
Citation: Siqueira, R.; Mandal, D.;

Longchamps, L.; Khosla, R. Assessing

Nitrogen Variability at Early Stages

of Maize Using Mobile Fluorescence

Sensing. Remote Sens. 2022, 14, 5077.

https://doi.org/10.3390/rs14205077

Academic Editor: Eric Casella

Received: 1 September 2022

Accepted: 6 October 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Assessing Nitrogen Variability at Early Stages of Maize Using
Mobile Fluorescence Sensing
Rafael Siqueira 1, Dipankar Mandal 2 , Louis Longchamps 3 and Raj Khosla 1,2,*

1 Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
2 Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
3 Department of Soil and Crop Sciences Section, Cornell University, Ithaca, NY 14853, USA
* Correspondence: rkhosla@ksu.edu

Abstract: Characterizing nutrient variability has been the focus of precision agriculture research
for decades. Previous research has indicated that in situ fluorescence sensor measurements can be
used as a proxy for nitrogen (N) status in plants in greenhouse conditions employing static sensor
measurements. Practitioners of precision N management require determination of in-season plant
N status in real-time in the field to enable the most efficient N fertilizer management system. The
objective of this study was to assess if mobile in-field fluorescence sensor measurements can accurately
quantify the variability of nitrogen indicators in maize canopy early in the crop growing season.
A Multiplex®3 fluorescence sensor was used to collect crop canopy data at the V6 and V9 maize
growth stages. Multiplex fluorescence indices were successful in discriminating variability among N
treatments with moderate accuracies at V6, and higher at the V9 stage. Fluorescence-based indices
were further utilized with a machine learning (ML) model to estimate canopy nitrogen indicators i.e.,
N concentration and above-ground biomass at the V6 and V9 growth stages independently. Parameter
estimation using the Support Vector Regression (SVR)-based ML mode indicated a promising accuracy
in estimation of N concentration and above-ground biomass at the V6 stage of maize with the
moderate range of correlation coefficient (r = 0.72 ± 0.03) and Root Mean Square Error (RMSE). The
retrieval accuracies (r = 0.90 ± 0.06) at the V9 stage were better than those of the V6 growth stage
with a reasonable range of error estimates and yielding the lowest RMSE (0.23 (%N) and 12.37 g
(biomass)) for all canopy N indicators. Mobile fluorescence sensing can be used with reasonable
accuracies for determining canopy N variability at early growth stages of maize, which would help
farmers in optimal management of nitrogen.

Keywords: fluorescence sensor; nitrogen management; precision agriculture; vegetation indices

1. Introduction

Maize is one of the essential cereal crops cultivated widely to ensure global food
security, and it consumes a considerable percentage of global fertilizer demand. Cultivating
with optimum volumes of fertilizers, irrigation, and energy are distinguished as elemental
aspects of sustainable agriculture. Nitrogen (N) is a major environmentally sensitive
nutrient that is consumed in large quantities for the purpose of crop production. Spatial
management of optimum inputs in precision agricultural practice is a way to decrease
natural resources needed for plant development. Precision N management effectively
enhances Nitrogen Use Efficiency (NUE) and translates into a cost-effective system [1].
In addition to banding N during planting, information about in-season plant N status at
critical crop growth stages would help in better management of N [2,3]. Such information
about plant N stress (deficit or surplus) would be beneficial for adjusting side-dress split
applications. Hence, it is essential to measure crop nitrogen status indicators.

Field-scale spatial variability of natural resources has been characterized with several
devices and techniques [4–6]. Among these techniques, reflectance-based sensors, which
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help to better characterize in-field spatial variability, have gained broad adoption among
precision practitioners and farmers. In the past three decades, reflectance-based sensors
(remote or proximal platforms) have been exploited for crop growth monitoring [6–13]
to comprehend in-field N variability with successful experiments [13–15]. In principle,
these sensors primarily consider the variations in plant pigment concentrations attributed
to nutrient stress [16]. The proxy to leaf nitrogen was determined by following the ev-
idence of a high correlation between leaf N and chlorophyll concentration [16,17]. The
high measurement accuracy of chlorophyll reflectance spectroscopy (remote and proximal
sensors) and significant correlation with leaf N and other biophysical parameters offered
a suitable potential for N management [18–21]. Proximal sensors, including GreenSeeker
(GreenSeeker®Model 505 (Trimble, Sunnyvale, CA, USA) and Crop Circle (Holland Scien-
tific, NE, USA), have been utilized for near real-time canopy N estimate and N fertilizer
applications [22–25]. Reflectance measurements at different wavelength regimes and in-
dices have been well suited in such investigations. The Normalized Difference Vegetation
Index (NDVI) is a widely adopted vegetation index, and it has indicated a good correlation
with above-ground biomass and N status [15,26,27]. NDVI is more effective in determining
plant N status at later phenological stages of maize such as V8 to V12 stages, but this
may be too late for routine side-dressing of N fertilizer which often occurs at the V4 to V8
stages [15,23]. In addition, the plant N estimates from the optical reflectance are influenced
by several factors, such as soil characteristics, crop growth stages, and chlorophyll concen-
tration [27,28]. Considering that the N is translocated between plant organs during different
growth stages (independently from chlorophyll), it possesses limitations of commonly used
relationships between N and chlorophyll. It motivates the exploration of potentially more
robust alternatives for plant N retrievals.

