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Abstract: Taking the Chang’e-4 and Chang’e-5 landing areas as the study areas, this study extracts
the geological unit information from the regional USGS geological map, as well as the feature
information such as topography and geomorphology, material composition and mineral abundance
from Chang’e-2 DOM and DEM, wide angle camera (WAC) and Kaguya multi-band imager data. By
applying methods including the statistical-based estimation of mutual information of data and the
integrated-algorithmic-model-based evaluation of feature importance to this extracted information,
we screen the significant features and construct a high-precision classification model by combining
machine learning algorithm with important features of sample data. The practical application of
the multi-classification prediction on the complex geological units in the two study areas achieves
97.9% and 95.1% accuracy. At the same time, the significant characteristics of the study area are
mined, and the rules and knowledge associated with the geological evolution of the study area are
obtained. In this study, we carry out research on quantitative prediction and identification of lunar
surface geological units based on large samples and construct a high-precision multi-classification
model to achieve automatic classification and prediction on large sample geological units with high
accuracy. This method provides a new idea for the predicted mapping of geological units of lunar
global digital mapping. In addition, it helps to fully exploit the useful information in the data and
enrich the knowledge regarding the formation and evolution of the Moon.

Keywords: data mining; lunar surface geological units; machine learning; multi-classification
supervised learning; information fusion; the Moon

1. Introduction

The Moon, as the closest celestial body to the Earth, is the preferred target for human
deep space exploration. Since the 1960s, the US Geological Survey (USGS) has produced a
lunar geologic map using images obtained by the five Lunar Orbiter missions. Subsequently,
a 1:5,000,000 global lunar geologic map was created combined with digital terrain model
(DTM) data from the LRO, LOLA and Selene Kaguya missions, and it was publicly released
in 2020 [1] for downloading (https://bit.ly/LunarGeology (accessed on 3 March 2020)). To
date, it remains the most complete and latest global lunar geologic map publicly available.
This map consists of 49 geologic units across the entire lunar surface. These units are broken
down into groups based on attributes and include materials of craters, basins, terra, plains,
Imbrium Formation, Orientale Formation and volcanic units [1]. A geological unit is a
geological body with the same origin formed in a certain region by a defined geological
activity in a specific period of time. The classification and delineation of lunar geological
units is not only an essential and fundamental endeavor for carrying out lunar geological
mapping, but also the basis for in-depth research on the integrity and regularity of the
origin and evolution of the Moon [2,3].

The classification and delineation of lunar geological units implies the process of
obtaining information on the spatial distribution, origin and evolution of lunar geological
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units based on the summary of various lunar exploration data. The lunar surface geo-
logical unit is a comprehensive expression of the lunar surface’s morphological features,
material composition, mineral distribution, albedo, geological age, etc., reflecting the lunar
formation and evolution processes [4,5]. With the rapid development of machine learning
in recent years, research on lithology identification, lithological unit mapping and other
related classification problems based on machine learning have achieved better results and
progress [6–16]. Compared to traditional geological mapping techniques, the classification
models or combination algorithms of machine learning are efficient and intelligent in
lithology classification and recognition, and they can be used as an auxiliary tool with great
potential advantages to improve the efficiency of the traditional geological mapping tech-
nology system. In the field of lunar geological mapping, the application of machine learning
methods is still in the initial stage, and the classification and delineation of geological units
are mainly focused on the methods combining the traditional GIS technology with the
lunar exploration data. The application of machine learning methods in the field of lunar
and planetary mapping is in the ascendant. The research on geological unit classification
based on machine learning is not only an exploration of the method of lunar geological
unit mapping, but also a way to extract the association rules from the data to obtain new
knowledge and make discoveries, as well as to enrich and deepen the cognition of the
formation and evolution of the Moon.

In this work, we extract information including lunar surface topography, mineral
composition, element abundance and soil characteristics to construct a basic geological unit
classification dataset with multidimensional features, in order to build a classification model
combining machine learning algorithms with feature variables and to conduct research on
geological unit classification and prediction. The information used is from the USGS global
lunar geological map and the fused data, including the Chang’e-2 CCD camera images
and DEM data, the wide angle camera (WAC) data from the Lunar Reconnaissance Orbiter
(LROC) and the Kaguya multi-band imager data. This paper first describes a supervised
learning method of multi-classification of geological units based on multi-feature variables
of data and machine learning algorithms. Then, combined with test results of classification,
the algorithm model, the influence of the feature variables and the application of the
method are analyzed and discussed. Finally, we summarize the work of this study and
directions for future work are provided.

