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Abstract: In arid and semi-arid areas, timely and effective monitoring and mapping of salt-affected
areas is essential to prevent land degradation and to achieve sustainable soil management. The main
objective of this study is to make full use of synthetic aperture radar (SAR) polarization technology
to improve soil salinity mapping in the Keriya Oasis, Xinjiang, China. In this study, 25 polarization
features are extracted from ALOS PALSAR-2 images, of which four features are selected. In addition,
three soil salinity inversion models, named the RSDI1, RSDI2, and RSDI3, are proposed. The analysis
and comparison results of inversion accuracy show that the overall correlation values of the RSDI1,
RSDI2, and RSDI3 models are 0.63, 0.61, and 0.62, respectively. This result indicates that the radar
feature space models have the potential to extract information on soil salinization in the Keriya Oasis.

Keywords: soil salinization; polarized feature component; two-dimensional radar feature; Keriya
Oasis

1. Introduction

Soil salinization is one of the most serious factors having a negative effect on agricul-
tural sustainability and environmental health [1], causing the low emergence rate of crops,
dwarf plants, and significant losses in soil fertility and exacerbating the desertification
process [2–4]. Currently, more than 3% of global soil resources are affected by salt [5]. It is
estimated that by 2050, the salinity of global arable land will reach more than 50% [6–8].

However, the situation in China seems to be more critical [9]. China alone is covered by
10% of the world’s salinized land [10,11]. Xinjiang has the largest distribution of saline land
in China, and its saline land accounts for 36.8% of the country, primarily at the oasis–desert
ecosystem of southern Xinjiang (close to 50%) [12]. Thus, it is urgent to achieve regular
and effective monitoring of soil salinity, which can provide effective support for decision
making with regard to soil salinization control and more substantial information for soil
remediation [13–18]. Soil salinity is not only very sensitive to variations in precipitation,
temperature, and groundwater levels [2] but can also rapidly change after irrigation or
precipitation. Meanwhile, a drought may cause salinity rates to increase in a matter of
weeks [10].

Most of the traditional studies on soil salinization have been based on field sampling
analysis technology, which is time-consuming and laborious and has a small spatial scale,
fewer measurement points, and poor representative performance [14,19,20]. Remote sens-
ing technology has great potential for the development of soil salinity prediction models
because of its advantages of having a short revisit period, fast processing speed, and global
coverage [2]. Therefore, optical remote sensing has played an important role in regional and
even global soil salinization monitoring, mapping, and prevention [2,21]. Optical remote
sensing has been the most widely used technique in multi-time dynamic monitoring of soil
salinization distribution in large areas, and salinization inversion using the optical remote
sensing interpretation technology has gradually been commenced.
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However, optical remote sensing is difficult to perform under unstable weather condi-
tions, and the lack of surface penetration capacity means that conventional optical remote
sensing methods face different limitations in soil salinity monitoring [22,23]. Due to its
all-day and all-weather earth observation capability without being affected by clouds and
weather [22], high penetration capability, and sensitivity towards electrical conductivity
(EC) [24–27], a synthetic aperture radar (SAR) can be effectively used in soil salinization
monitoring applications [28]. Theoretically, SAR has great potential to investigate soil
salinity [29]. Recent research has demonstrated that longer wavelengths provide a better
capability to penetrate different soil types [30], such as S (2~4 GHz), L (1~2 GHz), and
P (0.3~1 GHz) [23].

In a polarized SAR system, the information is contained in the electromagnetic waves
received on the sensor that are reflected from the target object, which can be modulated in
terms of spectrum, intensity, or electromagnetic waves [31]. Polarimetric synthetic aperture
radar (PolSAR) represents an advanced imaging radar system, having a key role in radar re-
mote sensing, namely, by using a PolSAR, more information can be obtained than by using
a single-polarized regime radar [32–34]. The retention of more complete target polarization
scattering characteristics makes PolSAR play an increasingly important role in acquiring
numerous details of physical dielectric properties, geometry, and target orientation of
ground objects, greatly enhancing the ability of radar to acquire target information [35].
Some researchers have taken advantage of the fact that the polarization parameters ex-
tracted by different polarization target decomposition methods are related to the physical
properties of the ground objects [22], and they have broken down the PolSAR data and
mined the hidden information to analyze and understand the scattering mechanisms of the
ground objects [36,37]. Meanwhile, based on the polarization decomposition, the target
features that conform to the classification conditions are extracted from the polarization
SAR data, and then the classification and identification of the targets are realized [22,37].
The PolSAR has been widely used in many earth observation applications, including land
cover monitoring [38–40], target detection [41–43], and terrain classification [44–47].

