is mainly composed of the following five parts:

• Single-frequency data quality analysis, preprocessing, etc.
• Improve carrier phase smoothing GNSS single point positioning.
• GRU-based zero-velocity detector.
• Adaptive GNSS/PDR fusion positioning.
• Error analysis and visualization of positioning results.

The data fusion strategy flowchart is shown in Figure 1. Because of the unpredictability
of pedestrian motion patterns and low sensor accuracy, the foot-mounted pedestrian
navigation system is used as the basis, and the error state Kalman filter is used as the data
fusion framework to deeply explore the performance of MEMS sensors. Motion constraint
information is used to improve the positioning capability of the system. Figure 1 shows
the single-frequency GNSS/PDR positioning algorithm. It mainly includes four parts:
(1) GNSS positioning algorithm, (2) PDR algorithm, (3) GNSS/PDR positioning algorithm,
(4) GRU-based gait detection algorithm.
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The overall architecture of the scheme is shown in Figure 2. The three sub-modules
included are named INS module, GNSS module, and PNS module. INS module implements
algorithms related to INS, GNSS module implements algorithms related to GNSS, and PNS
module implements integrated navigation, self-adaptation, and result in display. Each
sub-module contains its basic function and main algorithm.
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3. Fusion Method of GNSS and ZUPT-Aided PDR

The algorithm flow chart is shown in Figure 1. This section shows the GNSS data
preprocessing strategy, single-frequency single-antenna positioning algorithm, GRU-based
zero-velocity detection, and GNSS/PDR integrated navigation algorithm.

3.1. GNSS Data Preprocessing Strategy and Single-Frequency GNSS Positioning Algorithm

Evaluating the data quality of observations from low-cost GNSS modules can provide
a basis for the preprocessing of observations. The satellite visibility, carrier-to-noise ratio
(C/N0), and pseudo-range noise are quantitatively evaluated and analyzed based on
measured data. The number of visible satellites will directly affect the number of redundant
observations in the data preprocessing. The C/N0 is an essential indicator of the quality of
the received observations. The GNSS/PDR integration scheme uses a variety of strategies
to preprocess GNSS data, including detecting cycle slips and removing it, and for the
problem that observations are prone to gross errors when the observations are at a low
signal-to-noise ratio. Eliminate satellites below the threshold to avoid introducing abnormal
observation information.

Hatch filtering is a standard processing method of traditional single-frequency carrier
smoothing pseudo-range [34]. The traditional single-frequency hatch filter algorithm is
prone to the problems of divergence of smoothing results and decreased accuracy due to the
influence of ionospheric delay changes. In [35], Chebir et al. proposed a method based on
applying specific transformations to the GNSS signals received in unfavorable environment,
which can effectively receive and process GNSS signals in unfavorable environment. In [36],
Park used a moving window algorithm to improve the original single-frequency smoothing
pseudo-range algorithm. There are two forms of single-frequency smoothing, and the
corresponding smoothing between epochs can be defined as:

ρ̂(tk) =
1
k

ρ(tk) +

(
1− 1

k

)
[ρ̂(tk−1) + δφ(tk, tk−1)], k ≥ 1 (1)

ρ̂(tk) =


1
k ρ(tk) +

(
1− 1

k

)
[ρ̂(tk−1) + δφ(tk, tk−1)], 1 ≤ k ≤ M

1
M ρ(tk) +

(
1− 1

M

)
[ρ̂(tk−1) + δφ(tk, tk−1)], k > M

(2)



Remote Sens. 2022, 14, 300 5 of 18

where ρ(t) and φ(t) are the distances of the observed pseudo-range and carrier phase, re-
spectively, and M is the length of the filter, which is determined according to the smoothing
time T and the observation sampling τ. δφ(tk, tk−1) is the difference operator.

