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Abstract: This paper proposes a single-stage adaptive multi-scale noise filtering algorithm for point
clouds, based on feature information, which aims to mitigate the fact that the current laser point
cloud noise filtering algorithm has difficulty quickly completing the single-stage adaptive filtering of
multi-scale noise. The feature information from each point of the point cloud is obtained based on
the efficient k-dimensional (k-d) tree data structure and amended normal vector estimation methods,
and the adaptive threshold is used to divide the point cloud into large-scale noise, a feature-rich
region, and a flat region to reduce the computational time. The large-scale noise is removed directly,
the feature-rich and flat regions are filtered via improved bilateral filtering algorithm and weighted
average filtering algorithm based on grey relational analysis, respectively. Simulation results show
that the proposed algorithm performs better than the state-of-art comparison algorithms. It was, thus,
verified that the algorithm proposed in this paper can quickly and adaptively (i) filter out large-scale
noise, (ii) smooth small-scale noise, and (iii) effectively maintain the geometric features of the point
cloud. The developed algorithm provides research thought for filtering pre-processing methods
applicable in 3D measurements, remote sensing, and target recognition based on point clouds.

Keywords: point cloud denoising; kd-tree; grey relational analysis; principal component analysis;
adaptive threshold; bilateral filtering algorithm

1. Introduction

With the rapid development of three-dimensional (3D) laser scanning technology,
it has become easier to acquire accurate point clouds of ground targets, and point cloud
processing technology has emerged as a key research direction in the field of vision
processing [1–4]. However, in the process of acquiring point clouds of the scene where
the target is located, the light detection and ranging (LiDAR) is often affected by the
platform, as well as the accuracy of the transceiver sensor, interference caused by the
detection environment, reflection characteristics of the target, and complexity of the
target scene. As a result, the point cloud data obtained will inevitably be noisy; thus, it
is necessary to perform noise filtering pre-processing steps [5–8].

According to its characteristics in the 3D point cloud, point cloud noise can be cat-
egorized as large-scale noise and small-scale noise. Large-scale noise is far from normal
feature points, whereas small-scale noise is mixed with normal feature points [9]. The
multi-scale noise filtering methods are divided into two-stage and single-stage methods.
The two-stage methods adopt serial processing mode, and the processing flow is as follows:
first, the point cloud without large-scale noise is obtained via the large-scale noise filtering
method; then, the clean point cloud is obtained via the small-scale filtering method. The
same point cloud is traversed multiple times (≥2 times), so the processing time is longer.
The single-stage methods adopt a parallel processing mode, according to the information
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about each point in the point cloud, multi-scale noise filtering can be achieved through a
single traverse, so time efficiency is relatively high.

For large-scale noise filtering algorithms, the most commonly used methods are
the PCL (point cloud library), such as statistical outlier removal, and radius filtering
methods, etc. However, there are problems such as poor filtering effect and difficulty in
determining parameters (such as the range of nearest neighbors k, standard deviation
std, the radius of the neighborhood R, etc.). In order to improve the filtering effect, some
scholars have made a lot of efforts to design some other large-scale filtering methods
to improve the filtering effect. Su et al. proposed a feature-preserving point cloud
denoising algorithm, based on the (i) Euclidean distance from the point to the cluster
center of the k-means clustering algorithm and (ii) change in curvature of neighboring
points. The algorithm has a better ability to maintain the point cloud features. However,
when the large-scale noise content is too high, it will appear to cluster the noise into
one class, and it is sensitive to the initial point and k (the number of neighborhood
points) [10]. Zhao et al. obtained a collection of raster cells through voxel raster division
to improve the k-mean based method, and they used a spatial clustering algorithm
(density-based spatial clustering of applications with noise, DBSCAN) to determine
the boundaries, as well as outlier noise to achieve large-scene scattered point cloud
denoising. The algorithm is also sensitive to the parameters of radius and neighboring
points number; when these parameters are not properly selected, the clustering time
will increase, and the classification effect will be poor. [11]. Li et al. used the octree
index to organize the point cloud and remove the initial noise, and they combined it
with Bayesian estimation theory and statistical methods to remove noise precisely, the
algorithm error rate is 0.09% (the PCL algorithm error rate is 0.48%), but how to choose
the octree resolution is a problem [12]. Fan et al. explored an efficient image-based
filtering approach to remove the data points located outside the indoor space of interest
by mathematical morphology operations, hole filling, and connectively analysis; the
approach is computationally efficient (<3 ms/10,000 points), but the algorithm needs to
optimize each parameter manually, which is not conducive to automated point cloud
processing. [13]. We summarize the advantages and disadvantages of various large-
scale filtering methods are shown in Table 1. As can be seen from the table, these
large-scale filtering algorithms are hardly balanced, in terms of adaptivity, speed, and
filtering effect. Therefore, for large-scale automatic filtering tasks, we should ensure
the automatic completion of the task, while increasing the speed and filtering effect as
much as possible.

Table 1. Features of various large-scale noise filtering algorithms.

Method Advantage Disadvantage

PCL methods fast, simple poor filtering effect,
manual parameter required

cluster-based good filtering effect slow, manual parameter required
index-based fast, simple manual parameter required
image-based fast, good filtering effect manual parameter required