In addition to the reflectance-based techniques, chlorophyll fluorescence has gained
major attention in the past decade due to its potential for the early detection of plant stresses
and anomalies. Unlike canopy reflectance indices, the fluorescence response is less affected
by biomass or leaf area index [20,29]. Laboratory-based fundamentals of fluorescence
sensing were established in the mid-1990s. When a beam of light interacts with a leaf tissue,
it propagates in three dissimilar pathways: reflection, transmission, and absorption. The
absorption pathway is elemental for fluorescence originates from the leaf system. During
photochemical reactions (e.g., photosynthesis), pigments absorb photons [30] which can
be re-emitted by leaf pigments as fluorescence at a longer wavelength. Indeed, most of
the absorbed photons yield heat [31]. In this process, only a small amount of the absorbed
photons is re-emitted in the form of chlorophyll fluorescence. The plant photosynthesis
efficiency is inversely proportional to chlorophyll fluorescence. Amplitude of UV-induced
chlorophyll fluorescence response exhibited an inverse association with the quantity of
compounds that absorb UV wavelengths [32,33]. Chlorophyll fluorescence sensing has
indicated an assertive connection with plant N status [34]. Proximal sensors were used
during recent years to identify nitrogen variability in crops using chlorophyll fluorescence
spectroscopic principles [35–38]. Unlike optical reflectance, fluorescence ratio is mainly
related to chlorophyll concentration and photochemical activities. There is a limited effect
of soil background at the early growth stages. In a greenhouse experiment with a proximal
active fluorescence sensor, Longchamps and Khosla [39] observed that differential N
application rates can be characterized as early as the V5 growth stage of corn. On the
contrary, the discerning capability of reflectance-based sensors for different N application
rates can be reliable starting from the V8 growth stage [23,40], which limits its capability
for making N application decisions for side-dressing corn.

Fluorescence sensing on a mobile platform has been conceptualized with a new sensor,
Multiplex®3 (Force-A, Orsay, Cedex, FRA), and subsequently examined recently. Past
studies [39,41] demonstrated the proficiency of this sensor in discriminating N status inside
a greenhouse condition before the maize plant attains the V5 growth stage. In an experiment
with turfgrass, Agati et al. [42] were able to differentiate variable N fertilization rates and
reported that fluorescence indices change linearly with leaf N content. Evaluating plant N
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variability on a temporal scale throughout phenological stages in field situations is vital
for site-specific N applications. Even though the opportunity of fluorescence sensor under
greenhouse conditions appears to have potential, studies on its ability to discern plant N
status in field scenarios and dynamic operation mode (acquisition in mobile mode) are
limited [36,43,44]. Due especially to the inherent characteristics of the mobile mode, non-
representative intensity variations are present in the fluorescence signal. These variations
(hereafter referred to as noise, for simplicity) can interfere with interpretation of true
responses related to plant N status. Noise primarily exists due to the Poisson statistics of
the emitted fluorescence signal from the target onto the detector, additional influence from
detector electronics, and the experimental parameters [45,46]. Hence, it is essential to adopt
signal processing workflows for noise reduction before estimating the N status.

Considering the response of fluorescence measurements with differential N appli-
cations, the next step involves the estimation of canopy N indicators from fluorescence
measurements. A trained model allows estimation of N status at early growth stages of
crop and subsequently helps in managing N fertilizer side-dressing. While estimating
these canopy N indicators (plant N concentration, above-ground biomass, N uptake, etc.),
several fluorescence measurements in different induction channels and specially derived
indices are employed as predictors [44]. A single predictor in a linear regression strategy
has been widely adopted in several studies [41]. However, these predictors are often
cross-correlated among each other, which makes the regression analysis challenging. Due
to its simplicity, multiple linear regression (MLR) can be a suitable strategy to deal with
linear relations in complex data. However, during the mobile mode of such a multi-channel
induction-detection system (in Multiplex measurements), it generates a large quantity of
data which increases complexity as compared with a static leaf scale mode. Hence, machine
learning-based non-linear regression methods in plant N management can provide reliable
and robust performances [13,47–50]. Nevertheless, care should be taken while utilizing
such data-driven approaches considering that different distributions of data layers and
their respective ranges often lead to differential training accuracies of machine learning
models. Considering the state-of-the-art developments in the area of fluorescence sensing,
the present study deals with two major hypotheses: (a) mobile fluorescence measurements
can distinguish the variability of N concentration in plant canopy at early growth stages
and (b) crop canopy N traits can be estimated accurately using a machine learning model
trained with fluorescence indices. A mobile sensor with promising accuracy in N traits
retrieval could open a whole new way of proximal crop canopy sensing and translate
into extensive impacts due to the major challenge of improving nitrogen use efficiency in
corn production.

Although assessing crop development by means of induced fluorescence has been
demonstrated as promising, studies on applications of mobile fluorescence sensing for
maize under field conditions are limited. Mobile crop sensors can likely provide a real-time
estimate of crop N status indicators (in terms of physically realizable quantity), which has
not been explored fully. The overall objective of this study was to assess if mobile in-field
fluorescence sensor measurements can accurately quantify variability of nitrogen indicators
(i.e., canopy nitrogen (%), and above-ground biomass) in maize canopy early in the crop
growing season. The specific objectives were (1) to evaluate the ability of fluorescence
measurements acquired in motion to discern variability of N concentration in crop canopy
at early growth stages and (2) to assess the accuracies of crop canopy N indicators estimated
using machine learning regression model.