2. Methods

In this study, we extract information of the selected area from multi-source data to
form a feature dataset. Through programming via python, we apply a machine learning
algorithm to train the data to realize the multi-classification supervised learning and
prediction of lunar surface geological units. The overall processes mainly include area
selection, feature extraction, geological unit classification and classification result evaluation
(Figure 1).
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2.1. Study Regions

We selected the Chang’e 5 and Chang’e 4 landing sites as the study area for this work.
The Chang’e 5, China’s first lunar sample return mission, landed in the northern part of
the Oceanus Procellarum and to the west of the Sinus Iridum and Montes Jura [17]. The
landing site is flat and ejected materials with high reflectivity can be seen. The authors
of [18] indicate that the Chang’e-5 landing site is distributed with multi-period mare basaltic
geological units. The Chang’e-4 mission is the first exploration on the lunar far-side. The
landing site is located in the Von Kármán crater in the South Pole-Aitken basin [19]. The
Von Kármán crater has a flat floor with a prominent central peak, and its overall topography
shows a descending trend from northeast to southwest [20]. Some ejected materials from
the northeast Finsen crater can be found near the landing site [21]. According to the latest
lunar geological map released by USGS [1] (Figure 1c), the Chang’e-5 region contains six
types of geological units such as Im2 (Upper Imbrium Mare Unit), Em (Eratosthenian Mare
Unit) and Ic1 (Lower Imbirum Crater Unit); and the Chang’e 4 region contains 15 types of
geological units such as pNc (pre-Netarian Crater Unit), pNt (pre-Netarian Terra Unit) and
Ec (Eratosthenian Crater Unit) (Figure 1c). The topography of the Chang’e-4 landing area
is more complex compared to the Chang’e-5 landing area.

In the selected study areas, the Chang’e-2 high-resolution image data are used as the
base map for gridding. The image data are divided from a single raster into m x n grid
cells according to a certain interval (this can be customized, and an interval of 2 km is used
in this study) (Figure 2), and the center pixel of each grid is used as a sample point. The
longitude and latitude coordinates of each sample point were calculated to generate the
initial vector data of the sample point, which were then used to perform spatial overlay
operations with the USGS global geological map vector data to extract the geological unit
classification features of each sample point. A total of 23,326 and 18,492 sample points were
extracted from the Chang’e 4 and Chang’e 5 landing areas, respectively. The geologic unit
classification distribution of each area is shown in Figure 2.
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2.2. Feature Extraction

In this study, we extract feature information of data based on Chang’e-2 image and DEM
data, wide-angle camera (WAC) data and Kaguya multi-band imager data [22]. Since the grid
interval of sampling points is 2 km, the spatial resolution of various data sources should be no
less than 2 km to ensure that the feature information corresponding to the sample points can
be extracted one-to-one. The spatial resolutions of the selected feature data sources are 20 m,
59 m and 400 m (see Table 1), which are all less than 2 km and meet the requirements. Using
the same grid space to perform spatial superposition with various data sources, 14 types of
feature information (Table 1) (e.g., topography, mineral abundance, material composition, soil
properties) were extracted for each data point according to the pixel position of the sample
point, forming the feature samples dataset for geological unit classification.

Table 1. Feature attributes of the sample data and their descriptions.

No Feature Name Feature Definition Data Source Description

1 Longitude
Longitude coordinates of the center of the

sample point, ranging from −180 to
180 degrees

The global DOM data were acquired by the
Chang’e-2 CCD camera [23,24]. The
resolution of the data used is 20 m.

2 Latitude
Latitude coordinates of the center of the

sample point, ranging from −90 to
90 degrees

3 Gray The grayscale value of the image of the pixel
where the sample point is located

4 Elevation Elevation from the DEM data of the pixel
where the sample point is located

The global DEM data were acquired by the
Chang’e-2 CCD camera [24,25]. The

resolution of the data used in this paper is
20 m.5 Relief

The difference between the maximum and
minimum elevation values of all pixel points
in the eight neighbors centered around the

pixel where the sample point is located

6 slope

The average of the rate of change of
elevation from one pixel to another. It can be

calculated as p = atan

(√
( ∂z

∂x )
2
+ ( ∂z

∂y )
2
)

,

where p is the slope, and ∂z
∂x , ∂z

∂y denote the
partial derivatives in the x and y directions,

respectively

7 TiO2 The TiO2 content of the pixel where the
sample point is located

TiO2 content data are from the wide angle
camera (WAC) of the US Lunar

Reconnaissance Orbiter (LROC) system [26],
with data coverage from 0 to 360 degrees
longitude and −70 to 70 degrees latitude.