The polarization decomposition of a target has received great attention and achieved
rapid development because it can reveal the scattering mechanism of the target and en-
hance the understanding of the target’s scattering characteristics [48,49]. In addition, its
polarization feature decomposition provides an effective tool for microwave remote sensing
in the processes of saline land information extraction and salinity dynamics monitoring
and can provide timely and effective guidance on agricultural production practices in arid
areas [50].

The aim of this study is to construct a quantitative inversion model for radar re-
mote sensing of soil salinity based on a two-dimensional radar feature space. The main
procedures are as follows:

(1) Construction of a two-dimensional radar feature space based on optimal radar polar-
ization feature components.

(2) Construction of a radar-based quantitative inversion model for soil salinity in a two-
dimensional radar feature space.

2. Study Site and Data
2.1. Study Site

The study was carried out in the Keriya Oasis of southwestern Xinjiang, whose geo-
graphical position is between 36◦44′59′′–37◦12′04′′ N in latitude and 81◦08′59′′–82◦00′03′′ E
in longitude [51]. The study area is located at the southern edge of the Taklamakan Desert
and the north-central foothills of the Kunlun Mountains [32], which represents a typical
oasis–desert intersection, as shown in Figure 1. The district falls under the arid regions of
Hotan, covering an area of 3.95 × 104 km2 [52]. The topography is higher in the south than
in the north, and there is a 3500 m difference in height between the north and south [53].
The study area has a warm continental arid climate with low annual precipitation and high
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evaporation; the average multi-year precipitation is 44.7 mm, and the average multi-year
evaporative energy is 2432.1 mm [53].

Figure 1. (a) Location of the study area on the overview map of China; (b) Xinjiang location; (c) the
full phased array type L-band synthetic aperture radar (PALSAR-2) image; (d) the subset image
covering the study area in Pauli decomposition with standard color-coding; (e) topographic map of
sampling points of the study area; (f) typical land type in the experimental area.

The soil types of the study region are meadow soil and brown desert soil, and the
soils are majorly distributed within areas of high groundwater mineralization and high
water table [32]. The region under study entirely depends on the primary water source
from the Keriya River, which is a seasonal river supplied by meltwater from glaciers and
snow on the Kunlun Mountains and lost in the sands of the Taklimakan desert [54]. The
major plants cultivated in the study region include cotton, wheat, corn, and rice [52]. As
saline soils have a serious adverse impact on crop yields and agricultural production in
the Keriya Oasis, effective monitoring of soil salinity in the early stages of salinization is
essential to develop effective soil reclamation plans [32].

2.2. Data
2.2.1. Remote Sensing Data

The Advanced Land Observing Satellite-2 (ALOS-2) is an Earth observation satellite,
which was launched by the Japan Aerospace Agency in 2014. It is equipped with a
phased array type L-band synthetic aperture radar (PALSAR-2) sensor and two optical
cameras. Data obtained by ALOS-2 have been used for geohazard monitoring, deforestation
monitoring, and sea ice observation [54].



Remote Sens. 2022, 14, 363 4 of 19

The PALSAR-2 emits signal according to the selected mode with both horizontal (H)
and vertical (V) polarization, and each of the scattering elements (i.e., HH, HV, VH, and VV)
has a different sensitivity to different features of the ground surface, which helps to identify
different land types [22]. The PALSAR-2 data used in this study were collected on 23 April
2015. In the ascending orbit, the angle of incidence is 30.4◦, and the four polarization
methods include the HH, VV, HV, and VH, as shown in Table 1.

Table 1. The main parameters of the fully polarimetric PALSAR-2 data.

Parameter Type Data

Data Acquisition Date 23 April 2015
Polarization HH, HV, VH, VV

Projection method UTM
Incident angle 30.4◦

Frequency L-band (1.2 GHz)
Observation mode Strip map (High-sensitive Quad)
Operation mode SM2
Orbit path, frame 158, 730

Nominal resolution 5.1 × 4.3 m (Range × Azimuth)
Swath 40~50 km × 70 km (Range × Azimuth)

Processing Level Level 1.1
File format CEOS SAR

Observation and orbit direction Right, Ascending

The PALSAR-2 data in the CEOS mode at the level of 1.1 in the study area were
preprocessed by SNAP 7.0 software. The SAR data processing steps included: (1) generating
a single look complex (SLC) image; (2) radiometric calibration; (3) multi looking (the oblique
range directional vision was four, and the azimuthal vision was one) average the power of
neighboring pixels [31]; (4) speckle filtering, using the refined Lee filter with the window
size of 7 × 7, and removal of coherent noise; (5) terrain correction, correction of SAR
geometric distortion using digital elevation model (DEM). The projection was based on the
World Geodetic System Datum 1984 (WGS84) regarding the Universal Transverse Mercator
(UTM) coordinate system at 44 degrees north latitude; (6) data resampling, image resizing
to achieve an optimal resolution of 20 m× 20 m; (7) spatial subset, subset out the study area
and typical land type in the experimental area. The preprocessing process of the PALSAR-2
data is shown in Figure 2.