For small-scale noise filtering algorithms, Fleishman et al. applied the bilateral
filtering algorithm to point cloud processing for the first time [14]. Based on the Fleish-
man study, Zheng et al. proposed an effective, simple, and rapid anisotropic grid
denoising algorithm, based on using local neighborhoods to filter grid vertices in the
normal direction; however, since the bilateral filtering factor cannot be adjusted with the
region features, this approach led to an over-photosmoothing of the flat region [15]. Sun
et al. implemented normal weighted average filtering by designing a quadratic-based
weighting function that automatically performed iterations in the filtered direction,
this approach is as fast as the bilateral method, but it does not filter well at the edges
or corner points [16]. Wang et al. used a point set relation method to determine the
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adaptive weighting parameters, thus extending the LSM (least squares method) to
smooth the point cloud, and the results show that the smoothing effect of the algorithm
is good; however, the quantity and quality of the training dataset affect the performance
of training-based methods [17]. Duan et al. first applied a neural network to a 3D point
cloud denoising architecture, known as neural projection denoising (NPD), and better
denoising effects can be obtained for a given point cloud model. However, the size of the
database and complexity of the online environment limit the application of the method
in the field of online point cloud filtering [18]. Zeng et al. extended the low-dimensional
flow model used for image blocks to surface blocks of point clouds, which eventually
achieves denoising, while preserving visually salient structural features, such as edges.
However, this algorithm was highly complex and exhibited poor timeliness (running
time is about 20 times longer than robust implicit moving least squares method) [19].
Wang et al. proposed a denoising method based on a normal vector distance classifi-
cation, which divides the point cloud into two parts, i.e., smooth and sharp regions,
and filters and denoises the smooth and sharp regions, using the weighted local op-
timal projection (WLOP) and bilateral filtering algorithms, respectively. However, a
disadvantage of this means is that they usually require setting complex rules to ensure
satisfactory removals [20]. In conclusion, for small-scale noise filtering, the most diffi-
cult part is to improve the timeliness and maintain the high-frequency information of
the point cloud.

Following a survey of relevant literature, no study has been undertaken dedicatedly
to achieve single-stage, multi-scale noise filtering. Conventional multi-scale noise filtering
methods generally involve two-stage noise filtering, with the first stage using a large-scale
filtering method to remove large-scale noise and the second stage using a small-scale
filtering method to photosmooth the point cloud. Li et al. eliminated the large-scale noise
via statistical outlier removal method (SOR) and radius filtering and filtered the small-scale
noise by rapid bilateral filtering [21]. Liu et al. proposed an efficient denoising algorithm
based on image and normal vector threshold judgement. First, large-scale noise points
are eliminated using a global threshold judgement-based image; then, the Kuwahara filter
algorithm is used for data smoothing, and denoising is achieved based on normal vector
threshold judgements [22]. Li et al. proposed a library-based point cloud denoising method
for multi-scale noise, using statistical and radius filtering algorithms to remove large-scale
noise. Meanwhile, they used an improved bilateral filtering algorithm to smooth small-
scale noise, but the filtering effect was still relatively poor [9]. Zhao et al. proposed a
hierarchical (from coarse to fine) point cloud denoising algorithm. Circular filtering, using
the anisotropic diffusion equation, was used to achieve large-scale denoising of the point
cloud; then, small-scale denoising of the point cloud was achieved based on the curvature of
the coarse-filtered point cloud. However, this approach is not effective when dealing with
edges or corner points [23]. These above multi-scale filtering algorithms use a two-stage
approach, and the two stages are independent of each other, which reduces the processing
efficiency; so, it is necessary to perform both large- and small-scale filtering, based on the
same point cloud features.

To quickly achieve single-stage, multi-scale noise adaptive filtering while maintaining
the features of the point cloud, this paper proposes a fast, adaptive, multi-scale noise
filtering algorithm for point clouds, based on feature information. The remaining structure
of this paper is as follows. Section 2 describes the specific approach proposed. Section 3
shows and analyzes the experiment results. Section 4 provides a discussion and analysis
of the results. Section 5 provides a brief summary and conclusions, as well as the future
research directions related to the proposed method.

2. Materials and Methods
2.1. Study of Point Cloud Noise Feature

Point cloud noise is categorized as anomalous noise or burr noise. Anomalous noise,
also known as large-scale noise, has high-frequency characteristics and is expressed as
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“spikes”; this includes solitary points in the form of single points, as well as clusters of
outlier points. Burr noise is also known as small-scale noise, whereas small-scale noise is
mixed with normal feature points.

To evaluate the effects of various scales of noise on the point cloud, a sphere of radius
R1 = 1 was simulated, with O as the center of sphere I; the 24 points on the surface of
sphere I are normal points in the point cloud. The distribution of the distances from the
12 points to the center of the sphere O follows a Gaussian distribution, with mean LS = 1
and standard deviation σ = 0.2. Specifically, the distances from the 12 points to O are
{0.86, 0.948, 0.95, 0.971, 1.063, 1.105, 1.118, 1.161, 1.204, 1.228, 1.271, 1.306}, all of which
constitute small-scale noise (Gaussian noise). The 12 points, distributed around the surface
of sphere II (radius R2 = 2), represent large-scale noise points (anomalous noise) in the
point cloud, and their distances from O are {2, 2, 2, 2, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.5, 2.5, 2.5, 2.5}.

All of the points in the k-neighborhood (k = 2) were removed in the order of their
original distance from the center (from small to large). For example, the distance to the first
point is 0.86, with the average distance L = 0.86, the distance of the second point is 0.948,
with the corresponding average distance L = 0.894, etc.; this allows a calculation of the
average distance of the 48 points in the k-neighborhood. The trend of the average distance
and the original distance in the k-neighborhood as a function of the number of points is
shown in Figure 1. For large-scale isolated points (anomalous noise), the average distance
increased rapidly, and the distance from large-scale noise (R2 = 2) to the center O was
relatively farther than the distance of normal points. Additionally, the average distance of
the k-nearest neighbors containing large-scale noise was greater than the average distance of
k-nearest neighbors not containing large-scale noise. These results indicated that anomalous
noise can be filtered out directly via proper spatial distance. Therefore, we use distance-
based feature information to separate the large-scale noise in this paper. Small-scale noise
points are generally distributed in the vicinity of 1 and have less of an influence on the
average distance; therefore, it is difficult to separate small-scale noise from the point cloud
cluster by spatial distance. Instead, it is generally smoothed, according to the distribution
law of Gaussian noise, to reduce the impact of small-scale noise on the follow-up. Therefore,
we smooth small-scale noise based on vector information and noise distribution model in
this paper.
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Figure 1. Effect of noise at each scale on the average distance.