3.2. GRU-Based Zero-Velocity Detection

Recurrent neural network (RNN) is now widely used in time series-based forecasting
tasks (pedestrian trajectory prediction [37], vehicle trajectory prediction [38], etc.). GRU is
a special RNN with the ability to learn long-term dependency.

The structure of the GRU is shown in Figure 3, which is composed of an update
gate (Γu) and a reset gate (Γr). The larger the value of the update gate, the more the state
information of the previous moment is brought in. The reset gate controls how much
information is conveyed to the current candidate set (̃c<t>). The smaller the reset gate
is, the less information is passed to the previous state. The detailed update formula is
as follows:

Γr = σ
(

Wr[c<t−1>, x<t>] + br

)
(3)

Γu = σ
(

Wu[c<t−1>, x<t>] + bu

)
(4)

c̃<t> = tanh
(

Wc[Γr � c<t−1>, x<t>] + bc

)
(5)

c<t> = Γu � c̃<t> + (I− Γu)� c<t−1> (6)

where � represents the relative position of the objects before and after multiplication. σ
represents the sigmoid activation of the following objects. c<t−1> represents the activation
value of the previous time step. Wc, Wu, Wr correspond to the weight matrix of each
gate respectively. br, bz, bh are the bias vectors of reset gate, update gate, and hidden
unit respectively.
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GRU-based zero-velocity detectors need to collect IMU data from different objects
to train the model. Currently, there is no standard method to generate labels. Some
existing techniques (manual, pressure sensor, high-precision sports state capture system)
are proposed to produce reliable zero-velocity information. In this paper, the results of
RTK/INS combination are used as reference trajectories, adjust the threshold of the GLRT
detector to produce the smallest RMSE, and use the zero-velocity state by the GLRT detector
with an optimal threshold as a label.

The structure of the zero-velocity detector is shown in Figure 4, which is mainly
composed of three GRU layers, two drop layers, and one fully connected layer (FC). Each
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layer of GRU has 100 neurons. To avoid overfitting, the drop layer is set to 0.2. The
FC layer uses a sigmoid function as the activation function to map the model output to
within (0, 1). It is assumed that current state is zero-velocity when the model output is
greater than 0.8, otherwise, current state is non-zero-velocity. During the training process,
50 consecutive IMU data (specific force, angular velocity) constitute one sample, and a
data set consisting of 300,000 samples is used to train this model. Each sample has an
individual label which represents the zero-velocity state corresponding to the last time
step. The Adam optimizer [39] is used to optimize the model with 100 iterations. The loss
function of the model is defined as follows:

Loss = − 1
N ∑N

i yi log(pi) + (1− yi) log(1− pi) (7)

where N represents the total number of training samples and pi represents the label output
of the i-th sample.
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3.3. Robust EKF Design for GNSS/PDR Integration

The error state EKF is used as the data fusion framework. The 15-dimensional error
state vector is summarized as follows:

δx =
[

δp δv δϕ δbg δba
]

(8)

where δp, δv, δϕ, δbg, δba are all three-dimensional vectors and denote position, velocity,
attitude, gyroscope bias, and accelerometer bias. The discrete-time error model of INS can
be defined in matrix form as:

δxk,k−1 = Fk,k−1δxk + Gk,k−1Wk−1 (9)

where Fk,k−1 is the state transition matrix, Gk,k−1 is process noise-driven matrix, and Wk−1
is process noise, which is assumed to be Gaussian white noise with zero mean; the state
transition and noise gain matrices can be written as:
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F =


I3 03 03 03 −Cn

b ∆t
∆t
(

Cn
b fb
)
× I3 03 Cn

b ∆t 03

03 ∆tI3 I3 03 03
03 03 03 Bg 03
03 03 03 03 Ba

 (10)

bg = I3 + ∆t · diag
(
− 1

τg

)
(11)

ba = I3 + ∆t · diag
(
− 1

τa

)
(12)

G =


03 03 03 03

Cn
b ∆t 03 03 03
03 Cn

b ∆t 03 03
03 03 I3∆t 03
03 03 03 I3∆t

 (13)

where (·)× represents the skew-symmetric matrix of a vector. Ip and 0p denote p × p
identity matrix and zero matrices respectively. The bias errors of gyros and accelerometers
can be expressed as first-order Gauss–Markov processes with the correlation time τg, τa.