The resolution of the data used is
400 m/pixel.

8 FeO The FeO content of the pixel where the
sample point is located

Multispectral image data of the lunar
surface acquired by the Kaguya multi-band
imager (MI) at five wavelength positions in

the ultraviolet-visible band (UVVIS; 415,
750, 900, 950, 1001 nm) and four wavelength

positions in the near-infrared band (NIR;
1000, 1050, 1100, 1250 nm). FeO content,

four common mineral contents (two types of
pyroxene, plagioclase, olivine),

submicroscopic metallic iron (SMFe)
abundance, and optical maturity (OMAT)

data were derived with data coverage from
0 to 360 degrees longitude and −50 to

50 degrees latitude [27]. The resolution of
the data used is 59 m/pixel.

9 SMFe
Submicroscopic metallic iron (SMFe)

content of the pixel where the sample point
is located

10 Clinopyroxene Clinopyroxene content of the pixel where
the sample point is located

11 Orthopyroxene Orthopyroxene content of the pixel where
the sample point is located

12 Plagioclase Plagioclase content of the pixel where the
sample point is located

13 Olivine Olivine content of the pixel where the
sample point is located

14 OMAT Optical maturity of the pixel where the
sample point is located
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2.3. Target Classification

The 14 extracted features are used as vector x dataset, and the geological unit clas-
sification features are used to construct dataset y as the prediction target of this study.
The geological unit classification in dataset y is converted from a non-numerical type to
a numerical type by the label encoding (LabelEncoder.fit_transform) method. From the
perspective of machine learning, classification can be defined as mapping from one domain
(i.e., input data) to another (target classes) via a discrimination function y = f(x). Inputs
are represented as m vectors of the form 〈x1, x2, . . . , xm〉 and y is a finite set of n class
labels {y1, y2, . . . , yn}. Given instances of x and y, supervised machine learning attempts
to induce or train a classification model f’, which is an approximation of the discrimination
function, ŷ = f’(x) and maps input data to target classes [28–30]. In this work, the target
classification of geological units consists of three main steps: feature selection, dataset
construction and slicing and classification training and prediction.

Feature selection: Feature selection is an important research direction in the field
of statistical machine learning, which is central to improving model training speed and
classification accuracy and to enhance the interpretability of model results. Too many or
too few dimensions of the features, or features without enough importance will eventually,
to some extent, lead to the poor generalization of the training model. In this work, a
statistical-based estimation of mutual data information and machine-learning-integrated-
algorithmic-model-based feature importance evaluation were used for feature selection.
The features with higher importance scores were synthetically selected as the preferred
features for subsequent feature combination to build the dataset.

Feature dataset construction and slicing: according to the feature importance, the feature
variables with significant impact were selected to be combined and to form feature dataset
xi. Then, the feature dataset xi and y were randomly sliced into training and test sets simul-
taneously according to a certain ratio, which is of 70% and 30% in this study. In the specific
application, we first trained different models using the training set. Model performance was
improved through continuous iterations and the optimal models were selected. Then, we
verified and evaluated the performance of the models through the test set.

Classification training and prediction: different classification models were built by
combining machine learning classifiers with the dataset for classification training and
prediction. In this study, nine machine learning classifiers were first selected. After
preliminary testing, KNeighbors, ExtraTree and SVC [31–33], which have poor multi-
classification prediction performances, were removed. Six classifiers including DecisionTree,
RandomForest, GradientBoosting, XGBoost, CatBoost and Bagging [34–39], which have
better performances, were finally selected. The classifiers and the feature dataset were
combined to construct classification models for target classification, and their performances
were initially judged based on the classification results of the training set. The model was
then optimized in two ways; by adjusting the hyperparameters of the algorithm (via grid
search or Bayesian algorithm) and by feature selection, to finally make predictions on the
test dataset.