2.2. Study Data and Evaluation Methods
2.2.1. Study Data

In order to test the performance of the algorithm proposed in the paper, six point
cloud models from public datasets were selected as the research data, as shown in Figure 2.
The number of points for the Engine model was 3028, the number of points for the Blade
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model was 50,653, the number of points for the Building model was 93,039, the number of
points for the Airplane model was 8176, the number of points for the Fish model was 3164,
the number of points for the Cube model was 3177, the number of points for the People
model was 5573, and the number of points for the Car model was 29,452. Large-scale noise,
with a ratio of 0.02, and small-scale noise, of 20 dB, were added to the point cloud, where
the small-scale noise represents Gaussian white noise. Figure 2a shows the original point
cloud, Figure 2b shows the point cloud after adding large-scale noise, Figure 2c shows
the point cloud after adding small-scale noise, and Figure 2d shows the point cloud after
adding multi-scale noise. The experiments verifying the proposed algorithm were carried
out based on these point cloud models.
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2.2.2. Performance Evaluation

Since most current multi-scale filtering algorithms involve two-stage filtering methods
(i.e., large-scale noise is filtered first, followed by small-scale noise), this paper compares
the developed method with state-of-art large- and small-scale noise filtering algorithms to
verify the large-scale noise denoising and small-scale noise photosmoothing abilities of the
algorithm proposed in this paper.

A 3D comparison method was used to evaluate the noise filtering accuracy in this
paper. Point clouds, filtered by various methods, were compared with the original noise-
free point clouds in three dimensions, and the deviation distribution was obtained; the
deviation values were counted to evaluate the advantage of the filtering algorithm in
terms of filtering accuracy. However, isolated points are removed during 3D recon-
struction, which affects the assessment of large-scale noise filtering effects; therefore,
it is necessary to increase the objective evaluation index of large-scale noise filtering
efficiency. The accuracy index (Acc) was used in this work to assess the large-scale
noise filtering effect; the accuracy index represents the ratio of the total number Tu of
all correctly classified points (correctly detected large-scale noise and normal points) to
the total number of all elements in the classification task, as presented in Equation (1),
where Fa denotes the total number of miss classified points and error classified points.
The miss classified points were generally large-scale noise points that were incorrectly
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classified as normal points, and the error classified points were normal points that were
incorrectly classified as large-scale noise points.

Acc = Tu/(Tu + Fa) (1)

Let us define the attribute information Pi of the k-nearest neighbor centroid as pre-
sented in Equation (2). Then Pi indicates the dispersion contribution of the point to the
neighborhood, such that the smaller the value of pi, the richer the detail of the point cloud.

pi =
Di

PSDi +
k
∑

j=1
PSDj

(i = 1, 2, . . . , n; j = 1, 2, . . . , k) (2)

Entropy in information theory describes the uncertainty in the appearance of
certain data, such that a higher entropy value indicates less information. Grey relation
entropy theory is generated by combining grey relation analysis with entropy theory.
Let a discrete sequence X = {Pi|i = 1,2, . . . ,n}, containing n elements and ∀i, pi > 0, be
defined, such that ∑ pi = 1, H⊗(X) is the grey entropy of the sequence X, as presented
in Equation (3) [24,25]. The total grey entropy of the point cloud indicates the amount
of the detailed feature information contained in the point cloud. The smaller the value
of H⊗(X), the more chaotic the point cloud, more information it contains, and more
it contributes to the geometric features of the region; this also means information
contained is richer and more detailed. Additionally, when all values in the sequence
are equal, the maximum grey entropy value of the sequence X is lnn, so the less high
frequency information, the higher the grey entropy value.

H⊗(X) ,

{
−∑ pi ln pi pi 6= 0
0 pi = 0

(3)

The average grey entropy (AGE) of the point cloud represents the average geometric
feature contribution of each point in the point cloud, and this parameter ph is defined as
presented in Equation (4) [25]:

ph =
H⊗(X)

n
(4)

2.3. Methodology

Because conventional point cloud noise filtering algorithms have difficulty achieving
single-stage adaptive filtering of multi-scale noise, an adaptive single-stage, multi-scale
noise filtering algorithm for point clouds, based on feature information, is proposed herein.
Scattered point clouds do not have a clear topology. Therefore, an efficient kd-tree topolog-
ical data structure with multidimensional data indexing was adopted in this study. The
distanced from each point within the k-nearest neighborhood to the center point and the
normal vector of each point in the k-neighborhood based on the kd-tree were obtained.
The normal vector was corrected via Gaussian filtering and a kd-tree traversal method,
and the average normal vector angle θ in the k-neighborhood was obtained. The adap-
tive threshold-based point cloud segmentation algorithm divided the point clouds into
large-scale noise (LSN), feature-rich regions (FRR), and flat regions (FR) and processed
them by removing noise, as well as applying the improved bilateral filtering algorithm and
weighted mean algorithm based on grey relation analysis (WMGRA), respectively. This
method effectively enabled rapid, single-stage, multi-scale noise filtering of noisy point
clouds. The flow chart of the proposed algorithm is shown in Figure 3.



Remote Sens. 2022, 14, 367 7 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22 
 

 

cessed them by removing noise, as well as applying the improved bilateral filtering algo-
rithm and weighted mean algorithm based on grey relation analysis (WMGRA), respec-
tively. This method effectively enabled rapid, single-stage, multi-scale noise filtering of 
noisy point clouds. The flow chart of the proposed algorithm is shown in Figure 3. 

Establishing spatial 
topology based on Kdtree

Original Noise 
Containing Point Cloud

Extraction point cloud 
feature information Corrected normal vector

Point cloud Scatter 
Coefficient (PSC)

Point cloud Similarity 
Degree (PSD)

PSC>Th(d) PSD>Th(θ)

Large-scale noise Flat regionsFeature-rich regions

Improved bilateral 
filtering algorithmRemoving WMGRA

Point cloud after 
noise filtering

No

Yes Yes

No

Adaptive threshold 
acquisition

 
Figure 3. Flow chart of fast adaptive multi-scale noise filtering algorithm. 

All points (n) in the point cloud comprise of the point cloud scatter coefficient se-
quence 𝐃 = {𝑃𝑆𝐶|𝑖=1,2,⋯,𝑛}  and point cloud similarity degree sequence  𝚯 ={𝑃𝑆𝐷|𝑖=1,2,⋯,𝑛}. 