When the observations (including the GNSS positioning results, the relative height dif-
ference of the barometer, and the zero-velocity information) are available, the measurement
equation is constructed:

δzk = Hkδx̂k,k−1 (14)

GNSS positioning is the main factor that determines the absolute positioning accuracy
of the system and suppresses the error of the inertial sensor. At the same time, the lever
arm error cannot be ignored, and the position observation equation is:

δzr = r̂n
ins − r̂n

gnss (15)

Use the barometer elevation change as the observation equation to update the elevation:

δzh =
(

Hk
baro −Hk0

baro

)
−
(

Hk
ins −Hk0

ins

)
(16)

where Hk
baro and Hk0

baro is the barometer elevation of the current epoch and the previous

epoch, respectively. Hk
ins and Hk0

ins is the elevation of the INS recursive of the current epoch
and the previous epoch, respectively.

ZUPT is an effective means to control the accumulation of velocity errors. When the
GRU recurrent neural network is used to detect that it is in a static state, the zero-velocity
observation model is constructed:

δzv = v̂n
ins −

[
0 0 0

]T (17)

3.4. Lever Correction

When carrying out the walking experiment, the IMU is fixed on the surface of the shoe,
and the GNSS receiver antenna is set on the top of the head. The lever arm is constantly
changing and cannot be ignored. It is not recommended to put the lever arm in the state
vector as a parameter to be estimated, which not only increases the complexity of the
calculation but also there is no way to evaluate whether the estimated value of the lever
arm is correct. In the zero-velocity interval, the distance between the GNSS antenna and
the IMU measurement center in the horizontal direction is much lower than the position
error of GNSS single-point positioning result. The lever length in the vertical direction is
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equal to the height of the human subject. In the non-zero-velocity interval, it is modeled as
a pendulum, as shown in Figure 5. A lever arm is expressed as:

lever arm =
[

l2 × sin θ 0 l1 + l2 × cos θ
]

(18)
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In the above Figure 5, l1 represents the height from the top of the head to the waist, l2
is the length of the legs, which can be accurately known, and θ is an unknown parameter,
which can be obtained by solving the essential trigonometric function.

The error caused by the inaccurate lever arm modeling can be equivalent to the GNSS
single-point positioning error, which can be effectively compensated by an adaptive filter.

3.5. Adaptive Kalman Filter

The GNSS outliers appear in the harsh environment due to the poor GNSS observation
quality. However, the standard Kalman filter cannot solve this problem, which increases
the positioning error of the GNSS/INS integrated system. Innovation-based adaptive
estimation (IAE) filter is a popular filter to reduce the influence of outliers, which is
adopted in this paper.

By calculating the average value of the covariance of the innovation vector of the
previous N epochs, the estimate of the covariance of the innovation vector at current epoch
and the estimation of the observation vector covariance matrix can be obtained:

Σ̂ _
Vk

=
1
N

ΣN
j=0

_
Vk−j

_
V

T
k−j (19)

Σ̂k = Σ̂ _
Vk
− FkΣ _

Xk
FT

k (20)

where Σ̂ _
Vk

denotes the covariance matrix of the state one-step prediction vector, and Vk

denotes the innovation vector. This calculates the ratio of the trace of Σ̂k to the trace of
preset observation vector covariance matrix Σk. When the position result of GNSS is an
outlier, this ratio will be greater than 1. The greater one between this ratio and one is taken
as the adaptive factor:
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The adaptive factor is used to expand the covariance matrix of the observation vector at
the current epoch, which reduces the influence of GNSS outliers and increases the position
accuracy of the GNSS/INS integrated system.