2.4. Prediction Assessment

In this study, the target classification of geological units was evaluated using a con-
fusion matrix, accuracy, precision, recall and f1-score. Accuracy is the rate of correct
classification of all samples which can better evaluate the overall effectiveness of the model;
precision is the correct percentage of all positive predictions; recall is the percentage of
correct predictions among all positive samples. This reflects the ability of the algorithm
to find all positive samples. A higher value means fewer samples are misclassified; the
f1-score is the summed average of precision and recall. An example of the confusion matrix
is shown in Figure 3.
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In the confusion matrix, four values are included: (1) True Positive (TP): the number of
samples for which both the real label and predicted result are positive; (2) False Negative
(FN): the number of samples for which the real label is positive but the predicted result is
negative; (3) False Positive (FP): the number of samples for which the real label is negative but
the predicted result is positive; (4) True Negative (TN): the number of samples for which both
the real label and predicted result are negative. According to these four values, the accuracy,
precision, recall and f1-score of the model can be calculated by the following formula:

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

f1-score =
2∗Precision ∗ Recall
Precision + Recall

(4)

3. Results
3.1. Constructed Feature Dataset

In this work, two methods were used for feature selection: statistical-based mutual in-
formation estimation of data and integrated-algorithmic-model-based evaluation of feature
importance. The mutual information estimation based on the nearest neighbor model and
the variable importance of the integrated algorithm of XGBoost for feature scoring were
applied for the former and latter methods, respectively. The results of feature importance
evaluation of both methods are shown in Figure 4. According to the classification result and
considering aspects such as topography, geomorphology and mineralogy, eight features
with high scores were selected including ‘longitude’, ‘latitude’, ‘elevation’, ‘relief’, ‘TiO2’,
‘FeO’, ‘Plagioclase’ and ‘Olivine’. Feature datasets were then constructed based on these
features. Finally, 16 feature datasets (Table 2) were selected for comparison. We combined
these feature datasets with the six selected machine learning algorithms to form different
classification models for subsequent classification training and testing.
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importance of Chang’e-4 and Chang’e-5 study areas, respectively, based on the nearest neighbor
model. (b,d) Scores of feature importance of Chang’e-4 and Chang’e-5 study areas, respectively,
based on the application of the integrated algorithm of XGBoost.

Table 2. Feature dataset formed by combination of important features.

Dataset Name Abbreviations Feature Combinations of Datasets

DataSet_1 DS1 ‘Longitude’, ‘Latitude’, ‘FeO’
DataSet_2 DS2 ‘Longitude’, ‘Latitude’, ‘TiO2’
DataSet_3 DS3 ‘Longitude’, ‘Latitude’, ‘Plagioclase’
DataSet_4 DS4 ‘Longitude’, ‘Latitude’, ‘Elevation’
DataSet_5 DS5 ‘Longitude’, ‘Latitude’, ‘Relief’
DataSet_6 DS6 ‘Longitude’, ‘Latitude’, ‘Olivine’
DataSet_7 DS7 ‘Longitude’, ‘Latitude’, ‘Relief’, ‘TiO2’
DataSet_8 DS8 ‘Longitude’, ‘Latitude’, ‘Elevation’, ‘TiO2’
DataSet_9 DS9 ‘Longitude’, ‘Latitude’, ‘Relief’, ‘TiO2’, ‘Olivine’

DataSet_10 DS10 ‘Longitude’, ‘Latitude’, ‘Elevation’, ‘TiO2’, ‘Olivine’
DataSet_11 DS11 ‘Longitude’, ‘Latitude’, ‘Relief’, ‘TiO2’, ‘FeO’
DataSet_12 DS12 ‘Longitude’, ‘Latitude’, ‘Elevation’, ‘TiO2’, ‘FeO’
DataSet_13 DS13 ‘Longitude’, ‘Latitude’, ‘Relief’, ‘TiO2’, ‘Plagioclase’
DataSet_14 DS14 ‘Longitude’, ‘Latitude’, ‘Elevation’, ‘TiO2’, ‘Plagioclase’
DataSet_15 DS15 ‘Longitude’, ‘Latitude’, ‘Relief’, ‘TiO2’, ‘Plagioclase’, ‘FeO’
DataSet_16 DS16 ‘Longitude’, ‘Latitude’, ‘Elevation’, ‘TiO2’, ‘FeO’, ‘Plagioclase’