2. Materials and Methods
2.1. Study Area

Two test sites were selected to perform the present experiment. The first site was
situated at the Agricultural Research Development and Education Center (ARDEC) of
Colorado State University, Colorado, USA (40◦39′57.4′′N, 104◦59′53.1′′W). This site will be
referred to as ARDEC in the following sections. The second site was set near Iliff, Colorado
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(40◦46′05.2′′N, 103◦02′32.7′′W), and is referred to as Iliff in the following sections. The
experiments at these sites were performed over the 2012 crop growing season.

Kim loam and Nunn clay loam were the major soil classes found at the ARDEC
site [51]. The analysis of in situ soil core sampling [52] indicated the percentages of sand,
silt, and clay were 52.88, 14.48, and 32.65%, respectively. Soil nitrate estimates from soil
samples indicated their ranges at 2.0-17.0 ppm [52]. At Iliff, dominant soil classes were
Loveland clay loam and Nunn clay loam. The soil texture analysis indicated 42.0, 22.7, and
35.30% of sand, silt, and clay presence, respectively, and soil nitrate values ranged from
11.5 to 27.0 ppm [52].

2.2. Crop Management and Nitrogen Treatements

Planting in the ARDEC site on May 5th was conducted with the maize variety Dekalb
DKC45-79VT3. The maize variety Dekalb DKC52-59VT3 was selected for the Iliff site and
planted on May 14th. For the ARDEC site, a Monosem (NG+3 Series) planter with a 6-row
planter was used by maintaining an inter-row spacing of 76.2 cm and a plant population of
81,500 seeds per hectare. A 16-row Case planter with an inter-row spacing of 76.2 cm was
used at the Iliff site constituting a plant population of 84,000 seeds per hectare.

At both sites, different N rate treatments were applied on 14 May (i.e., at the V1
growth stage) over several plots in a completely randomized block design. The N fertilizer
applications rates were set to 0, 56, 112, 168, and 224 kg ha−1 at the ARDEC site and
the source was UAN 32% (urea ammonium nitrate 32-0-0). Each of the 5 treatments had
4 replicates. Each plot was 6 rows wide (4.57 m) and 6 m long (plot area of 27.42 m2). At the
Iliff site, 6 N treatments with 4 replicates were set up on May 30th (i.e., at V1–V2 growth
stages) with each plot being 6 rows wide (4.57 m) and 12 m long (plot area of 54.8 m2).
Nitrogen applications were selected at rates of 0, 34, 67, 101, 135, and 168 kg ha−1, and
the source was also UAN 32%. The ARDEC and Iliff sites are geographically located far
from each other, and the soil and climatic conditions vary between locations [52]. There is
a significant difference in the productivity potential of the two fields. As compared with
ARDEC, the Iliff site has low yield potential (with mean value of 6.3 Mg/ha in the previous
year 2011), whereas the mean yield value at ARDEC was 8.3 Mg/ha. Expected grain yield
is a major driver of N rate determination [53] and is reflected in the experimental design of
N application rates with different levels.

2.3. Plant and Biomass Sampling

The plant sampling included the determination of growth stages, above-ground
biomass (termed as 'biomass' throughout the following sections), and plant nitrogen con-
centration (%N). The growth stage of maize was determined by counting those leaves
(exclusive of the cotyledon leaf) that did not remain within the whorl and fully prolonged
with a noticeable leaf collar. For instance, a plant with 6 expended leaves and visible collar
was assigned the V6 growth stage [54].

The above-ground biomass sampling was conducted by collecting all plant compo-
nents from one linear meter length along the crop-row. The location of the linear-meter
sample was randomly selected within each plot. The harvested plant material was kept
in paper bags and subsequently placed into a drier preheated to 60 ◦C for air drying until
the plant samples attained a constant weight. Weights of the dried samples were recorded
for dry biomass. Further, the dried samples were crushed and sent to a commercial lab for
tissue analysis. The assessment of total plant N concentration (%) was achieved by means
of the Kjeldahl digestion method. Plant biomass samples were taken at ARDEC on 26 June
(51 days after planting (DAP)) and 10 July (65 DAP) when maize plants were at the V6
(60 samples) and V9 (60 samples) growth stages, respectively. Similarly, plant biomass was
collected on 25 June (42 DAP) and 11 July (58 DAP) during the V6 (24 samples) and V9
(24 samples) growth stages, respectively, at the Iliff site.
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2.4. Fluorescence Sensing

The Multiplex®3 (Force-A, Orsay, Cedex, France) device was employed in this study to
measure fluorescence over the maize canopy. This device is equipped with an active fluores-
cence sensor array that permits in situ measurements in static and dynamic conditions. The
working concept relies on the measurement of chlorophyll fluorescence response [55–57].
Multiplex®3 has induction light emitting diodes (LED) at four distinct emission channels
(UV-A: 375 nm, Blue: 470 nm, Green: 516 nm, and Red: 625 nm). Subsequently, three
separate photodiodes, i.e., yellow (YF), red (RF), and far-red (FRF), are used to detect the
induced fluorescence. Considering the four induction channels and the three detectors, the
Multiplex®3 attained (4 × 3) 12 individual signals at each reading instance. In the static
mode of data acquisition, the Multiplex is generally set to generate signals at 400 cycles
per second. However, in mobile fluorescence sensing, it is essential to reduce the number
of pulse cycles compared with the static mode of data acquisition to attain a desirable
signal-to-noise ratio. The system configuration was set up for a continuous mode of data
acquisition, and pulsed LED was set to 70 cycles per second.