Figure 2. The preprocessing flowchart of the PALSAR-2 data.

2.2.2. Field Data

The fieldwork was conducted from 22 April 2015 to 7 May 2015. A total of 20 sites were
selected for soil sampling based on visual observations of the land cover conditions and
salinity, ensuring that sampling sites covered different land cover and soil characteristics,
as shown in Figure 3.
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Figure 3. Different degrees of salinized soil types of Keriya Oasis in the study area.

Soil sampling was conducted on the soil surface (0–10 cm), and the soils’ physical
and chemical characteristics such as soil salinity were measured in the laboratory. Soil
samples were air-dried and sieved through 1-mm sieves, and the soil sample was mixed in
a flask with distilled water at a ratio of 1:5. The flask was shaken manually for 3 min to
allow the soil to infiltrate fully, and the fully-mixed solution was left to stand for 30 min.
When the solution became clear, the solution was filtered and the total soluble salts were
measured. In a certain concentration range, the salt content of the soil solution is positively
correlated with the electrical conductivity, the more salt dissolved, the larger the EC, so
the soil salt content can be measured indirectly based on the magnitude of the EC [55].
EC measurement is the most common characteristic used to determine soil salinity [56,57].
Therefore, many researchers use EC directly to determine and express soil salinity [58–60].
In this process, the electrical conductivity of the soil water was measured and expressed
in ms/cm, and the total soluble salt content (expressed in g/kg) was calculated by the
regression equation of EC and the total soluble salt. Different degrees of salinization (i.e.,
highly, moderately, and slightly saline soils) were determined based on the surface soil salt
concentration, groundwater table, and vegetation coverage, as shown in Table 2.

Table 2. Soil salinity grading.

Symbol Salinization Level Characteristics

NS Non-saline soil EC value 0–2 (dsm−1), no salt crusts or salt spots on the soil surface,
crops can grow normally

SS Slightly
salinized soil

EC value 2–4 (dsm−1), clear salt patches and salt crusts on the
surface, the salt crust is thin (0~2 cm or so), high vegetation cover, at

around 30%, groundwater level 1.4~3 m

MS Moderately salinized soil
EC value 4–8 (dsm−1), more salt crusts or salt spots on the

soil surface, salt crust is 1~4 cm, vegetation cover of approximately
5~15%, groundwater level 1~2 m

HS Heavily
salinized soil

EC value 4–8 (dsm−1), thick salt crust, and numerous salt patches
on the soil surface, salt crust is 2~10 cm, vegetation covers less than

5%, groundwater level 0.5~1.5 m



Remote Sens. 2022, 14, 363 6 of 19

3. Methodology

In this study, the polarization feature components obtained by different polarization
decomposition methods were combined with two-dimensional feature space theory. The
polarization characteristic components were analyzed to construct a quantitative inversion
model of soil salinization. The overall workflow of the conducted research of the model
construction process is presented in Figure 4.

Figure 4. The overall workflow of the study.

3.1. Polarimetric Decomposition

The theorem of target polarization decomposition was first proposed by Huynen [61]
in 1970, and after nearly 50 years of development, various polarization decomposition
methods have emerged one after another [62]. It is a practical method used to analyze the
ground target scattering mechanism embedded in SAR data by performing polarization
decomposition and to fully explore the information hidden in the characteristic components
of radar polarization decomposition [36,37].

Pauli decomposition is a common method of polarization decomposition [63]. Cloude
initiated the Pauli decomposition in 1986 [64]. The Pauli decomposition takes four perfect
orthogonal Pauli bases ([Sa], [Sb], [Sc], [Sd]) as fundamental matrices, under the horizontal
and vertical orthogonal bases (H, V), and the components of the Pauli bases are represented
by the following 2 × 2 matrices

[Sa ] =

[
1 0
0 1

]
√

2
, [Sb ] =

[
1 0
0 −1

]
√

2
, [Sc ] =

[
0 1
1 0

]
√

2
, [Sd ] =

[
0 −i
i 0

]
√

2
(1)

The relationship between the components of the Pauli group and scattering types is
shown in Table 3.