The paper studies the single-frequency single-system single-antenna pseudo-range
single-point positioning assisted foot-mounted micro-inertial pedestrian navigation method.
When carrying out the walking experiment, the MTi-G-710 is fixed on the shoe surface,
the GNSS antenna is fixed on the top of the head, and the collected data is used to test
the accuracy of carrier phase smoothing pseudo-range SPP positioning and the effect of
SPP/SINS combination.

4. Results

MTi-G-710 produced by the Dutch company Xsens is selected as the experimental
device, which integrates a three-axis gyroscope, a three-axis accelerometer, and a barometer.
The performance parameters of the gyroscope and accelerometer are shown in Table 1.
The experimental GNSS module is the mosaic-X5 produced by Septentrio, Belgium, which
is used to track all visible supporting satellites at the same time. The sampling rate
of the IMU was set to 100. The data of the experiment is available for download here:
https://github.com/laotouyu123/data_set.git, accessed on 6 November 2021.

Table 1. Specifications of inertial sensors.

Parameters Gyroscope Accelerometer

Full Scale 625◦/s 18 g
Bias stability 10◦/h 40 ug
Noise density 0.01◦/s/

√
Hz 80µg/

√
Hz

g-sensitivity 0.003◦/s/g -
Non-orthogonal error 0.05◦ 0.05◦

Non-linearity 0.01% 0.01%
All parameters in the table are typical values at 25 °C.

4.1. GRU-Based Zero-Velocity Detection Algorithm Performance Verification

In order to verify the performance and generalization ability of the GRU-based zero-
velocity detection method, ten experimenters carried out walking experiments on the same
path at three walking speeds: slow, normal, and fast. The zero-velocity detection result of
one of the experimenters is shown in Figure 6.
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As shown in Figure 6, the GLRT method can effectively detect the zero-velocity most
of the time. However, some incorrect zero-velocity results are detected by GLRT when the
feet of the experimenter are moving, which will decrease the positioning precision of the
PDR algorithm. The GRU method can detect the zero-velocity correctly all the time as the
red curve shows in Figure 6, which guarantees the availability of zero-velocity information.

In order to verify the performance of the GRU-based zero-velocity detection method,
a close-loop experiment is carried out, in which an experimenter walked 10 times along a
rectangular trajectory. The trajectories obtained by two zero-velocity detect methods are
shown in Figure 7. It can be seen from Figure 7 that the GLRT method obtained larger
position error in the end point because of the incorrect zero-velocity information.
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The closed-loop errors of all trajectories obtained by the GLRT method and the GRU
method are listed in Table 2. The minimum average closed-loop position error of the
traditional GLRT zero-velocity detection method is 1.42 m, while the average closed-loop
position error of the proposed method is 0.89 m, which means the proposed method
performs better than the traditional algorithm.

Table 2. Closed loop position error (m) obtained by different zero-velocity detection methods.

Index
GLRT

GRU
γ(10,000) γ(15,000) γ(20,000) γ(25,000) γ(30,000)

Max 3.98 3.76 0.59 3.73 3.82 1.77
Min 0.98 0.04 0.43 0.43 0.25 0.11

Mean 2.28 1.77 1.44 1.42 1.91 0.89

4.2. The Proposed Algorithm Performance Verification under Open Environment

To verify the proposed algorithm performance under open environment, a data set
(249 s in total) was collected under an open environment at Youyi Square, Faculty of
Informatics, Wuhan University, Wuhan. The experimenter walks along the edge of Youyi
Square during the experiment.