Fluorescence canopy sensing was carried at the V6 and V9 maize growth stages.
Selection of these two specific growth stages was motivated by operations in practice. At
the V6 growth stage, maize enters a rapid phase of vegetative growth, and demand of
resources (nutrient and water) start to become critical to physiological factors that influence
grain yield [58]. With the advancement from V6 stages, the maize plant develops a new
leaf every 2-3 days; this limits the taking of fluorescence measurements at unique growth
stages (V7, V8, etc.) for each plot (over two test sites) independently within a very short
window. For ARDEC, fluorescence measurements were conducted on 51 and 65 DAP.
Likewise, measurements at the Iliff site were acquired on 42 and 58 DAP. Fluorescence
measurements were performed between 11:00 to 14:00 hours on data acquisition dates.
The fluorescence measurements were collected in mobile mode at 10 cm directly above the
canopy (Figure 1). Ten plants along the center row of each experimental plot were selected
for these measurements.
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Canopy-based fluorescence measurements also consider non-vegetative objects (back-
ground soil) and other noises. To compensate for non-vegetative and saturated signals,
characteristics of the far-red fluorescence induced by red (FRF_R) was used. In general, the
FRF_R generates two crests of voltage at 0–20 mV and above 100mV. Hence, a threshold at
20 mV was set, and the readings with values less than threshold at FRF_R were discarded
from the data set. Additionally, a filtering was necessary for the fluorescence measurement
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acquired on the plant to compensate for system noises. Such noises are random and consti-
tute unwanted fluctuations that interfere with the signal. Considering that each channel
(12 signals in Multiplex®3) is independent, wavelet-transformation-based denoising was
applied [59]. Signal denoising was performed on fluorescence data collected for each
study plot individually. Subsequently, outliers from the data were removed using the
Interquartile Range (IQR) method [60]. These data filtering steps were performed using
Python libraries (https://github.com/PrecisionAgLab-KSU/Fluorescence_maize (accessed
on 10 September 2022)).

2.5. Vegetation Indices

In terms of plant fluorescence, chlorophyll and polyphenolic compounds (e.g., flavonols)
are especially susceptible to plant N concentration [34,42,61]. Considering differential
fluorescence emissions at several induction channels, chlorophyll and flavonol present in
leaf tissue can be estimated [34,62]. Contrasting behavior of flavonols with N variability
is observed in comparison with chlorophyll. For instance, flavonol content increases
under N deficiency, while a drop in chlorophyll content is observed [63]. Hence, several
vegetation indices can be sensitive to plant N content as compared with single channel
fluorescence [64–66].

Following prior studies [39,42], seven fluorescence indices were exploited for current
work. These includes four N balance indices (NBI_R, NBI_B, NBI_B, and NBI1), one
flavonoid index (FLAV), and two chlorophyll indices (CHL and CHL1). Definitions and
expressions of these fluorescence indices are presented in Table 1. These indices were
generated from the denoised fluorescence signals.

Table 1. Fluorescence-based vegetation indices derived from Multiplex measurements.

Index Description Formula

NBI_R Nitrogen balance index (red) FRFUV/FRFR
NBI_G Nitrogen balance index (green) FRFUV/FRFG
NBI_B Nitrogen balance index (blue) FRFUV/FRFB
NBI1 Nitrogen balance index (green/red) (FRFUV + FRFG)/FRF2

R
CHL Chlorophyll index (red) FRFR/RFR

CHL1 Chlorophyll index (green) FRFG/RFR
FLAV Flavonoid index log10(FRFR/FRFUV)

2.6. Statistical Analysis

Each fluorescence-based vegetation index was subjected to analysis of variance (ANOVA)
to assess significant differences (at significance levels α = 0.01 and 0.05) at the V6 and V9
growth stages of maize independently. Along with a significant difference, a Tukey’s HSD
test was applied to compare mean values for each N treatment at the p < 0.05 significance
level. Instead of mean values of vegetation indices (over a plot), all measurements (taken
in continuous mode of Multiplex sensor) over a certain treatment plot were used for the
analysis. The ANOVA and Tukey’s HSD (α = 0.05) test were used to detect differences
in fluorescence indices (measured using Multiplex sensor) among treatments of N. The
N rates of application were set as factors to be tested with ANOVA. Fluorescence indices
derived at the individual growth stages under different N rate treatments (5 N treatments
at ARDEC and 6 N treatments at Iliff) were used to assess the response of fluorescence
measurements acquired in mobile mode at various application rates of N fertilizer.