The scattering matrix [S] for the target can be rewritten in the following form [22,65]

[S] =
[

Shh Shv
Svh Svv

]
= a [Sa ] + b [Sb ] + c [Sc ] + d [Sd] (2)
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where Svh and Shv denote the cross-polarization components; Svv and Shh are the co-polarization
components; a, b, c, and d represent complex coefficients of each component and can be
expressed in the form of vector K

K = [a b c d] =
((Shh + Svv) (Shh − Svv) (Shv + Svh) i(Svh − Shv))

T
√

2
(3)

where the superscript T indicates the matrix transpose.
When the scattering matrix satisfies the symmetry condition, i.e., reciprocity theorem

(Shv = Svh), Equation (3) can be transformed into the following form

K = [a b c] =
(Shh + Svv Shh − Svv 2Shv)

T
√

2
(4)

Then, the polarization scattering matrix [S] of the total power span can be expressed
as follows [17]:

Span = |Shh|2 + |Shv|2 + |Svh|2 + |Svv|2 = |a|2 + |b|2 + |c|2 + |d|2 (5)

where |a|2, |b|2, and |c|2 correspond to distinct physical mechanisms.
Therefore, using Pauli decomposition coefficients, RGB images can be synthesized

as follows
|a|2 → Blue (6)

|b|2 → Red (7)

|c|2 → Green (8)

One of the advantages of the Pauli decomposition is its simplicity, and since the Pauli
group is a perfect orthogonal group, the decomposition method has a relatively good
suppression of noise. Therefore, Pauli decomposition has been widely used for PolSAR
imagery [63].

Table 3. Physical interpretation of the Pauli decomposition in the horizontal–vertical orthogonal basis.

Pauli Matrix Scattering Type Physical Interpretation[
1 0
0 1

]
Odd scattering Planar, spherical, and angular reflectors

[
1 0
0 −1

]
Even scattering Two-sided angle

[
0 1
1 0

]
π
4 even-order scattering Two-sided angle with an inclination of π

4[
0 −i
i 0

]
Cross-polarization No corresponding scattering

mechanism exists

In addition, to exploit PALSAR-2 data better and to take full advantage of the po-
larization feature information of these data, several polarimetric decompositions have
been proposed, and the corresponding polarization information has been obtained. The
commonly used polarization decomposition methods include Cloude [66], Freeman [67],
Freeman Durden [68], VanZyl [69], Yamaguchi [70], Sinclair [71], and H/A/Alpha [72]
methods. The Cloude, Freeman, Freeman Durden, VanZyl, Yamaguchi, Sinclair, and
H/A/Alpha polarization decomposition methods were applied to this study.

3.2. Feature Selection from ALOS-2 Polarimetric Imagery

Although multidimensional features can be extracted from PALSAR-2 data [73], there
may be correlation and redundancy between these features, and some features can even be
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full of “noise” [74]. For quantitative inversion of salinization, images composed of multiple
polarization feature components might not represent the salinization characteristics accu-
rately, which could result in the unsatisfactory extraction of salinization information. In
such a case, it is necessary to select the polarization feature component that can effectively
and accurately invert salinization among multiple polarization feature components, i.e., it
is necessary to conduct feature component selection.

The selection of polarization feature components in this study was mainly considered
from three aspects, as follows. (1) SAR images are easily geometrically distorted and cannot
be easily interpreted visually. Optical images are more reliable and easier to be interpreted
than SAR images; additionally, more previous studies using optical images of the Keriya
Oasis are available as references, and OvitalMap could provide a high-resolution interactive
platform capable of providing images with maximum resolution of 1 × 1 m. Therefore,
Landsat 8 OLI (30 × 30 m) (Figure 1e) and OvitalMap (https://www.ovital.com/, accessed
on 28 September 2021) were used as reference images, and polarization feature components’
Signal-to-Noise Ratio (SNR) was calculated. The higher the SNR was, the clearer the
image and the better the image quality and denoising effect were [75]. First, components
with an SNR of less than 60 dB were eliminated; then, the polarization component with
the largest SNR and smallest speckle noise among the three feature components of the
same polarization decomposition was selected to reflect the target feature information
better. The SNR values of the feature components are given in Table 4. (2) Meanwhile,
25 components were extracted from eight polarization decomposition methods; 300 groups
of two-dimensional feature spaces were established, and three groups of them, consisting
of six feature components with typical representation and regularity that could distinguish
different degrees of salinized soils, were selected. (3) The energy information received
by the SAR system reflected the scattering characteristics of the ground feature [45]. The
Freeman, Pauli, Freeman Durden, Yamaguchi, VanZyl, Sinclair, and H/A/Alpha methods
were used to calculate surface, volume, and double scattering values [17]. The polarization
characteristic component was dominated by double scattering even in urban areas [31].
The surface scattering was mainly municipal surface backscattering information, which
excluded the influence of vegetation [46]; the vegetation area was dominated by volume
scattering [31]. Since information on the change in the land surface vegetation in the arid
zone can better reflect the regional salinization status [76], the scattering-type characteristic
component was broken down by gathering polarization, and the scattering type was
selected as a component of volume scattering. The overall workflow of the feature selection
process is presented in Figure 5.