By determining the appropriate separation threshold thd of D and separation thresh-
old thθ of Θ, through the adaptive threshold acquisition method (Section 2.3.3), the discri-
minant function of each region segmentation could be obtained using Equation (5). 

,
,

d

i d

d

LSN KSC th
p FRR KSC th KSD th

FR KSC th KSD th
θ

θ

>
= < <
 < >

 (5)

For large-scale noise, the noise-removal process was performed directly. Small-scale 
noise was mainly Gaussian noise, which was effectively processed via WMGRA de-
noising, which embodies the advantages of low algorithm complexity and short compu-
tational durations. However, it destroys the point cloud details in feature-rich regions, 
resulting in the blurring of edge and corner points of the cloud. Therefore, to remove the 
noise, while maintaining the high-frequency features of the target, the proposed method 
employed WMGRA (Section 2.3.4) for small-scale noise smoothing in flat regions and an 
improved bilateral filtering algorithm (Section 2.3.5) for small-scale noise smoothing in 
feature-rich regions. 

  

Figure 3. Flow chart of fast adaptive multi-scale noise filtering algorithm.

All points (n) in the point cloud comprise of the point cloud scatter coefficient se-
quence D = {PSCi|i = 1, 2, . . . , n} and point cloud similarity degree sequence
Θ = {PSDi|i = 1, 2, . . . , n}.

By determining the appropriate separation threshold thd of D and separation threshold
thθ of Θ, through the adaptive threshold acquisition method (Section 2.3.3), the discriminant
function of each region segmentation could be obtained using Equation (5).

pi =


LSN KSC > thd
FRR KSC < thd, KSD < thθ

FR KSC < thd, KSD > thθ

(5)

For large-scale noise, the noise-removal process was performed directly. Small-
scale noise was mainly Gaussian noise, which was effectively processed via WMGRA
denoising, which embodies the advantages of low algorithm complexity and short
computational durations. However, it destroys the point cloud details in feature-rich
regions, resulting in the blurring of edge and corner points of the cloud. Therefore,
to remove the noise, while maintaining the high-frequency features of the target, the
proposed method employed WMGRA (Section 2.3.4) for small-scale noise smoothing in
flat regions and an improved bilateral filtering algorithm (Section 2.3.5) for small-scale
noise smoothing in feature-rich regions.

2.3.1. Normal Vector Estimation and Correction

The point clouds (shown in Figure 2) are a typical scattered point cloud without a
clear topology, so we used a dichotomous tree (kd-tree) data structure to construct the basic
topology of these point clouds in this paper, and the normal vectors were estimated using
principal component analysis (PCA) in the k-neighborhood [26–28].
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Assuming that the set of points in the k-neighborhood X = {qi |i = 1,2,k} and k is the
number of point clouds in the neighborhood, the covariance matrix of X is defined as
presented in Equation (6):

C =

 q1 −
¯
P

. . .

qk −
¯
P


T q1 −

¯
P

. . .

qk −
¯
P

,
¯
P =

1
k

k

∑
i=1

qi (6)

where C represents the extent to which points in the k-neighborhood deviate from the

center of mass
¯
P. In this case, C has three non-negative real eigenvalues, and the normal

vector
→
n p of the feature point is the eigenvector corresponding to the smallest eigenvalue.

Although
→
n p represents the direction of least change for all points in the neighborhood and

has some noise immunity, the normal vector in the neighborhood will have discontinuous
directions when the point cloud is cluttered; therefore, the estimated normal vector must
be corrected.

All points were traversed according to the kd-tree topology, and the normal vector
orientations of all points were corrected to be consistent. According to the vector dot
product, when the normal vector

→
n p of the central feature point and the normal vectors of

other points in the k-neighborhood are negative, i.e., indicating two vectors have opposite
directions, the direction of the seed point is favored, as presented in Equation (7).

→
n p =

{→
n p

→
n p ·

→
n qi > 0

−→n p
→
n p ·

→
n qi < 0

(7)

To ensure that the normal vector in the k-neighborhood varies continuously, the
weighted mean filter was used in this study, and the normal vector correction model is
given in Equation (8):

→
n p =

∑
qi∈X

→
n qi exp (− ‖

→
p−→q i‖

2 σ2
n)

∑
qi∈X

exp (− ‖
→
p−→q i‖

2 σ2
n)

(8)

where
→
n qi is the normal vector of points in the k-neighborhood,

→
p − →q i represents the

Euclidean distance between points
→
p and

→
q , and σn represents the influence factor of the

Euclidean distance to
→
p in the k-neighbourhood on

→
n qi . The radius of the k-neighbourhood

is taken in this paper.

2.3.2. Point Cloud Scatter Coefficient and Similarity Degree

The mean distance of the k-nearest neighbors containing large-scale noise is greater
than the mean distance of k-nearest neighbors not containing large-scale noise; thus, we
define the point cloud scatter coefficient (PSC) within the k-nearest neighbors based on
this feature. Specifically, PSC represents the point cloud dispersion within the k-nearest
neighbors. The larger the PSC, the more discrete and sparser the point cloud distribution,
and the higher the probability that the k-nearest neighbors contain large-scale noise. The
PSC is defined as presented in Equation (9).

PSC =
1
k ∑

qi∈X
‖→p −→q i‖ (9)

The point cloud similarity degree (PSD) describes the directional consistency of the
normal vectors of the points and centroids in the k-nearest neighborhood. The larger the
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PSD, the closer the normal vector directions of the points, and the PSD is determined as
presented in Equation (10).

PSD =
1
k ∑

qi∈X
cos
〈→

n p,
→
n qi

〉
(10)

2.3.3. Adaptive Threshold Acquisition Algorithm

The normal vector directions of the points in the flat region were generally consistent,
whereas the normal vector directions of the points in the feature-rich region (including
high-frequency feature information and small-scale noise) were more diverse. According
to this parameter, the target point cloud can be partitioned into a flat region and a feature-
rich region by choosing a suitable threshold. For the processor to automatically perform
the denoising filtration, the filtering algorithm must automatically determine the optimal
threshold (th), according to the point clouds in an adaptive manner.