2.7. Estimation of Crop N Status Indicators from Fluorescence Data

The fluorescence-based vegetation indices were adopted for estimation of crop N
indicators (i.e., above-ground biomass and N concentration (%)) using a machine learning
regression technique. Considering the complexity of multi-channel fluorescence readings
taken at the canopy scale in-motion, the ML-based regression algorithms have the potential
to rapidly analyze the intricate and complex fluorescence data and extract major attributes

https://github.com/PrecisionAgLab-KSU/Fluorescence_maize
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to estimate crop N. Recent studies have shown that ML methods such as partial least square
regression (PLSR), stepwise multiple linear regression (SMLR), support vector regression
(SVR), and artificial neural networks (ANN) can efficiently estimate crop N content us-
ing reflectance spectroscopy [50,67,68]. Among these methods, the SVR model possess
superior generalization capacity [69]. SVR can also provide a globally optimal solution to
optimization problem, while the problems of local minima impede other contemporary
approaches, such as neural networks. SVRs can also solve non-linear problems using
Kernel methods [70,71].

Support Vector Machine (SVM) was utilized for these regression-based estimation
problems to develop continuous-valued mapping functions [72]. The Support Vector Re-
gression (SVR) technique was employed successfully in a variety of applications with
remote and proximal sensors applications, including estimation of crop traits and pheno-
logical parameters [70,71,73,74]. The SVR governs a function by mapping the input feature
x to target feature y which belongs to the real number space (R). In practice, the SVR
technique is utilized to fit a nonlinear regression into a high-dimensional feature space
(ϕ(xi)) (Figure 2) and Equation (1) as:

f(xi) = wϕ(xi) + b (1)

where regressor and bias are presented by w and b, respectively. The kernel functions
(Gaussian radial basis function or polynomial functions) are often used to transform the
data into a higher-dimensional feature space ϕ(xi) to make it possible to perform the linear
fitting. SVR implements the ε-insensitive loss function [75] for penalizing estimates that
are beyond than ε from the anticipated output. The value of ε controls the width of tube
(Figure 2).
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To cope with some infeasible constraints of the minimization problem, the ‘soft margin’
analogy was introduced by the non-negative slack variables ξi, and ξ∗i , (i = 1, · · · , n) .
These slack variables quantify the deviation of the training points present outside the
ε-zone. Subsequently, the minimization problem can be expressed as Equation (2):

min
1
2
||w||2 + C

n

∑
i=1

( ξi + ξ∗i ) (2)


yi − f (xi, w) ≤ ε + ξ∗i
f (xi, w)− yi ≤ ε + ξi

ξi, ξ∗i ≥ 0, i = 1, 2, · · · , n

where C indicates a penalty factor and, in combination with ε, they determine generalization
capability of SVR. In addition, a kernel parameter γ is often introduced in the Gaussian
radial basis function while transforming the data into ϕ(xi) space.
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In the case of estimating plant N status indicators from fluorescence indices, the SVR
model was trained using all the vegetation indices as inputs and the corresponding plant
N indicator (e.g., %N) as the response. It is important to note that fluorescence indices
collected in a continuous mode over a certain plot were averaged, and the mean value was
used to represent the plot for the estimation problem. Hence, the total samples for each
growth stages were 60 and 24 at the ARDEC and Iliff sites, respectively.

The tuned hyper-parameters of SVR, i.e., C and γ, were found by a k-fold cross-
validation technique. The sample data were divided with a 60:40 ratio for training and
testing. Both the training and test data were used for estimating accuracies in terms of
correlation coefficient (r), and error metrics, i.e., Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE). Training and test accuracies were assessed for the ARDEC
and Iliff sites distinctly to evaluate site-independent validation. The model prediction
accuracies at the V6 and V9 growth stages were assessed to find model performances at
early growth stages.

3. Results and Discussions
3.1. Discerning Variability of N Content in Crop Canopy

The sensitivity of fluorescence indices is presented with different N application rates
over experimental plots of the ARDEC site in Figures 3 and 4 for the V6 and V9 growth
stages, respectively. For statistical analysis, data sets over two growth stages of maize were
tested independently. The NBI measured from red and green induction (NBI_R and NBI_G)
was successful in discriminating variability in N treatment at both growth stages. However,
the discrimination was better at the V6 stage (significantly different with α = 0.05).
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Figure 4. Response of Multiplex fluorescence indices over maize canopy treated with different N
application rates at the V9 growth stage at the ARDEC site. Different letters (a, b, c, d) designate
significant differences according to the Tukey’s HSD test at p < 0.05 significance level.

The other two N balance indices (NBI_B and NBI1) indicated smaller differences in
mean values along with different N treatments. In an experiment, Zhang and Tremblay [76]
also highlighted that UV-induced fluorescence measurements over maize were significantly
affected by N variability. The NBIs are affected by both phenolics and chlorophyll contents
which are regulated by the plant N status [64,77].

The ANOVA results of Multiplex fluorescence indices showed significant effect of
N treatments (Table 2). The NBI_R, NBI_G, NBI_B, NBI1, CHL, and CHL1 increased
with increasing N supply, while declining tendencies were revealed for FLAV (Figure 3).
However, these fluorescence indices were unresponsive to N rates of 168 kg ha−1 or
above at the V6 stage. Interestingly, these indices derived at the V9 growth stages were
unsuccessful in discriminating the high N rates (≥112 kg ha−1) (Figure 4). Comparatively,
NBI_R indicated discrimination ability between 112 and 168 kg ha-1 treatments at the V9
stage (Figure 4), which was supported by the Tukey’s HSD test statistics. The mean values
for these two samples were significantly different (as identified by two different letters in
Figure 4). However, in the case of CHL, the 112 and 168 indicated similar mean values, i.e.,
not a significant difference in mean. The CHL1 was able to distinguish the N application
rates of 112 and 168 kg ha-1 with significant mean differences. Similar discrimination
capabilities were also reported by Dong et al. [44] at the V8-V12 growth stages of maize
by NBI_R.
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Table 2. Analysis of variance (ANOVA) of fluorescence indices at V6 and V9 growth stages of maize
as affected by different N application rates at the ARDEC and Iliff sites.