In the Kalman filter algorithm for pedestrian positioning, the relevant parameters
are set as follows: initial speed error is 0.01m/s, the initial position error is 0.01 m, the
initial value of acceleration offset is 0.03m/s2, the initial value of gyroscope offset is 0.3◦/s,
accelerometer noise is δa = 0.5m/s2, gyro noise is δg = 1◦/s, accelerometer bias driving
noise δba = 10−4m/s2, gyroscope bias driving noise δbg = 10−5rad/s.
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Compare the positioning result of the following four schemes: Scheme 1, use the GLRT
method to detect the zero-velocity interval; Scheme 2, use the GRU method to detect the
zero-velocity interval; Scheme 3, the proposed algorithm; Scheme 4, RTK. The trajectories
of these schemes are shown in Figure 8.
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Under the open environment, RTK’s positioning error is small, so the RTK position
result of Scheme 4 can be used as a reference truth value. The statistical results of three
schemes are shown in Table 3. It can be seen that the RMSE and maximum errors of Scheme
3 are more minor than those of the other two methods. The RMSE of these three schemes
are 1.643 m, 1.042 m, and 0.543 m respectively. The maximum errors of the three schemes
are 2.631 m, 2.54 m, and 1.03 m respectively. Compared with Schemes 1 and 2, RMSE of
the proposed scheme are decreased by 67% and 48% respectively. In terms of maximum
errors, compared with other two schemes, the maximum errors of the proposed scheme are
decreased by 61% and 59% respectively. In order to more clearly reflect the performance of
the proposed scheme, the Cumulative Distribution Function (CDF) of the horizontal error
is shown in Figure 9. It can be seen from Figure 9 that 99% of the horizontal error of the
proposed scheme is smaller than 1 m, while that of the other two schemes is 33% and 63%.

Table 3. Position error (m) obtained by different schemes.

Maximum Error RMSE

Scheme 1 2.63 1.63
Scheme 2 2.54 1.04
Scheme 3 1.03 0.54
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4.3. The Proposed Algorithm Performance Verification under Complex Environment

To verify the proposed algorithm performance under complex environment, a data set
was collected in the playground of the Faculty of Information Science of Wuhan University,
Wuhan. The experimenter walked along the outermost periphery of the playground.
There are many interferences in the trajectory, including trees and houses. The experiment
environment is shown in Figure 10.
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Figure 10. The experiment environment.

The C/N0 of the satellite signal is shown in Figure 11. Due to the unsatisfactory
observation environment, the number of satellites is maintained at about 8. However, the
loss of satellite signal occurred frequently; the carrier-to-noise ratio of a few satellites is
lower than 30 dB-Hz most of the time, such as G29 and G15. The position and position
covariance results calculated by the carrier smoothing pseudo-range SPP are used in the
measurement update of the EKF in the proposed scheme, and the adaptive algorithm is
used for quality control.
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Eighteen key positions of the trajectory are selected as reference points; their position
coordinate is accurately determined. Five schemes are compared. Scheme 1: use GLRT
method to detect the zero-velocity interval; Scheme 2: use GRU method to detect the
zero-velocity interval; Scheme 3: GNSS/PDR without adaptive algorithm; Scheme 4: the
proposed algorithm; Scheme 5: RTK solution provided by mosaic-X5. The trajectories of
these five schemes are shown in Figure 12.
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As shown in Figure 13, although the position environment is complex, the horizontal
error of RTK is lower than 0.5 m at all of the reference points. Because of the high precision
of RTK, the trajectory of RTK is taken as the reference trajectory. In Figure 13, we randomly
select 18 points in the test path to test the accuracy of the algorithm. The proposed algorithm
obtained lower position error than Schemes 1–3 at most of the reference points, noting that
when the INS obtained a large error, the adaptive algorithm may increase the position error
of the GNSS/PDR algorithm, such as the position error at reference point 4. However, in
most cases, GNSS has larger position error than INS due to environmental interference;
the adaptive algorithm can effectively decrease the position error when GNSS obtained
larger error, such as the position error at reference points 6, 7, and 8. The position error
of Schemes 1–4 is shown in Table 4. It can be seen from Table 4 that the RMSE of the four
schemes are 6.08 m, 3.21 m, 1.79 m, and 1.37 m respectively and the maximum errors of
the four schemes are 11.48 m, 6.02 m, 4.98 m, and 2.79 m respectively. Compared with the
other three schemes, RMSE of the proposed scheme are decreased by 77%, 57%, and 23%
respectively and the maximum errors of the proposed scheme are decreased by 75%, 53%,
and 43% respectively. CDF of the horizontal error are shown Figure 14. It can be seen from
Figure 14 that 99% of the horizontal error of the proposed scheme is smaller than 2.71 m.
For several algorithms used to compare with the proposed scheme, some algorithms do
not integrate GNSS position information, so the result obtained will be better than the
proposed algorithm, but due to the characteristics of inertial navigation, the accuracy of
these algorithms will diverge over time. Generally speaking, the accuracy of the proposed
algorithm is better than other algorithms.
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Table 4. Horizontal position error (m) obtained by different schemes.