The sequence of point cloud eigenvalues is T = {Ti|i = 1, 2, . . . , n}. Let Tt = th and t be
the index of the corresponding serial number of Tt. Then, t can divide the sequence T into
two parts, i.e., the background and target. When 1 < i ≤ t, the elements Ti are background;
when t < i ≤ n, the elements are target. Calculating the proportion of each element as
Qi = Ti/ ∑n

i=1 Ti, the total proportion of background elements is Q1 = ∑k
i=1 Qi, and the

total proportion of target elements is Q2 = ∑n
i=k+1 Qi.

The mean of the background elements is b1 =
(

∑k
i=1 TiQi

)
/Q1, the mean of the target

elements is b2 =
(
∑n

i=k+1 TiQi
)
/Q2, and the mean of the entire sequence is

bG = ∑n
i=1 TiQi [29]. The separation evaluation criteria objective function is defined as

presented in Equation (11).

J = Q1(b1 − bG)
2 + Q2(b2 − bG)

2 (11)

If we let b1 < bG < b2, the larger the ∆b = b2 − b1, the further the target element is from
the interval where the background element is located, i.e., the better the value of the objec-
tive function of the evaluation criterion, the more effective the separation. All separation
evaluation criterion objective function values form the set {Ji|i = 1, 2, . . . , t, . . . , n}, such
that there must be a maximum criterion objective function value. In other words, there
is an optimal separation point k*, such that J(k∗) = max

0≤k�l
J(k), and the best separation is

achieved when a threshold th = Tk∗ is selected.

2.3.4. Weighted Mean Algorithm Based on Grey Relation Analysis

In 1982, Professor Deng founded the discipline of grey system theory for analyzing
uncertain systems with the characteristics of “small data (sample size is small)” and “poor
information (less useful information in the data)”. After more than 30 years of vigorous de-
velopment, grey system theory has been applied to forecasting, planning, decision-making,
gemology, clustering, control, etc. [30–33]. The distribution that small-scale noise obeys in
the neighborhood is unknown, and the relationship between points in the neighborhood is
also unknown, so the local information of points in the neighborhood to be processed is
an uncertain system. Therefore, grey system theory is well applicable to point cloud noise
filtering tasks. To this end, we make the first attempt to apply grey system theory to point
cloud noise processing in this paper. Grey relation analysis (GRA) is an important branch
of the grey theory system. It can be used to measure the similarity and proximity between
two grey systems. Small-scale noise points are far from the median of the neighborhood in
the flat regions, so the similarity and proximity between systems CA (consists of small-scale
noise points) and CB (Consists of the mean of the k-neighborhood) is very low. According
to this feature, we propose a small-scale noise filtering algorithm for flat regions, based on
WMGRA, in this paper.
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In the k-neighborhood, the angle θi = cos
→
n p,

→
n qi of the normal vector is related to the

grey comparison sequence X1 = {xi = θi|i = 1, 2, . . . , k} used for grey relation analysis.
The mean m = mean{X1} of the k-neighborhood is an element of GRA, and the grey

reference sequence is X0 = {x0(i) = m|i = 1, 2, . . . , k}. Small-scale noise obeys a Gaussian
distribution, so the weighted mean value algorithm based on GRA (WMGRA) can smooth
the small-scale noise in flat regions.

The grey reference sequence is subjected to a dimensionless unitary transformation of
the initial values with the comparison sequence (Equation (12)). y0(j) = x0(j)

min {X0,X1}

y1(j) = x1(j)
min {X0,X1}

(12)

The proximity of each element in the grey comparison sequence to the corresponding
element in the reference sequence is computed using Equation (13).

r(j) =
1

1 + |y0(j)− y1(j)| (j = 1, 2, . . . , k) (13)

The small-scale noise filtering factor β in the flat region is defined as presented in
Equation (14).

β =

∑
qi∈X

(1− ri)
〈→

p −→q i,
→
n qi

〉
∑

qi∈X
(1− ri)

(14)

In this paper, the degree of proximity r(j) serves as the weight assignment coefficient,
and the points after filtering the flat region are obtained using Equation (15); the time
complexity of the WMGRA is O(n):

→
P i =

→
P + β

→
n , (i = 1, 2, . . . , n; j = 1, 2. . . , k) (15)

where
→
P i is the filtered point,

→
P is the original point,

→
n p is the normal vector at

→
P , and β is

the mall-scale noise filtering factor defined by Equation (14). The small-scale noise filtering

task is completed by moving the processing point
→
P a certain distance along the direction

of the normal vector
→
n p.

2.3.5. Improved Bilateral Filtering Algorithm

The point cloud bilateral filtering algorithm is based on development of image bilateral
filtering, which accounts for the spatial Euclidean distance between pixel points in the
k-neighborhood and the differences in the normal vectors of each point. This process can
be described as a point moving a certain distance in its normal direction. Therefore, the
bilateral filtering algorithm is generally used as a smoothing process for small-scale noise,
and it cannot effectively remove anomalous noise points. The bilateral filtering algorithm
based on point cloud data is presented in Equation (16) [14,34]:

→
p i =

→
p + α

→
n p (16)

where
→
p i is the filtered point,

→
p is the original point,

→
n p is the normal vector at

→
p , and α is

the bilateral filtering factor defined by Equation (17):

α =

∑
→
q∈Rk

ws

(
‖→p −→q‖

)
wr(
〈→

p −→q ,
→
n p

〉
)
〈→

p −→q ,
→
n p

〉
∑

→
q∈Rk

ws

(
‖→p −→q‖

)
wr(
〈→

p −→q ,
→
n p

〉
)

(17)
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where Rk is a set of the nearest neighbors of the central point
→
p ,
→
q is a point within Rk,

→
n p is

the normal at the point
→
p ,
→
n q is the normal at the point

→
q , ‖→p −→q‖ is the Euclidean distance

between points
→
p and

→
q ,
〈→

p −→q ,
→
n p

〉
denotes the length of the projection of

→
q in the

direction of
→
p normal to

→
n p, ws(x) = exp

(
−x2/2σ2

s
)

is the Gaussian kernel function, and
σs is the Euclidean distance from

→
q to

→
p in the k-neighborhood for

→
p . The larger the σs, the

better the effect on the smoothness of the point cloud and larger the average distance from
all points in the k-neighborhood to

→
p . The expression wr(x) = exp

(
−x2/2σ2

r
)

is another
form of the Gaussian kernel function, where σr is the effect of the projection distance of
each point in the k-neighborhood on the normal vector of

→
q on

→
p ; the larger the effect, the

better the retention of the feature. The value of σr is generally the standard deviation of the
set of projected distances of the points on the

→
p normal vector [15].