Fluorescence Index
ARDEC Iliff

V6 V9 V6 V9

CHL ** * ** **
CHL1 ** ** * **
FLAV ** ** ** *
NBI_R ** ** ** **

A NBI_G * * ** **
NBI_B ** * * **
NBI1 * ** * **

**: Significant at p < 0.01 level; *: Significant at p < 0.05 level; ns: not significant at p < 0.05 level.

Compared with all indices, FLAV changed inversely with the N rate irrespective of
growth. Accumulation of polyphenols in the leaf epidermis layer under deficiency of N can
likely lead to such opposite drift of FLAV, which was contrary to the tendency of CHL and
CHL1 [63,78]. On the contrary, NBIs are influenced by both chlorophylls and flavonoids
present in the crop canopy and has a wide response range [42,79].

Similar results were also observed at the Iliff test site (Figures 5 and 6), and they
were in line with the ARDEC site data at the V6 and V9 stages. In several cases, the
fluorescence indices could not differentiate among N rates which were above 135 kg ha−1

(Figures 5 and 6). Comparable insensitivity of Multiplex fluorescence response to high N
rates has been also reported in other studies [42,44,66].
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Figure 6. Response of Multiplex fluorescence indices over maize canopy treated with different
N application rates at the V9 growth stage at the Iliff site. Different letters (a, b, c, d, e) indicate
significant differences according to the Tukey’s HSD test at p < 0.05 significance level.

3.2. Accuracy Assessment of Crop Canopy N Indicators Estimated Using Machine Learning Model

The seven fluorescence indices were further utilized for quantitative assessment of
maize N status from the V6 and V9 stages. Each individual fluorescence-based vegetation
index was used to train the SVR model for the V6 and V9 stages. Accuracies in both the
train and test data for prediction of plant nitrogen concentration (%N) and biomass are
presented on a 1:1 plot (Figure 7).

Irrespective of growth stages, among the various values of the two N indicators
observed (i.e., biomass, and N concentration), the best correlation coefficient for the re-
lationship between the observed and the predicted values was exhibited by the biomass
(r = 0.83 (Train)/0.76 (Test) at V6, and 0.91 (Train)/0.85 (Test) at V9). At the V6 growth
stage, the error estimates for N concentration showed an RMSE of 0.32 (Train)/0.30 (Test)
and MAE of 0.23 (Train)/0.26 (Test), with the estimates following the 1:1 line. However,
at lower N concentration ranges, overestimation was observed in both the train and test
results. This deviation may be associated with background soil effects on the fluorescence
measurements at lower N% (lower biomass at the V6 stage). For the biomass, the error
estimates were comparatively higher. The RMSE values for biomass were 3.26 and 4.29 for
the train and test data, respectively, which were within 15–18% of their respective sample
mean values (µtrain = 2.1, µtest = 2.38) in the observed data.
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Figure 7. Training and test accuracies of crop N indicators retrieval using fluorescence indices at the
V6 (a,b), and V9 (c,d) growth stages of maize at the ARDEC site.

It was expected that, when comparing growth stages, higher estimation accuracies
would occur at the V9 stages because the crop is further developed and plants are taller
with wider leaf blades, thus contributing to more interception area for fluorescence mea-
surements when compared with the V6 growth stage. This leads to a higher dynamic
range of plant N indicators at V9 than at V6. Hence, the sample mean values of observed
parameters had a higher range. For the %N, the RMSE values of both the train and test
datasets were less than 10% of the ranges of their means (µtrain = 2.8, µtest = 2.94). The
error estimates for biomass indicated that RMSE was 10.77 (Train)/10.01 (Test) and MAE
was 6.09 (Train)/8.99 (Test), with the estimates following the 1:1 line.

Accuracies in both the train and test data for prediction of plant nitrogen concentration
(%N) and biomass at the Iliff site are presented on a 1:1 plot (Figure 8). As at the ARDEC
site, the best correlation coefficient was observed for biomass predictions at both the V6
and V9 growth stages, with an r value of 0.76 (Train)/0.71 (Test) at V6, and an r value of
0.96 (Train)/0.94 (Test) at V9. At the V6 stage, the %N plot indicated a higher estimated
error. The RMSE values for %N were 0.17 and 0.27 for the train and test data, respectively,
which is within 5–7% of their respective sample mean values (µtrain = 3.54, µtest = 3.28) in
observed data. However, an underestimation from the 1:1 line was observed throughout
the entire range of %N for the train and test data. The biomass followed the 1:1 line for the
entire ranges.
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Figure 8. Training and test accuracies of crop N indicators retrieval using fluorescence indices at the
V6 (a,b), and V9 (c,d) growth stages of maize at the Iliff site.

