A Deep Learning Application for Deformation Prediction from Ground-Based InSAR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Desciption of Guangyuan Landslides
2.2. GB-InSAR Phase Model
2.3. Long Short-Term Memory for Sequence Modeling
3. Proposed Methodology
3.1. Deformation Prediction
3.1.1. Data Normalization
3.1.2. LSTM Network Design
3.1.3. Hyperparameter Selection
3.2. Real-Time Processing
3.2.1. Obtaining the Initial Deformation Value
3.2.2. Real-Time Processing
4. Results
4.1. Atmosphere Prediction
4.2. Deformation Prediction
4.3. Real-Time Processing
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lingua, A.M.; Piatti, D.; Rinaudo, F. Remote monitoring of a landslide using an integration of GB-INSAR and LIDAR techniques. In Proceedings of the 21st Congress of the International Society for Photogrammetry and Remote Sensing, Beijing, China, 25 June 2008. [Google Scholar]
- Broussolle, J.; Kyovtorov, V.; Basso, M.; Ferraro, D.S.; Figueiredo, M.J.; Giuliani, R.; Oliveri, F.; Sammartino, P.; Tarchi, D. MELISSA, a new class of ground based InSAR system. An example of application in support to the Costa Concordia emergency. ISPRS J. Photogramm. Remote Sens. 2014, 91, 50–58. [Google Scholar] [CrossRef]
- Emanuele, I.; Giovanni, G.; Massimiliano, N.; Luca, L.; Francesco, M.; Francesco, F.; Nicola, C. Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application. Geomorphology 2015, 241, 304–314. [Google Scholar]
- Calvari, S.; Di Traglia, F.; Ganci, G.; Giudicepietro, F.; Macedonio, G.; Cappello, A.; Nolesini, T.; Pecora, E.; Bilotta, G.; Centorrino, V.; et al. Overflows and Pyroclastic Density Currents in March-April 2020 at Stromboli Volcano Detected by Remote Sensing and Seismic Monitoring Data. Remote Sens. 2020, 12, 3010. [Google Scholar] [CrossRef]
- Barla, M.; Antolini, F. An integrated methodology for landslides’ early warning systems. Landslides 2016, 13, 215–228. [Google Scholar] [CrossRef]
- Kuraoka, S.; Nakashima, Y.; Doke, R.; Mannen, K. Monitoring ground deformation of eruption center by ground-based interferometric synthetic aperture radar (GB-InSAR): A case study during the 2015 phreatic eruption of Hakone Volcano. Earth Planets Space 2018, 70, 181. [Google Scholar] [CrossRef] [Green Version]
- Di, T.F.; Nolesini, T.; Ciampalini, A.; Solari, L.; Frodella, W.; Bellotti, F.; Fumagalli, A.; Rose, G.D.; Casagli, N. Tracking morphological changes and slope instability using spaceborne and ground-based SAR data. Geomorphology 2018, 300, 95–112. [Google Scholar]
- Carla, T.; Tofani, V.; Lombardi, L.; Raspini, F.; Bianchini, S.; Bertolo, B.; Thuegaz, P.; Casagli, N. Combination of GNSS, satellite InSAR, and GB-InSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology 2019, 335, 62–75. [Google Scholar] [CrossRef]
- Carla, T.; Gigli, G.; Lombardi, L.; Casagli, N. Monitoring and analysis of the exceptional displacements affecting debris at the top of a highly disaggregated rockslide. Eng. Geol. 2021, 294, 106345. [Google Scholar] [CrossRef]