Because the WMGRA ignores the distance information between points, the high-
frequency feature points will be over-smoothed when using this method to process the
feature-rich region. Typically, a bilateral filtering algorithm is used to smooth the feature-
rich region of the point cloud. However, the traditional bilateral filtering factor uses the
projection distance of neighboring points on their tangent planes as the weighting factor,
which has some limitations in the sharp region, where the feature changes are more drastic.

For the feature-rich region of the point cloud shown in Figure 4, it is necessary to
maintain the high-frequency feature of point P. The projection lengths of

→
n 1 and

→
n 2 on

→
n

are the same, i.e., d1 = d2, if the traditional bilateral filtering factor is used. Accordingly, the
impacts of

→
n 1 and

→
n 2 on

→
n are the same, but the weight of

→
n 2 should be larger than that of

→
n 1 to maintain the feature of P.
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Figure 4. Diagram of the retention factor.

The cosine of the angle between the normal vectors was used as the feature retention
factor of the bilateral filtering factor; thus, the weight was minimized when the angle is
90◦. When the normal vector of each point in the k-neighborhood is relatively consistent
with the direction of the normal vector of the point to be sought, there is a smaller angle
between the two vectors, and the corresponding assigned weight should be larger. The
definition of the improved bilateral filtering factor α is presented in Equation (18), where
CosAngpq = 1 − cos

〈→
n p,

→
n qi

〉
, and Eupq = ‖→p − →q‖ denotes the Euclidean distance

between
→
p and

→
q .

α =

∑
qi∈X

ws(Eupq)wr(CosAngpq)(1− ri)
〈→

p −→q i,
→
n qi

〉
∑

qi∈X
ws(Eupq)wr(CosAngpq)(1− ri)

(18)

The filtered points of the feature-rich region were obtained using Equation (19), and
the time complexity of the improved bilateral filtering algorithm is O(n2).

→
P i =

→
P + α

→
n (19)
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3. Results
3.1. Normal Vector Correction Algorithm Validation

To verify the effectiveness of the normal vector filtering algorithm proposed in this
paper, the point cloud normal vector was extracted from the Cube point cloud. The effect
of the normal vector extraction is presented in Figure 5, where Figure 5a shows the point
cloud normal vector obtained by the moving least square (MLS) method, and Figure 5b
shows the normal vector obtained by the normal vector filtering algorithm, proposed in
this work.
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Figure 5. Normal vector of a cube point cloud. (a) is the normal vector obtained by MLS method;
(b) is the normal vector obtained by proposed method.

Comparing these two vectors reveals that the point cloud normal vectors obtained
by the MLS method are messier, whereas the flat areas of the point cloud normal vectors
obtained by the proposed algorithm are neater and more uniform, with smoother changes
at the edges. These results verify the effectiveness of the normal vector filtering algorithm
proposed in this paper.

3.2. Region Segmentation Algorithm Validation

To verify the effectiveness of the adaptive point cloud region segmentation algorithm,
experiments were performed using the Cube point cloud and the Engine point cloud, and
the region segmentation is presented in Figure 6, where the green points represent flat
regions, the red points indicate feature-rich regions, and the blue points denote large-scale
noise. It is clear from these figures that the segmented, feature-rich regions are mainly
concentrated at the edges or corners of the point cloud, which is consistent with the
actual situation and verifies the effectiveness of the proposed adaptive point cloud region
segmentation algorithm.
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Figure 6. Area segmentation effect in the (a) Cube Engine point cloud; (b) Engine point cloud.

3.3. Large-Scale Noise Filtering Experiments

To verify the large-scale noise filtering performance of the proposed algorithm, we
compared it to other state-of-the-art algorithms, including the statistical outlier removal
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filtering method (SOR), the radius outlier removal filtering method (ROR), the denoising
algorithm (based on the octree index, proposed by Li et al. [9]), and the denoising method
(based on the DBSCAN algorithm, proposed by Zhao et al. [11]).

Comparing these various methods confirmed that certain parameters can significantly
influence the filtering effect. For example, the parameters k0 and std in the SOR method
indicate that, when the points in the k0-nearest neighborhood exceed the variance of std
times (generally, std = 1,2,3), the points to be sought are considered as large-scale noise.
Similarly, the parameters R and k1 in the ROR denote the radius of the neighborhood
and number of points in the neighborhood, respectively; if the number of points in the
neighborhood with radius R is less than k1, the processing point is considered as large-scale
noise (k1 = 3 in this paper). Moreover, different filtering results were obtained for different
octree layers k2 and different DBSCAN parameters (search neighborhood radius = Eps,
minimum neighborhood points = MinPts).

For the purpose of comparing these methods, some parameters were set to more
appropriate values in this paper; for example, std = 2, k1 = 3. Figure 7 shows the large-scale
noise filtering effect achieved by various methods on Airplane and Building point cloud
models, where the parameter used for SOR was k0 = 50, the parameter used for ROR
was R = 1.5, the parameter used for the octree method was k2 = 5, and the parameter
used for DBSCAN was Eps = 2.5. Figure 7 reveals that the ROR and octree method have
numerous error classified points and miss classified points, whereas the DBSCAN method
and proposed algorithm have essentially no false detection cases and only a few missed
detection cases.
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To objectively describe the effectiveness of various methods for dealing with large-
scale noise, the number of miss-classified and error classified points, as well as the accuracy
index (Acc) were obtained, when evaluating Airplane and Building point clouds, as shown
in Figure 8. Because the points in the neighborhood are more concentrated in the Airplane
point cloud, many large-scale noise values and original points are mixed together and
difficult to separate; therefore, the number of miss classified points is much larger than the
number of error classified points, and the Acc of our algorithm is the smallest. In the case
of the Building point cloud, more Building edge points are mixed with the noise, so the
error classified points are more likely to occur; thus, the number of error classified points is
larger than the number of missed detections, the accuracy index of the proposed algorithm
is the smallest and only slightly larger than that of DBSCAN (Eps = 0.5). Considering
the drawback that the DBSCAN algorithm is time-sensitive and the parameters must
be selected manually, the proposed algorithm has the strongest overall large-scale noise
denoising ability. These results and comparisons further verify the denoising ability of the
algorithm proposed in this paper for large-scale noise.