Crop parameter estimates at the V9 growth stage indicated higher values of r as
compared with V6 growth stage. The r values across the two crop parameters were
0.91 (Train)/0.85 (Test), and 0.96 (Train)/0.94 (Test) for %N and biomass, respectively. For
both N indicators, the RMSE values at train and test were < 10% of the ranges of their
means. Best results were obtained for the biomass, and its error estimates resulted in an
RMSE of 7.35 (Train)/13.18 (Test) and a MAE of 4.39 (Train)/11.55 (Test), with the estimates
following the 1:1 line.

4. Discussion

The mobile fluorescence measurements at the V6 and V9 growth stages indicated
that it can distinguish the variability of N concentration in plant canopy at early growth
stages. However, the differential sensitivity of fluorescence measurements at the V6 and V9
growth stages (Figures 3–6) can be attributed to the variations of N uptake rates at these
periods. The advancement from V6 to V9 led to more leaves unfolding and being exposed
to sunlight, which increased the rate of dry matter accumulation. However, upon attaining
the optimal N level, the N concentration in plants did not alter significantly [37]. Even
though more N was available in the soil from N fertilizer, plants did not uptake additional
N. It can be also observed in Figures 9 and 10 that the plant nitrogen concentrations (%N)
were almost the same among treatment plots with higher N application rate (i.e., 135 and
168 kg ha−1 at the Iliff site during both the V6 and V9 stages, respectively). This showed
undistinguished variation of the fluorescence indices with higher N rates for both the V6
and V9 growth stages at the ARDEC and Iliff sites. The N status (%N and biomass) was
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also responsive to the different N treatments (Figures 9 and 10). This demonstrated the
effectiveness of the treatments imposed on maize crop to produce a range of N variability.
Such a wide range helps while training a machine learning model.
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Figure 10. Variability of %N (a) and biomass (b) with different N rate applications at V9 growth stage
of maize for two sites.

From a previous study over the same experiment site by Siqueira [52], it was reported
that NDVI values measured with a GreenSeeker sensor indicated a significant (α = 0.05)
increase from one growth stage to the other (V4 to V8 stages of maize). However, NDVI
was not able to distinguish among N treatments throughout these growth stages. There
was a significant variability in NDVI across growth stages, but this variability did not
follow a positive correlation with the N rates applied to the plots. On the other hand, the
fluorescence indices in this current study showed variability with different treatments at
the V6 and V9 stages. It is evident from Figure 3 to Figure 6 that fluorescence indices better
discriminate N treatment effects. Similar discrimination capabilities were also reported by
Dong et al. [44] at V8–V12 growth stages of maize by fluorescence indices.

Another interesting point to note is that although there are plant population differ-
ences within different plots over two sites (ARDEC and Iliff), it does not affect the final
fluorescence measurement used for the analysis. This can be explained by the signal pro-
cessing step (Section 2.4) where the raw data acquired through Multiplex sensor underwent
two major signal processing steps: (a) compensation for non-vegetative/saturated signals
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and (b) signal denoising with wavelet transformation. For example, a raw signal at FRF_G
channel is presented in Figure 11a in the time domain. In the frequency domain (Figure 11b),
the main signal indicates higher amplitude values, while signal amplitude values <10 unit
are possibly noise as they have lower occurrence than the original signal. Subsequently,
using a predefined threshold value, those noisy signals were removed, and the data were
again transformed back from the frequency domain to the time domain to get a denoised
signal (Figure 11c,d). Hence, if there is low plant density within a row, the signal processing
step takes care of eliminating such signal (possibly from non-vegetative part).
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The estimation of crop N indicators with the SVR model training and testing accuracies
indicated good accuracies for each growth stage (V6 and V9) separately, although the
performances were inferior at the V6 growth stage. Dong et al. [37] also reported higher
variations in plant nitrogen content estimates at V6 than at V8 stages of maize using
fluorescence indices (NBI, FLAV, and CHL). As compared with the present study, the
experiment by Dong et al. [37] was conducted with fluorescence measurement at the
leaf-scale level. Hence, the predictions of plant nitrogen are significantly affected by the
selection of leaf to be sampled. The photosynthetic photon flux density decreases with
increasing canopy depth and potentially leads to preferential distribution of N to upper
leaves [80]. On the contrary, the above canopy level fluorescence data considers all leaves
and stem as a whole target and averages out such preferences in N distribution. Hence,
the fluorescence measurements on a mobile platform or mode also provides opportunity
to transfer similar methodology and evaluation for other plant types. Specifically, the
diverse leaf anatomy of plants can present challenges for measurement with this instrument
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given the relatively small sampling area (approximately 80 cm2 of Multiplex®3). With a
leaf-scale measurement, it requires defined and easily identifiable positions on leaves to
standardize the measurement protocol along with appreciable repetition for representative
measurement. On the other hand, for the mobile fluorescence at canopy scale, it is not
restricted by finding such a standard location, and data acquisition is independent of plant
type. However, the variation of N indicators derived from fluorescence measurements
would vary plant to plant. Hence, distinct machine learning models are required to be
trained for such a case.

Huang et al. [36] also tested the mobile sensing mode against the standard above-
canopy level and leaf-scale mode for rice with Multiplex. They reported better sensitivity to
N rate in fluorescence measurements when data were acquired in mobile mode. Measure-
ments taken with leaf scale were least influenced by differential N rate. These outcomes
are inconsistent with the experimental analysis reported by Diago et al. [43] studying
grapevines. Diago et al. [43] described a 20% loss of information arising from mobile opera-
tion of Multiplex as compared with the above-canopy stationary mode. This is potentially
due to the difference in the adaxial and abaxial side of a leaf in planophiles as compared
with an erectophile (rice) plant. Similarly, Zhang et al. [76] found Multiplex measurements
in leaf-scale mode from maize leaves better for distinguishing maize N status than in the
above-canopy stationary mode.