- Dario, P.; Luisa, O.; Gianfranco, N.; Michele, C.; Jordi, R.; Pere, B.; Marc, J. Investigating the kinematics of the unstable slope of Barberà de la Conca (Catalonia, Spain) and the effects on the exposed facilities by GBSAR and multi-source conventional monitoring. Landslides 2021, 18, 457–469. [Google Scholar]
- Long, S.; Tong, A.; Yuan, Y.; Li, Z.; Wu, W.; Zhu, C. New Approaches to Processing Ground-Based SAR (GBSAR) Data for Deformation Monitoring. Remote Sens. 2018, 10, 1936. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.; Aguasca, A.; Lort, M.; Broquetas, A. Micrometric deformation imaging at W-Band with GBSAR. Eur. J. Remote Sens. 2016, 19, 719–733. [Google Scholar] [CrossRef] [Green Version]
- Crosetto, M.; Monserrat, O.; Luzi, G.; Cuevas-Gonzá, M.; Devanthéry, N. Discontinuous GBSAR deformation monitoring. ISPRS J. Photogramm. Remote Sens. 2014, 93, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, Q.; Lin, Y.; Zhao, Z.; Li, Y. Multi-Phase-Center Sidelobe Suppression Method for Circular GBSAR Based on Sparse Spectrum. IEEE Access 2020, 8, 133802–133816. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Mills, J. Modelling of instrument repositioning errors in discontinuous Multi-Campaign Ground-Based SAR (MC-GBSAR) deformation monitoring. ISPRS J. Photogramm. Remote Sens. 2019, 157, 26–40. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Liu, Y.; Peng, J.; Mills, J. A New Processing Chain for Real-Time Ground-Based SAR (RT-GBSAR) Deformation Monitoring. Remote Sens. 2019, 11, 2437. [Google Scholar] [CrossRef] [Green Version]
- Izumi, Y.; Zou, L.; Kikuta, K.; SATO, M. Iterative Atmospheric Phase Screen Compensation for Near-Real-Time Ground-Based InSAR Measurements Over a Mountainous Slope. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5955–5968. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhang, Y.; Deng, M.; Wu, H.; Kang, Y.; Wei, J. Time series prediction method of large-scale surface subsidence based on deep learning. Acta Geod. Cartogr. Sin. 2021, 50, 396–404. [Google Scholar]
- Yang, H.; Peng, J.; Cui, H. Slope of Large-scale Open-pit Mine Monitoring deformations by Using Ground-Based interferometry. Prog. Geophys. 2012, 27, 1804–1811. [Google Scholar]
- Liu, J. The Research of Atmospheric Correction Method for GB-InSAR; China University of Geosciences: Beijing, China, 2020. [Google Scholar]
- Rödelsperger, S.; Läufer, G.; Gerstenecker, C.; Becker, M. Monitoring of displacements with ground-based microwave interferometry: IBIS-S and IBIS-L. J. Appl. Geod. 2010, 4, 41–54. [Google Scholar] [CrossRef]
- Zhao, X.; Lan, H.; Li, L.; Zhou, C. A Multiple-Regression Model Considering Deformation Information for Atmospheric Phase Screen Compensation in Ground-Based SAR. IEEE Trans. Geosci. Remote Sens. 2020, 58, 777–789. [Google Scholar] [CrossRef]
- Iannini, L.; Monti, G.A. Atmospheric Phase Screen in Ground-Based Radar: Statistics and Compensation. IEEE Geosci. Remote Sens. Lett. 2011, 8, 537–541. [Google Scholar] [CrossRef]
- Yu, H. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). Natl. Remote Sens. Bull. 2005, 9, 589–595. [Google Scholar]
- Wantong, C.; Hailong, W.; Ren, S. CM-LSTM Based Spectrum Sensing. Sensors 2022, 22, 2286. [Google Scholar]