3.2. Chang’e-4 Landing Area

The geological background of the Chang’e 4 landing area is very complex, and there are
as many as 15 types of geological unit classifications. The average classification accuracy
of the six algorithms on the 15 datasets is higher than 89.5%. The algorithms ranked
from highest to lowest in terms of classification ability are: XGBoost, Bagging, CatBoost,
GradientBoosting, DecisionTree and RandomForest (Figure 5a). The highest classification
accuracy of 95.1% is obtained by XGBoost + DataSet_4; the following highest classification
accuracy is obtained by XGBoost on the datasets of DataSet_8, DataSet_14 and DataSet_10
with accuracies of 95%, by Bagging + DataSet_2 with accuracies of 94.9% and by CatBoost
+ DataSet_4 with accuracies of 94.8%. The highest value of f1-score is 93.8%, which is
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obtained by Bagging + DataSet_2; the second value is 92.9%, which is obtained by XGBoost
+ DataSet_4 and Bagging + DataSet_4 (Figure 5d). It can be seen that the algorithm with the
strongest classification ability in this region is still XGBoost, and the most effective feature
sets are DataSet_4, DataSet_8, DataSet_2, DataSet_14 and DataSet_10. According to the
statistics with maximum range, except for latitude and longitude, other features involved
in these datasets are ‘elevation’, ’TiO2’, ’Plagioclase’ and ‘Olivine’.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 5. The summary of obtained accuracy, precision, recall and f1-score for each classification 
model of the two study areas. (a–d) The landing area of Chang’e-4, and (e–h) the landing area of 
Chang’e-5. 

According to further analysis of the classification evaluation report of the classifica-
tion model (XGBoost + DataSet_4) with the highest accuracy score in this study area (Fig-
ure 6a), the algorithmic model exhibits a strong classification ability in the classification 
prediction for almost all the geological units, and only has a slightly lower classification 
prediction ability in the Nbsc geological unit which is represented by 10 with a lower 
number of samples (Figure 6b). A total of 345 samples are misclassified out of 6997 of the 
overall test samples, and the overall classification accuracy of the model reaches a high 
level with an micro-average f1-score of 0.929 for all types of predictions. 

Figure 5. The summary of obtained accuracy, precision, recall and f1-score for each classification
model of the two study areas. (a–d) The landing area of Chang’e-4, and (e–h) the landing area of
Chang’e-5.

According to further analysis of the classification evaluation report of the classification
model (XGBoost + DataSet_4) with the highest accuracy score in this study area (Figure 6a),
the algorithmic model exhibits a strong classification ability in the classification prediction
for almost all the geological units, and only has a slightly lower classification prediction
ability in the Nbsc geological unit which is represented by 10 with a lower number of
samples (Figure 6b). A total of 345 samples are misclassified out of 6997 of the overall test
samples, and the overall classification accuracy of the model reaches a high level with an
micro-average f1-score of 0.929 for all types of predictions.
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XGBoost + DataSet_9.

3.3. Chang’e-5 Landing Area

Compared to Chang’e-4, the geological background of the Chang’e-5 landing area is
relatively simple. Within the Chang’e-5 study area, all the six algorithms on the 15 datasets
reached a classification accuracy of 95.3% or higher. The algorithms ranked from highest
to lowest in terms of classification prediction ability are: XGBoost, CatBoost, Bagging,
GradientBoosting, RandomForest and DecisionTree. The highest classification accuracy is
97.9%, which is obtained by the combination of XGBoost + DataSet_9; the second highest
values are 97.8% and 97.7%, which are obtained by XGBoost on the datasets of DataSet_6,
DataSet_13 and DataSet_7 (Figure 5e). The highest value of f1-score is 95.5%, which
is obtained by XGBoost + DataSet_9. The second highest values are 94.9% and 94.7%,
which are obtained by XGBoost on the datasets of DataSet_13, DataSet_11 and DataSet_15
(Figure 5h). It can be seen that the algorithm with the strongest classification ability in this
region is XGBoost, and the most effective feature sets are DataSet_9, DataSet_13, DataSet_6,
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DataSet_7, DataSet_11 and DataSet_15. According to the statistics with maximum range,
except for latitude and longitude, the features involved by these datasets are ‘relief’, ‘TiO2’,
‘Plagioclase’, ‘Olivine’ and ‘FeO’.