The choice of the SVR model as a regression tool is based on its superior generalization
capacity [69]. Generalization capability helps to compensate for the bias–variance of model
predictions. This can be explained with an example from the fluorescence measurement and
plant nitrogen case. For ease of visualization on a 3D plot, NBI_R and FLAV were selected
as inputs to the regression model instead of all fluorescence indices. The model training
was performed using plant N% data at the ARDEC site at the V9 stage. It is apparent
from Figure 12 that bias and MSE in SVR model indicate the lowest values as compared to
multiple linear regression (MLR) and partial least square regression (PLSR) models.
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Although variance increased to 0.058 as compared with MLR, this is common in bias–
variance trade-off [81]. Even though PLSR produced less bias than MLR, the high variance
values are evident. A similar analogy can be translated to a multi-dimensional case (consid-
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ering all fluorescence indices used as input), but it is difficult to visualize the prediction
surface. Unlike a flat sheet surface with MLR and PLSR, SVR allows for a more flexible
surface enabling a more accurate fit to data. The superiority of the SVR model was also
demonstrated in the literature on the thematic area of plant bio-geophysical traits [48,73,82].
It is noteworthy that PLSR computes linear combination of input features, but in practi-
cal scenarios, data often lie on a nonlinear manifold. On the contrary, SVR formulation
considers non-linearity of data using kernel operations as introduced in Section 2.7.

In this study, fluorescence-based measurements were conducted on a mobile platform
to train a machine learning model (SVR) to determine absolute sufficiency value of plant
nitrogen using indicators of the crop N status. Such a quantification of N status would be
useful for the prescriptive–corrective N management [83,84]. The SVR model estimates
can be further used to calculate recommended N fertilizer corrections. It can allow us to
develop a monitoring/application system enabling the technical capacity of such a system
to spoon-feed N as required by the crop. Numerous factors can distress the fluorescence
measurements acquired in a mobile continuous mode with the Multiplex system. This
may include background (soil) noise, variable distance-to-target, or canopy gap fraction,
which can affect the signal-to-noise ratio and generate uncertainties while estimating crop
N status. For instance, Longchamps and Khosla [39] found that the fluorescence signal
decreased drastically between 10 and 15 cm from the target, indicating a strong influence
of distance-to-target on potential outcomes. Nevertheless, values of RMSE were within
20% of mean values while estimating %N and biomass for each growth stage (V6 and
V9). The variance analysis also indicated variability in plant N indicators with differential
N application rate using the mobile mode of Multiplex measurements. Additionally, the
mobile mode allows the sensor to be mounted on an autonomous vehicle, which helps
in large area mapping and adjusting sensor distance from the canopy to optimize the
information loss. The spatial resolution of data can be further studied as an additional
experiment by configuring the acquisition mechanism of the Multiplex sensor. It is essential
to standardize the calibration [43] and filtering strategy (to improve the signal-to-noise
ratio) in order to ensure the reliability of the fluorescence sensor measurements in the
mobile mode in a precision farming context.

5. Conclusions and Perspectives

The present study focused on the potential of mobile fluorescence sensing to quantify
canopy N variability in terms of %N and biomass at early growth stages (V6 and V9) of
maize. The fluorescence indices were further utilized to address the estimation potential
of crop N status indicators using ML model. The training and testing accuracies of ML
regression were assessed while estimating %N and biomass for V6 and V9 growth stages
separately over two test sites.

The ANOVA results of Multiplex fluorescence indices measured over maize canopy
treated with different N rates indicated that fluorescence measurements were able to discern
differences between N rates. However, entire fluorescence indices were insensitive to high
N rates (>168 kg ha−1) at both the V6 and V9 growth stages. With respect to canopy N
indicator estimation, independent site analysis confirmed that fluorescence indices aided
with ML technique (SVR) yield reasonable accuracies at the V6 and V9 growth stages of
maize, although the performances were inferior at the V6 growth stage. Both the training
and test data in SVR provided high correlation coefficients and low estimation errors for
predicted N status indicators at the V6 and V9 growth stages. These results provide an
inference that the SVR could be an effective and robust technique for fluorescence-based
crop N status indicator estimation.

Estimation of canopy N indicators can be further examined with advanced machine
learning models (e.g., neural networks or the optimization frameworks (particle swarm
optimization and genetic algorithms)) to test their robustness, uncertainty, and computation
costs. These models can be trained with more realistic data sets. In this direction, theoreti-
cal radiative transfer models in fluorescence spectrum (SCOPE, Flourmod) could also be
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utilized to produce a synthetic data set in an alternative pathway which covers a varied
range of conditions to avoid limitations associated with the site-dependent data. Another
limitation of this study is the local adjustment of the model in a rather homogeneous region.
Further investigation should, therefore, analyze the robustness of the method over hetero-
geneous agricultural regions and beyond. Additionally, a larger scale approach—involving
more heterogeneous soil, row spacing, water deficit conditions, and crop stress—needs to
be taken into account, as these factors might influence the fluorescence measurements at
early growth stages of maize.
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