Remote Sens. 2022, 14, 367 14 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 22 
 

 

classified points is larger than the number of missed detections, the accuracy index of the 
proposed algorithm is the smallest and only slightly larger than that of DBSCAN (Eps = 
0.5). Considering the drawback that the DBSCAN algorithm is time-sensitive and the pa-
rameters must be selected manually, the proposed algorithm has the strongest overall 
large-scale noise denoising ability. These results and comparisons further verify the de-
noising ability of the algorithm proposed in this paper for large-scale noise. 

  
(a) (b) 

Figure 8. Large-scale noise filtering results. a) are Airplane point cloud; (b) are Building point cloud. 

3.4. Small-Scale Noise Filtering Experiments 
To verify the small-scale noise filtering performance of the proposed algorithm, we 

compared it to other state-of-the-art algorithms, including the robust implicit moving least 
square method (RIMLS) proposed by Öztireli et al. [35], the bilateral filtering algorithm 
(BFA) developed by Zheng et al. [15], and the smoothing algorithm based on WLOP and 
bilateral filtering (WLOPBF) proposed by Wang et al. [20]. The small-scale noise filtering 
effects (i.e., smoothing effect) of the Fish and Blade point clouds were obtained using the 
algorithm proposed in this paper, and the results are compared with those obtained with 
the three aforementioned algorithms in Figure 9. When dealing with edge regions, BFA 
and WLOPBF adopt a traditional bilateral filtering algorithm, so the errors at the edges 
are larger. In contrast, when dealing with flat regions, the errors of WLOPBF, RIMLS, and 
our algorithm are relatively smaller. 

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

727 727 728

896

803 815 794 810

1067

727 727 727

590

28 31 34 4 5 7 15 6 1 29 38 29 40

200

400

600

800

1000

1200

1400

1600

Po
in

ts

Method

 Miss classified point
 Error classified point
 Accuracy index

ROR(R=
1.5

)

DBSCAN(Ep
s=

3)

Prop
ose

d a
lgo

rith
m

DBSCAN(Ep
s=

2.5
)

DBSCAN(Ep
s=

2)

Octr
ee(
k₂=

6)

Octr
ee(
k₂=

5)

Octr
ee(
k₂=

4)

ROR(R=
2)

ROR(R=
1)

SOR(k₀
=10

0)

SOR(k₀
=50

)

SOR(k₀
=20

)

A
cc

ur
ac

y 
in

de
x 

(A
cc

)

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

59 11
5 27

7

57
9

33
3

17
8

14
23

51
4

10
9

1 1 1 1

29
4 35
7 41
0

17
2 39

8

10
02

14
7 40

7

17
12

24
4 46

6

10
06

23
6

0

800

1600

2400

3200

4000

4800

Po
in

ts

Method

 Miss classified point
 Error classified point
 Accuracy index

ROR(R=
1.5

)

DBSCAN(Ep
s=

1.5
)

Prop
ose

d a
lgo

rith
m

DBSCAN(Ep
s=

1)

DBSCAN(Ep
s=

0.5
)

Octr
ee(
k₂=

6)

Octr
ee(
k₂=

5)

Octr
ee(
k₂=

4)

ROR(R=
2)

ROR(R=
1)

SOR(k₀
=10

0)

SOR(k₀
=50

)

SOR(k₀
=20

)

A
cc

ur
ac

y 
in

de
x 

(A
cc

)

Figure 8. Large-scale noise filtering results. (a) are Airplane point cloud; (b) are Building point cloud.

3.4. Small-Scale Noise Filtering Experiments

To verify the small-scale noise filtering performance of the proposed algorithm, we
compared it to other state-of-the-art algorithms, including the robust implicit moving least
square method (RIMLS) proposed by Öztireli et al. [35], the bilateral filtering algorithm
(BFA) developed by Zheng et al. [15], and the smoothing algorithm based on WLOP and
bilateral filtering (WLOPBF) proposed by Wang et al. [20]. The small-scale noise filtering
effects (i.e., smoothing effect) of the Fish and Blade point clouds were obtained using the
algorithm proposed in this paper, and the results are compared with those obtained with
the three aforementioned algorithms in Figure 9. When dealing with edge regions, BFA
and WLOPBF adopt a traditional bilateral filtering algorithm, so the errors at the edges are
larger. In contrast, when dealing with flat regions, the errors of WLOPBF, RIMLS, and our
algorithm are relatively smaller.

With the original point cloud as the reference point cloud and the point cloud after
applying the small-scale noise filtering algorithm as the test comparison point cloud, the 3D
deviation distribution chromatogram of the processed point cloud was obtained (Figure 10).
The deviation of the algorithm proposed herein is generally concentrated around zero,
indicating that the smoothing effect of the developed method is superior to that of the three
previous strategies.

To objectively describe the effect of various methods, when dealing with small-scale
noise, the average deviation (AD), point number beyond the critical deviation value (PBCV,
when the deviation range is [−1, 1]), and AGE of various methods were determined, when
dealing with Fish and Blade point clouds (Figure 11). The AGE of the algorithm proposed
in this paper is the smallest, which indicates that the high frequency information features
are better maintained. Additionally, the AD and PBCV of the proposed algorithm are the
smallest, which further verifies the effectiveness of the small-scale filtering of the algorithm
developed in this work.