Combining the above three aspects, four representative feature components were
selected: Freeman_vol_g, Sinclair_g, Freeman Durden vol_g, and VanZyl_vol_g.

Table 4. The SNR values of the feature components (dB).

Cloude Freeman Freeman Durden Pauli Sinclair VanZyl Yamaguchi H/A/Alpha

Surface_b 356.067 308.391 252.007 225.301 203.320 240.865 268.901 21.0420
Volume_g 28.8860 412.218 378.320 213.868 225.270 373.967 268.092 21.0813
Double_b 72.6462 248.521 332.305 221.481 217.883 260.327 329.654 35.5327

3.3. Data Normalization

As there were significant differences between the individual parameters, data stan-
dardization was carried out to eliminate these differences.

The maximum and minimum values of the Freeman_vol_g (Fm_vol_g), Sinclair _g
(Sin_ g), Freeman Durden_vol_g (FD_vol_g), VanZyl _vol_g (VZ_vol_g) were determined
and then used to normalize the data as follows [16]

F = (Fm_vol_g − Fm_vol_gmin)/(Fm_vol_gmax − Fm_vol_gmin) (9)

S = (Sin _g − Sin _gmin)/(Sin _gmax − Sin _gmin) (10)

https://www.ovital.com/
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FD = (FD_vol_g − FD_vol_gmin)/(FD_vol_gmax − FD_vol_gmin) (11)

V = (VZ_vol_g − VZ_vol_gmin)/(VZ_vol_gmax − VZ_vol_gmin) (12)

where F, S, FD, V denotes the feature component value after data normalization.

Figure 5. The overall workflow of the feature selection process.
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3.4. Feature Space

In recent studies, the feature space theory has been applied to many fields, including
salinity monitoring, soil moisture inversion, and drought monitoring [77,78]. The extraction
and monitoring of salinity information through the construction of feature spaces using
various indicators extracted from optical data has been an advanced method for remote
sensing research on soil salinity monitoring [76].

In recent years, there have been many studies on soil salinity information extraction
based on selecting appropriate indicators to construct a two-dimensional feature space. For
instance, Yongnian Zeng [14] used surface emissivity and vegetation indices to construct
the albedo–NDVI two-dimensional feature space to reflect the desertification process.
Wang Fei et al. [79] defined the relationship between the normalized difference vegetation
index (NDVI) and salinity index (SI) and proposed the NDVI–SI feature space concept.
Ding et al. [80] extracted the modified soil adjusted vegetation index (MSAVI) from remote
sensing images and the wetness index (WI) from remote sensing imagery and, based on the
obtained results, constructed a two-dimensional MSAVI–WI feature space for greenery in
arid zones. As mentioned above, there is great potential to apply two-dimensional feature
space theory to the quantitative monitoring and analysis of salinized land using existing
remote sensing technology to develop quantitative methods and indicators for remote
sensing monitoring of salinization [79]. The above-mentioned studies have all been based
on the feature space of optical remote sensing data.

However, modeling studies using two-dimensional radar feature space have still been
relatively rare in China. Therefore, the following question arises: is it possible to use radar
feature components in two-dimensional spatial information modeling? Perhaps radar
feature components show some advantages in the quantitative study of soil salinization.
This study takes this question as a starting point and aims to construct a remote sensing
information extraction model of soil salinity from radar data in two-dimensional feature
space theory.

4. Results
4.1. Polarimetric Decomposition of PolSAR Data

Cloude, Freeman, Freeman Durden, Pauli, Sinclair, VanZyl, H/A/Alpha, and Yam-
aguchi polarization decomposition methods were applied to the PALSAR-2 images of the
study area. Finally, a total of 25 polarization features were obtained from the polarized
SAR images, and their characteristics are given in Table 5. The polarization decomposition
of the RGB (R:|HH-VV|, G:|HV|, B:|HH+VV|) standard composite image is shown in
Figure 6.