According to further analysis of the classification evaluation report of XGBoost + DataSet_9,
which obtained the highest classification accuracy score in this study area (Figure 6c), the
model shows excellent classification performance on the prediction of the Im2 and Em
geologic units represented by 6 and 1, respectively, which have the largest number of
samples. The model also achieves high prediction accuracy and recall rates on the INt
and Icc geologic units represented by 2 and 4, respectively, which have a lower number of
samples (Figure 6d). A total of 122 samples are misclassified out of the overall 5548 test
samples, and the overall classification accuracy of the model is high with a macro-average
f1-score of 0.949 for all types of predictions.

4. Discussions
4.1. Comparison of Classification Models

In this study, we proposed a classification model constructed for the classification pre-
diction of geological units by combing machine learning classification algorithms with fea-
tures of data. High accuracy classification results of 97.8% and 95.1% were obtained for the
two study areas, which demonstrates the effectiveness of the classification models. Firstly,
according to the test results of the two study areas, all the six machine learning classification
algorithms exhibit a strong classification ability. The algorithms of XGBoost, CatBoost,
Bagging and GradientBoosting are better than RandomForest and DecisionTree in terms of
classification ability (Figure 7a,c). XGBoost is the best algorithm which obtains the highest
classification prediction accuracy and comprehensive average classification accuracy for
both study regions. Moreover, the lowest value of classification accuracy is also higher than
other algorithms, indicating that XGBoost has high stability. In this study, we improved
the model in two aspects according to the training results. First, we used the Bayesian
optimization algorithm to optimize and adjust the parameters of the XGBoost algorithm.
Taking into consideration operational efficiency, the parameters were finally determined as
follows: learning_rate = 0.01, n_estimators = 1000, max_depth = 10, min_child_weight = 1,
gamma = 0, subsample = 1, colsample_bytree = 1, objective= ‘multi:softmax’ and seed = 1.
The number of iterations (n_estimators) for the CatBoost, Bagging and GradientBoosting
classification algorithms were also taken as 1000 times. Secondly, the prediction results also
show that the same machine learning algorithm has a significant difference in classification
ability on different feature datasets (Figure 7b,d). These datasets were constructed by
combining features indicating the significant impact of the combination of data features
on the classification results. Therefore, we focus on testing the features that exhibit a
significant influence in training, and select the most effective feature combination to form
a feature set through a large number of experiments and combine it with the machine
learning algorithm to build a classification model with higher accuracy. Through this test,
we found that it is a complex task of lesser effectiveness to improve the performance of the
machine learning algorithm by adjusting the hyperparameters of the algorithm in order
to achieve a higher classification prediction accuracy. However, by combining features
to build different datasets, we can achieve significantly different prediction accuracies.
Compared to adjusting the algorithm parameters, building an effective feature dataset
by selecting and combining features is a more effective way to improve the classification
prediction accuracy.
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4.2. Feature Selection and Correlation Analysis

In this study, we selected eight important features including ‘longitude’, ‘latitude’,
‘elevation’, ‘relief’, ‘TiO2’, ‘FeO’, ‘Plagioclase’ and ‘Olivine’. Through the combination of
these features, the high accuracy of the classification prediction of geological units were
acquired for the two study areas, verifying the effectiveness of the feature selection method.
To distinguish the differences of the geological units in each region (e.g., Figure 8) in terms
of morphological and tectonic characteristics, the feature with the most significant influence
is ‘elevation’ for the Chang’e-4 region and ‘relief’ for the Chang’e-5 region. In terms
of material composition and mineral abundance, the features with the most significant
influence in both regions are ‘Olivine’, ‘TiO2’ and ‘Plagioclase’. The feature ‘FeO’ obtains a
high score in the importance assessment of feature selection, but the measured classification
accuracy influence is slightly less than the former features. Comparing the top three
classification prediction results of the two regions, the influence of these features is higher
on the Chang’e-5 region than on the Chang’e-4 region. The ‘Olivine’ features are negatively
correlated with ‘elevation’ and ‘relief’ for Chang’e-4 and Chang’e-5, respectively. Compared
to the surrounding geological units, a higher olivine content can be seen in the units (Im1,
Im2, Imd) with lower elevation in the Chang’e-4 region and in the units (Em, Im2) with
lower undulation in the Chang’e 5 region. Combined with the feature analysis of the
Chang’e-5 area, the older geological units (Ic1, Icc, Iif, INt) have a higher plagioclase
content than the younger ones (Em), while the younger geological units (Em) have a higher
TiO2 content than the older ones (Ic1, Icc, Iif, INt). These findings are consistent with
the results of existing studies [18]. However, these two findings are not observed for the
Chang’e-4 region. This could be due to the fact that the materials of the geological units in
the Chang’e-4 region are mixed with the ejected materials from the surrounding highlands,
which results in the material composition of the region being more difficult to distinguish.