Maximum Error RMSE

Scheme 1 11.48 6.08
Scheme 2 6.02 3.21
Scheme 3 4.98 1.79
Scheme 4 2.79 1.37
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4.4. Indoor Elevation Performance Verification of the Proposed Algorithm

An indoor staircase environment is carried out to verify the elevation performance
of the proposed algorithm. The proposed algorithm will not execute GNSS measurement
update as there is no GNSS signal in the indoor environment. The experimental site is
shown in Figure 15 in this experiment; the experimenter went upstairs from the fifth floor to
the twelfth floor, then went downstairs to the fifth floor. The height difference of each floor
has been determined in advance by multiple measuring and only counts the elevation error
when the experimenter falls on each floor of the staircase. Three schemes are compared.
Scheme 1: use ZUPT to judge elevation; Scheme 2: use the barometer to judge elevation;
Scheme 3: ZUPT/ barometer fusion algorithm. The test result is shown in Figure 16.
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In summary, this integrated scheme promotes the realization of high-precision position-
ing of public pedestrians in an urban environment, and it provides technical reference for 
accurate and continuous acquisition of public pedestrian location information. 
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It can be seen from Figure 16 that the barometer can basically reflect the elevation, but
the robustness is not enough, and there are many burrs. ZUPT has no large burrs, but the
error diverges with time. The result of the adaptive combination of the PDR and barometer
can reflect the elevation well without large error. As shown in Table 5, RMSE of these three
schemes are 1.62 m, 1.25 m, and 0.96 m, respectively. The maximum errors of these schemes
are 3.3 m, 1.95 m, and 1.28 m, respectively. Compared with other two schemes, RMSE of
the proposed scheme are decreased by 41% and 24%, respectively, and the maximum errors
of the proposed scheme are decreased by 61% and 34%, respectively.

Table 5. Elevation error (m) obtained by different schemes.

MAX RMSE

Scheme 1 3.3 1.62
Scheme 2 1.95 1.25
Scheme 3 1.28 0.96

5. Conclusions

A single-frequency single-antenna GNSS/PDR robust integration scheme is proposed,
which provides continuous and accurate pedestrian navigation by fusing GNSS and MEMS
sensors. Key technologies of the proposed scheme are discussed, including improved
carrier phase smoothing pseudo-range GNSS single-point positioning, GRU-based zero-
velocity detection, and adaptive fusion algorithm of GNSS and PDR. Kinematic experiments
in outdoor open environments and complex environments show that the proposed scheme
can combine the advantages of GNSS and INS, achieving pedestrian navigation position
error lower than 1.5 m. The proposed GRU-based zero-velocity detection model can only
detect ordinary motion patterns. However, due to the limitation of the data set, this model
cannot detect the zero-velocity state in complex motion mode. In the future, we will study
the zero-velocity detection model under complex motion mode. In summary, this integrated
scheme promotes the realization of high-precision positioning of public pedestrians in
an urban environment, and it provides technical reference for accurate and continuous
acquisition of public pedestrian location information.
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