Table 5. Polarimetric features extracted from the PALSAR-2 data.

Polarization
Decomposition

Number of
Parameters Polarimetric Parameter

Cloude 3 Cloude_dbl_r, Cloude_vol_g, Cloude_surf_b
Freeman 3 Freeman_dbl_r, Freeman_vol_g, Freeman_surf_b

Freeman Durden 3 Freeman Durden_dbl_r, Freeman Durden_vol_g,
Freeman Durden_surf_b

Pauli 3 Pauli_r, Pauli_g, Pauli_b
Sinclair 3 Sinclair_r, Sinclair_g, Sinclair_b
VanZyl 3 VanZyl_dbl_r, VanZyl_vol_g, VanZyl_surf_b

H/A/Alpha 3 Entropy, Anisotropy, alpha

Yamaguchi 4 Yamaguchi_dbl_r, Yamaguchi_vol_g,
Yamaguchi_surf_b, Yamaguchi_hlx
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Figure 6. The polarization decomposition results of the RGB standard composite image obtained
by: (a) Cloude; (b) Freeman; (c) Freeman Durden; (d) Pauli; (e) Sinclair; (f) VanZyl; (g) Yamaguchi;
(h) H/A/Alpha decomposition methods.

4.2. Salinization Monitoring Models Based on Feature Spaces
4.2.1. Feature Space Construction

To determine different feature scattering types and their positions in different feature
spaces and to analyze the distribution characteristics of soil salinity in the study area, an
experimental area (Figure 1f) of typical land types was selected in the study area based on
field survey data, and Landsat8 OLI and OvitalMap (https://www.ovital.com/, accessed
on 28 September 2021) were used as reference images.

Using feature components, such as Freeman_vol_g, Sinclair_g, Freeman Durden vol_g,
VanZyl_vol_g, the Sinclair_g–Freeman_vol_g (SF), VanZyl_vol_g–Freeman Durden_vol_g
(VFD), and VanZyl_vol_g–Freeman vol_g (VF), three feature spaces were constructed.

As shown in Figures 7–9, the SF, VFD, and VF feature spaces had the same characteris-
tics, i.e., there were obvious differences in the spatial distribution of different degrees of
salinized soils in them. The blue areas of the scatter plot denote water bodies, and they are
positioned mainly in the upper right part of the scatter plot, the green areas denote vegeta-
tion, the yellow areas represent slightly saline soils, the brown areas indicate moderately
saline soils, and the red areas are heavily saline soils, and they are positioned mainly in
the lower left part of the scatter plot. Figure 10 illustrates a simplified diagram of the three
feature spaces.

4.2.2. Remote Sensing-Based Salinization Monitoring Model

Point A (1, 1) in Figure 10 was taken as the reference point (this point represents
the “ideal point” with the best vegetation growth, the highest plant coverage, the highest
surface humidity, and the lowest soil salinity). The distance from any point in the feature
space to the reference point reflects the degree of salinization, therefore, the farther the
distance is, the larger the salinization will be. For a point C(C1, C2) in the SF, VFD, and VF
feature spaces, the distance L from point C to point A can be calculated by

L =

√
(1 − C 1)

2+(1 − C 2

)2
(13)

https://www.ovital.com/
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Figure 7. Illustration of different feature types and soil salinization contents in images in the SF
feature space: (a) water bodies; (b) plant cover; (c) slight salinization; (d) moderate salinization;
(e) severe salinization; (f) spatial distribution patterns of different levels of soil salinization.

Figure 8. Illustration of different feature types and soil salinization contents in images in the VFD
feature space: (a) water bodies; (b) plant cover; (c) slight salinization; (d) moderate salinization;
(e) severe salinization; (f) spatial distribution patterns of different levels of soil salinization.

Figure 9. Illustration of different feature types and soil salinization contents in images in the VF
feature space: (a) water bodies; (b) plant cover; (c) slight salinization; (d) moderate salinization;
(e) severe salinization; (f) spatial distribution patterns of different levels of soil salinization.
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Figure 10. Simplified diagram of the feature space.