Remote Sens. 2022, 14, 5075 12 of 16Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 8. Feature distribution and statistics of featured geological unit classification. (a) Topo-
graphic elevation distribution of CE-4 landing area. (b) Olivine abundance of CE-4 landing area. (c) 
Plagioclase content of CE-4 landing area. (d) TiO2 content of CE-4 landing area. (e) Relief of CE-5 
landing area. (f) Olivine content of CE-5 landing area. (g) Plagioclase content of CE-5 landing area. 
(h) TiO2 distribution of CE-5 landing area. (i) Statistic of elevation of classified geological units for 
CE-4 landing area. (j) Statistic of elevation of classified geological units for CE-5 landing area. (k) 
Statistic of relief of classified geological units for CE-4 landing area. (l) Statistic of relief of classified 
geological units for CE-5 landing area. (m) Statistic of olivine and plagioclase of classified geological 
units for CE-4 landing area. (n) Statistic of olivine and plagioclase of classified geological units for 
CE-5 landing area. (o) Statistic of TiO2 of classified geological units for CE-4 landing area. (p) Sta-
tistic of TiO2 of classified geological units for CE-5 landing area. 

4.3. Applications of Classification Prediction 
The classification prediction method of lunar surface geological units proposed in 

this study can be used for the geological unit classifying and mapping of global lunar 
digital mapping. Based on 70% of the known information about the study areas, the 
method effectively achieves 95.1% and 97.9% of geological unit classification for the study 
areas of Chang’e-4 and Chang’e-5, respectively. Based on 50% of the known information 
about the study areas, the method can achieve 93.9% and 97.3% of geological unit classi-
fication for the study areas of Chang’e-4 and Chang’e-5, respectively (Table 3). From the 
prediction results (Figure 9), the method still has a high identification capacity of complex 
geological units (e.g., as many as 15 geological units in the Chang’e-4 area) and for geo-
logical units accounting for a relatively low percentage of the investigated area (e.g., Imd, 
Ic and Nbsc geological units represented by 2, 6 and 8 in CE-4 landing areas, respectively, 
as shown in Figure 6a; INt and Icc geological units represented by 2 and 4 in CE-5 landing 
areas, respectively, as shown in Figure 6c). Even in scenarios wherein the distribution of 
geological units is very complex and multiple types of geological units occur alternatively, 

Figure 8. Feature distribution and statistics of featured geological unit classification. (a) Topographic
elevation distribution of CE-4 landing area. (b) Olivine abundance of CE-4 landing area. (c) Pla-
gioclase content of CE-4 landing area. (d) TiO2 content of CE-4 landing area. (e) Relief of CE-5
landing area. (f) Olivine content of CE-5 landing area. (g) Plagioclase content of CE-5 landing area.
(h) TiO2 distribution of CE-5 landing area. (i) Statistic of elevation of classified geological units
for CE-4 landing area. (j) Statistic of elevation of classified geological units for CE-5 landing area.
(k) Statistic of relief of classified geological units for CE-4 landing area. (l) Statistic of relief of classified
geological units for CE-5 landing area. (m) Statistic of olivine and plagioclase of classified geological
units for CE-4 landing area. (n) Statistic of olivine and plagioclase of classified geological units for
CE-5 landing area. (o) Statistic of TiO2 of classified geological units for CE-4 landing area. (p) Statistic
of TiO2 of classified geological units for CE-5 landing area.