- Jiao, F.; Huang, L.; Song, R.; Huang, H. An Improved STL-LSTM Model for Daily Bus Passenger Flow Prediction during the COVID-19 Pandemic. Sensors 2021, 21, 5950. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wu, X.; Cheng, Z.; Yuan, Z.; Jiang, Y. DB-LSTM: Densely-connected Bi-directional LSTM for human action recognition. Neurocomputing 2021, 444, 319–331. [Google Scholar] [CrossRef]
- Chaodong, F.; Li, Y.; Yi, L.; Xiao, L.; Qu, X.; Ai, Z. Multi-objective LSTM ensemble model for household short-term load forecasting. Memetic Comput. 2022, 14, 115–132. [Google Scholar]
- Liu, Y. Study on Monitoring Method of Surface Subsidence in Filling Mining Area Based on DS-InSAR; China University of Mining and Technology: Beijing, China, 2021. [Google Scholar]
- Du, J. Application of Kalman Filtering in GB-InSAR Slope Deformation Monitoring; China University of Geosciences: Beijing, China, 2021. [Google Scholar]
Radar elevation angle | 0° |
Radar gain | 54 dB |
Measuring distance range | 30 m–1400 m |
Measuring angle range | −90°–60° |
Range resolution | 0.7495 m |
Azimuth resolution (−3 dB) | 6.8 m (1 km) |
Single imaging time | 15 s |
Time interval between two images | 5 min |
Time | 2021.10.17 16:13:05 | 2021.10.17 16:33:05 | 2021.10.17 16:53:05 | 2021.10.17 17:13:05 | 2021.10.17 17:33:05 | |
---|---|---|---|---|---|---|
Num | ||||||
1 | 0.875 | 0.884 | 0.885 | 0.858 | 0.842 | |
2 | 0.875 | 0.882 | 0.852 | 0.837 | 0.839 | |
3 | 0.875 | 0.880 | 0.881 | 0.858 | 0.845 | |
4 | 0.875 | 0.876 | 0.878 | 0.858 | 0.848 |
Time | 2021.10.17 16:13:05 | 2021.10.17 16:33:05 | 2021.10.17 16:53:05 | 2021.10.17 17:13:05 | 2021.10.17 17:33:05 | |
---|---|---|---|---|---|---|
Unit | ||||||
Radian | 0.695 | 0.696 | 0.686 | 0.702 | 0.685 |
Hyperparameter Name | Value |
---|---|
LSTM_units | 128 |
Dropout | 0.2 |
Batch_size | 128 |
epochs | 400 |
Operating System | Ubuntu 20.04 |
---|---|
Development Platform | Google Tensorflow |
GPU | TITAN RTX 32G |
CPU | Inter Xeon(R) Silver 4116 @2.10GHz × 48 |
Memory | 128G |
Number of Data Scenes | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
---|---|---|---|---|---|---|---|---|
Consume Time (min) | 4.72 | 4.77 | 4.75 | 4.7 | 4.76 | 4.71 | 4.71 | 4.73 |
Original Time (min) | 35.4 | 35.4 | 35.4 | 35.5 | 35.5 | 35.5 | 35.6 | 35.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Yang, H.; Liu, Y.; Lu, Z.; Zeng, K.; Jiao, R. A Deep Learning Application for Deformation Prediction from Ground-Based InSAR. Remote Sens. 2022, 14, 5067. https://doi.org/10.3390/rs14205067
Han J, Yang H, Liu Y, Lu Z, Zeng K, Jiao R. A Deep Learning Application for Deformation Prediction from Ground-Based InSAR. Remote Sensing. 2022; 14(20):5067. https://doi.org/10.3390/rs14205067
Chicago/Turabian StyleHan, Jianfeng, Honglei Yang, Youfeng Liu, Zhaowei Lu, Kai Zeng, and Runcheng Jiao. 2022. "A Deep Learning Application for Deformation Prediction from Ground-Based InSAR" Remote Sensing 14, no. 20: 5067. https://doi.org/10.3390/rs14205067
APA StyleHan, J., Yang, H., Liu, Y., Lu, Z., Zeng, K., & Jiao, R. (2022). A Deep Learning Application for Deformation Prediction from Ground-Based InSAR. Remote Sensing, 14(20), 5067. https://doi.org/10.3390/rs14205067