Then, three radar salinity monitoring models (Radar Salinity Detection Index—RSDI)
were built using the following expressions

RSDI1 =

√
(1 − Sinclair_g)2+(1 − Freeman_vol_g)2 (14)

RSDI2 =

√
(1 − VanZyl_vol_g)2+(1 − Freeman Durden_vol_g)2 (15)

RSDI3 =

√
(1 − VanZyl_vol_g)2+(1 − Freeman vol_g)2 (16)

Using Equations (14)–(16), soil salinization inversions were conducted on the whole
research area, as shown in Figure 11. In Figure 11, the darker the area is, the lower the
degree of soil salinity is, and the brighter the area is, the higher the degree of soil salinity is.
The darker areas were mainly in and around the oasis, while the brighter areas were in the
lower terrain areas on the oasis periphery.

Figure 11. Spatial distribution patterns of different levels of soil salinization: (a) RSDI1; (b) RSDI2;
(c) RSDI3.

To verify the sensitivity of the three soil salinity monitoring models, the saline soils
correlation analysis was carried out using the salt content of 20 measured sample points on
the surface. As shown in Figure 12, the inversion accuracy values of RSDI1, RSDI2, and
RSDI3 were R2 = 0.63, R2 = 0.61, and R2 = 0.62, respectively; thus, all three correlations
exceed 0.5. However, the overall correlation was not high. Therefore, RSDI1 was selected
as the best model for monitoring soil salinity in the Keriya Oasis among the three models.
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Figure 12. Accuracy comparison between the RSDI1, RSDI2, and RSDI3 models.

Using the RSDI models (RSDI1, RSDI2, and RSDI3), information on salinization
in the Keriya Oasis was calculated. To distinguish different soil salinity levels better,
Landsat 8 (Figure 1e) and OvitalMap were used as reference images. Additionally, based
on the fieldwork and previous research [32,53], each salinity index was divided into three
categories: a salinity index of 0.8 < RSDI < 1.0 indicated slight salinization; a salinity index
of 1 < RSDI < 1.2 indicated moderate salinization; a salinity index of 1.2 < RSDI < 1.4
indicated severe salinization. In addition, a salinity index of 0 < RSDI < 0.6 denoted water
bodies, and a salinity index of 0.5 < RSDI < 0.8 denoted plant cover. The distribution of
different degrees of soil salinization is presented in Figure 13.

Figure 13. Spatial distribution patterns of different levels of soil salinization (a) RSDI1; (b) RSDI2;
(c) RSDI3.

As shown in Figure 13, the areas of moderate and severe salinization were larger and
mainly positioned in the southern and north-eastern regions; the range of mild salinization
was relatively small and mainly distributed in the central region and near rivers and lakes.
The overall salinization in the east was higher than the overall salinization in the west,
and it appeared as a transition from mild to moderate salinization and then to severe
salinization. The overall salinization trend was low to medium-high, which is consistent
with the actual survey.

5. Discussion

Currently, polarization decomposition techniques have been commonly used to clas-
sify remote sensing images [17]. However, there has been little research on quantitative
parameter retrieval using polarization decomposition techniques [81]. With the devel-
opment of polarization decomposition techniques, polarization decomposition has been
increasingly used in quantitative parameter retrieval [82]. In this study, based on the
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feature space theory combined with the radar remote sensing image analysis and field
investigation, it was found that the soil salinization process is reflected in the middle of
the feature constructed by the Freeman_vol_g, Sinclair_g, Freeman Durden vol_g, and
VanZyl_vol_g. Based on the analysis results, the RSDI1, RSDI2, and RSDI3 soil salinization
remote sensing monitoring models were constructed. The validation results show that the
three soil salinity monitoring models provide an accurate indication of salinity degree in
surface soils. Based on the results, the RSDI1 model is more sensitive to the salt content
of the topsoil among all the models, and it is followed by the RSDI2 and RSDI3 models.
Based on the inversion results in Figure 10, moderately and heavily saline land is mainly
located in the north-eastern part of the study area. This is probably because the spatial and
temporal distribution of soil salinity is strongly related to the cyclical processes of water
resources. The movement of water and salt plays a key role in the process of soil salin-
ization, the effects of salt and water are mutually restricted to each other, and the spatial
distribution of soil moisture and salinity can be directly influenced by the flow of surface
and groundwater [83]. Evaporation of water increases as the groundwater table rises, and
more salts accumulate at the surface through capillary water. The limited precipitation and
high evaporation in arid and semi-arid areas hinder the leaching process of salts to deep
soils depths [83], namely, as salt moves with water and soil salinity is susceptible to shifts
in the response to changes in moisture, soil salts from higher ground tend to accumulate
at the lower ground due to the topography [76]. The topography of the Keriya Oasis is
higher in the south than in the north, so the northern part of the Oasis is more saline than
the southern part.