In general, the time required for small-scale noise smoothing is more than that for large-
scale noise removal. Therefore, this section compares the running time of the proposed
algorithm with other small-scale filtering algorithms to test the timeliness of the algorithm
proposed in this paper, and the processing time of various methods were obtained, when
dealing with Fish, Blade and People point clouds, to compare the timeliness of each
algorithm; the running time is shown in Figure 12. For the Fish model, the proposed
algorithm in this paper is 38.64% faster than the BFA and 71.23% faster than RIMLS; for
the Blade model, the proposed algorithm in this paper is 39.39% faster than the BFA and
68.7% faster than RIMLS; for the People model, the proposed algorithm in this paper
is 37.78% faster than the BFA and 65.72% faster than RIMLS; for the Car model, the
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proposed algorithm in this paper is 43.57% faster than the BFA and 68.5% faster than
RIMLS. Therefore, it can be concluded from Figure 12 that the proposed algorithm in this
paper can quickly achieve multi-scale noise filtering of point clouds.
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4. Discussion

The accuracy of normal directly affects the filtering effect of noise. Therefore, one of
the important future directions of noise filtering algorithm is the normal vector filtering
algorithm. Sun et al. proposed a normal vector filtering method based on weighted
averaging of neighboring normal [16]. However, it uses a constant angle threshold, which
makes it difficult to achieve the best filtering effect. To this end, Liang et al. proposed
an adaptive angle threshold acquisition method, which achieved a better normal vector
filtering and point cloud smoothing effect, but the complexity of the algorithm is high, and
the parameters in the threshold acquisition model are difficult to determine [36]. In order to
deal with these problems, we propose a vector estimation and correction algorithm, based
on directional discrimination and Gaussian filtering; the results show that the point cloud
normal vector estimated by this method is more regular and smoother, compared to the
traditional MLS method.

None of these conventional approaches to date achieves single-stage, multi-noise
filtering, these methods typically use a serial (two-stage) processing model to achieve
the tasks [9,21,22]. In general, large-scale noise is usually sensitive to the distance in
the neighborhood, while small-scale noise is usually related to the angle between the
normal vectors in the neighborhood. To this end, we obtain the feature information of
each point by traversing all points through an efficient kd-tree and achieve multi-scale
noise filtering by partitioned parallel processing, based on feature information (point
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cloud scatter coefficient, PSC; point cloud similarity degree, PSD). Our results suggest
that the algorithm proposed in this paper can single-stage quickly and adaptively
(i) filter out large-scale noise, (ii) smooth small-scale noise, and (iii) effectively maintain
the geometric features of the point cloud.

To objectively evaluate the comprehensive performance of the algorithms proposed
in this paper, first, we compared the developed method with state-of-art large-scale
filtering algorithms to verify the large-scale noise denoising abilities of the proposed
method; then, we compared the developed method with state-of-art, small-scale noise
filtering algorithms to verify the small-scale noise photosmoothing abilities of the
proposed algorithm. Moreover, we propose several filtering effect evaluation indexes.
For example, for large-scale noise filtering evaluation, there are miss classified points
index, error classified points index, and large-scale noise recognition accuracy rate
index (Acc); for small-scale noise filtering evaluation, there are total grey entropy and
average grey entropy (AGE). These indexes offer new ways to objectively evaluate the
performance of the point cloud filtering algorithms.

There are two general ways to reduce the time for small-scale noise filtering, one of
which is to design low-complexity algorithms [16,37], and the other is to partition the point
cloud [20]. In this paper, we use both of the above methods to reduce running time. First, a
point cloud partitioning process is used to divide the point cloud into large-scale noise, a
feature-rich region, and a flat region; these three regions can be handled separately later to
reduce the waste of computing power. Second, a WMGRA-based, small-scale noise filtering
algorithm for the flat region is designed in this paper, and the complexity of the algorithm
is only O(n), so smooth tasks can be done quickly. Our results suggest that the running
time of the proposed algorithm is minimal, compared to other state-of-the-art algorithms.
Furthermore, we apply grey model theory to the field of point cloud filtering for the first
time; these studies, thus, offer a new strategy to point cloud processing.

Although the proposed algorithm achieves single-stage, adaptive, multi-scale point
cloud noise filtering, there are also limitations. First, the results show that the processing
time of the algorithm is still too long to be applied to high-speed online processing platforms.
For example, the complexity of the adaptive threshold acquisition method designed in this
work is high, which needs to be improved in the future. Second, the normal vector, PSD,
and PSC are related to the neighborhood size. Generally, the larger the neighborhood is,
the more realistic and accurate the description of the point cloud is; therefore, the better the
filtering effect is, but at the cost of increased computing time. The selection of neighborhood
size in this paper is obtained empirically, and the effect of point cloud neighborhood on the
filtering results is not investigated; so, how to select the neighborhood size appropriately
is a future research direction. In addition, the set of feature information obtained in this
paper is inconsistent, such as PSD is k-nearest neighbors and PSC is k-neighborhood; in
addition, the adaptive threshold acquisition algorithm is based on the global. So, the set of
all feature information needs to be unified in future study, but since different point cloud
models (or different noise distribution, different noise content, etc.) correspond to different
optimal choices, and the threshold selection method based on local information is sensitive
to noise. Therefore, it is a very challenging task to unify all sets.

5. Conclusions

This paper proposes a fast, single-stage, adaptive, multi-scale noise filtering algorithm
for point clouds. Based on the feature information (e.g., point cloud scatter coefficient
and point cloud similarity degree), obtained by a kd-tree and the amended normal vector,
the noise-containing point cloud is divided into three parts: large-scale noise, feature-rich
regions, and flat regions. The large-scale noise is removed directly, and the feature-rich
and flat regions are filtered using an improved bilateral filtering algorithm and WMGRA,
respectively. The results confirm that the proposed algorithm can quickly and adaptively
filter out large-scale noise and smooth, small-scale noise, while also effectively maintaining
the geometric features of the point cloud.
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In follow-up work, we will focus on the three aspects: optimizing the efficiency of the
algorithm to improve filtering performance, reducing the complexity of the algorithm for
adapting to high-speed online processing situations, and building more robust features
information to improve point cloud region segmentation abilities.
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