4.3. Applications of Classification Prediction

The classification prediction method of lunar surface geological units proposed in this
study can be used for the geological unit classifying and mapping of global lunar digital
mapping. Based on 70% of the known information about the study areas, the method
effectively achieves 95.1% and 97.9% of geological unit classification for the study areas of
Chang’e-4 and Chang’e-5, respectively. Based on 50% of the known information about the
study areas, the method can achieve 93.9% and 97.3% of geological unit classification for the
study areas of Chang’e-4 and Chang’e-5, respectively (Table 3). From the prediction results
(Figure 9), the method still has a high identification capacity of complex geological units (e.g.,
as many as 15 geological units in the Chang’e-4 area) and for geological units accounting for
a relatively low percentage of the investigated area (e.g., Imd, Ic and Nbsc geological units
represented by 2, 6 and 8 in CE-4 landing areas, respectively, as shown in Figure 6a; INt and
Icc geological units represented by 2 and 4 in CE-5 landing areas, respectively, as shown in
Figure 6c). Even in scenarios wherein the distribution of geological units is very complex
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and multiple types of geological units occur alternatively, the corresponding geological unit
boundaries can still be effectively delineated. The overall identification accuracy of the method
is high with a good mapping result. It can also be seen from Figure 9 that most of the sample
points with more identification errors occur at the boundaries between geological units. The
identification accuracy can be enhanced in terms of two aspects, including improving the
delineation precision of the pixels and selecting and combining features in a specific manner
by conducting geological surveys in specific regions. These two aspects can ensure a higher
accuracy in the classification and prediction.

Table 3. Results of classification tests with different allocation ratios of known and unknown information.

Study
Regions

Classification
Model

Number of
Training
Samples

Number of
Test Samples

Proportion
of Known

Information
Accuracy

CE-4
XGBoost +
DataSet_4

16326 6997 70% 95.1%
13993 9330 60% 94.6%
11662 11662 50% 93.9%

CE-5
XGBoost +
DataSet_9

12944 5548 70% 97.9%
11095 7397 60% 97.6%
9246 9246 50% 97.3%Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 18 
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5. Conclusions

In this study, we develop a method of combining machine learning algorithms with
features of data to build a classification model for the classification prediction of geological
units. Using the Chang’e-4 and Chang’e-5 landing sites as our testing areas, we verify that
the developed method is a useful exploration and practice on the classification prediction
of geological units on the lunar surface. The main findings are as follows:

(1) Classification models: the classification models constructed obtain high accuracy
classification predictions of 97.9% and 95.1% for the two inhomogeneous and complex
areas with multiple classifications. This fully verifies the effectiveness of the con-
structed classification models, which combine machine learning algorithms with data
features (e.g., topography, geomorphology, mineral abundance, material composition)
in the classification prediction of geological units. On one hand, all the six machine
learning algorithms selected exhibit a strong multi-classification ability, among which
XGBoost, CatBoost, Bagging and GradientBoosting are preferred, and especially XG-
Boost which has the best classification performance and can be used as the preferred
classifier for subsequent work; on the other hand, the feature dataset composed of
the combination of feature variables has an important influence on the accuracy of
geological unit classification prediction. Compared to adjusting the hyperparameters
of the machine learning algorithm, building an effective feature dataset by feature
combination is a more effective way to improve the classification prediction accuracy.

(2) Feature selection: several important features such as ‘elevation’, ‘relief’, ‘TiO2’, ‘Pla-
gioclase’, ‘Olivine’ and ‘FeO’ were screened using the two feature selection methods,
namely, statistical-based data mutual information estimation and model-based ma-
chine learning algorithm feature evaluation. A classification model was constructed
by the combination of these features to achieve a high accuracy geological unit clas-
sification prediction. These features also effectively reflect the apparent variation in
topography, geomorphology, materials composition and mineral abundance of the
study areas, which deepens our understandings on the formation and evolution of the
Moon. It should be noted that although the final classification prediction results verify
the effectiveness of the feature selection method, the features selected in this study
are not the only features that can be used due to the diversity of the feature selection
methods. The effectiveness of other features and their associated combinations is still
worth exploring. Therefore, our future work will focus on mining more effective fea-
ture variables to obtain more accurate classification prediction results and conducting
in-depth research on correlation analysis between data features and geological units.

(3) Application of the method: The developed method is flexible, efficient and has a good
extensibility. It is suitable for the geological unit classification prediction for any lunar
geological map data and any region of the Moon. The classification prediction method
can not only be applied to the digital mapping of the global Moon surface, but also
provide effective support for the automatic mapping of geological units in any region.
In addition, effective feature variables can be mined through classification prediction,
which can help to perform in-depth comprehensive analysis of geological units for
any size area on the lunar surface. Moreover, the classification method can also be
applied to the classification of lunar surface chronological units. Subsequently, we
will attempt to mine the association rules of geochronological units on the global lunar
surface based on the results of this work. A lunar surface chronology and quantitative
analysis model based on machine learning of multiple feature variables will be also
our central focus in the future.
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