However, the overall correlation between the three model inversions was not high, and
the reasons for this might be due to the following: (1) Underutilization of the polarization
properties of the PolSAR data. (2) The effect of radar image speckle noise because although
the radar images were filtered during the data preprocessing process, the speckle noise was
not completely removed; (3) The polarization characteristic components used in this study
belong to volume scattering components. It should be noted that the volume scattering
components are sensitive to vegetation, so the reflection is strong in areas with vegetation
but weak in areas with less or without vegetation. Accordingly, the soil salinization de-
gree is relatively low in areas with more vegetation but relatively high in areas with less
vegetation. However, the inversion accuracy of soil salinity was low, and there might be in-
terference from other information, such as topography, soil composition, vegetation growth
in different areas, vegetation type, vegetation height, and groundwater level. (4) There
were many salt-tolerant plants in the area and vegetation coverage was not the lowest in
regions with severe salinization, which could affect the inversion accuracy. (5) Only some
of the polarization features of the PolSAR data were retained at the cost of inevitably losing
part of the useful polarization information in terms of feature subset selection.

Many researchers have used different research methods for quantitative inversion of
soil salinity and have achieved desirable results. Wang Fei et al. [79] proposed an NDVI–SI
feature space by using Landsat-8 OLI data and constructed a salinization detection index
(SDI) model, and the result showed that the soil surface salinity was highly correlated
with SDI with R2 = 0.8596. Feng Juan et al. [84] proposed the albedo–MSAVI feature space
concept with Landsat-8 OLI to construct different index models for monitoring soil salinity,
and the coefficient of determination of the model and soil salinity was 0.96, which can better
reflect the salinity of the oasis. The feature space theory has been widely applied to remote
sensing data, but mainly using optical remote sensing data, and fewer studies have applied
radar images to construct feature space to invert the salinity of soils. Zaytungul et al. [53]
took the soil salt content as the dependent variable, used the backscattering coefficient of
four polarized PALSAR-2 data, soil water content, soil pH value, and measured values
of soil salt, and established a quantitative inversion model by using a multiple linear
regression model, geological weighted regression model, and BP neural network model.
Yao Gao et al. [85] evaluated the effectiveness of the improved medium mixing model and
integral equation model for describing saline soils. Finally, a linear regression model for salt
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content monitoring was developed. Although the above studies constructed soil salinity
inversion models using radar images and achieved good results, there are fewer studies that
apply the feature space theory to radar images to construct soil salinity inversion models.

In this study, radar feature space was established by using the theory of feature
space, combined with the theory of polarization decomposition of radar images and field
investigations, the monitoring model of soil salinity was constructed, and the inversion
accuracy was relatively desirable. Although the results of this quantitative inversion
model of soil salinity were somewhat satisfactory in this particular arid environment, the
generalizability of the model in other areas needs further research and evaluation.

6. Conclusions

In this study, an investigation of the soil salinization in Keriya Oasis of Xinjiang, China,
is conducted using the satellite-based PolSAR imagery. The advantages of polarization
decomposition and feature space theory were fully utilized to invert salinized soils us-
ing quad-polarized PALSAR-2 images. Integrated multiple polarization decomposition
methods (Cloude, Freeman, Freeman Durden, Pauli, Sinclair, VanZyl, Yamaguchi, and
H/A/Alpha) were used to extract polarization parameters related to the physical scattering
mechanism of soil salinity.

The main conclusions of our work are as follows: (1) the feature components of
PALSAR-2 data in the study area were selected, consisting of four polarized feature compo-
nents, including Freeman_vol_g, Sinclair_g, Freeman Durden vol_g, and VanZyl_vol_g;
(2) Based on the selected feature components, the Sinclair_g–Freeman_vol_g, VanZyl_vol_g–
Freeman Durden_vol_g, and VanZyl_vol_g–Freeman vol_g, three feature spaces were
constructed, and the RSDI1, RSDI2, and RSDI3 soil salinity quantitative inversion models
were also established. (3) Then, validation of the models used data of field-measured
surface soil salinity. (4) The analysis and comparison results of typical feature spaces show
that the RSDI1 model (R2 = 0.63) has better applicability to the salinization monitoring in
Keriya Oasis than models RSDI2 (R2 = 0.61) and RSDI3 (R2 = 0.62). The obtained results
demonstrate the potential of feature space models in extracting salinization information
using PolSAR data.

This study not only makes full use of the rich polarization information in PolSAR data
but also takes advantage of the two-dimensional feature space with simple principles and
convenient operation to construct a quantitative inversion model that can effectively and
quickly extract regional soil salinity information, providing a new perspective for future
soil salinity monitoring.
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