
Citation: Yu, T.; Wang, J.; Chao, Y.;

Zeng, H. Extinction Effect of Foliar

Dust Retention on Urban Vegetation

as Estimated by Atmospheric PM10

Concentration in Shenzhen, China.

Remote Sens. 2022, 14, 5103. https://

doi.org/10.3390/rs14205103

Academic Editors: Emanuele

Mandanici, Sara Kasmaeeyazdi and

Christian Köhler

Received: 14 August 2022

Accepted: 11 October 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Extinction Effect of Foliar Dust Retention on Urban Vegetation
as Estimated by Atmospheric PM10 Concentration in
Shenzhen, China
Tianfang Yu 1, Junjian Wang 2,3 , Yiwen Chao 1 and Hui Zeng 1,*

1 Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
2 State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control,

School of Environmental Science and Engineering, Southern University of Science and Technology,
Shenzhen 518055, China

3 Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control,
School of Environmental Science and Engineering, Southern University of Science and Technology,
Shenzhen 518055, China

* Correspondence: zengh@pkusz.edu.cn; Tel.: +86-0755-26035585

Abstract: Foliar dust retention is a crucial source of uncertainty when monitoring the vegetation
index using satellite remote sensing. As ground sampling conditions are limited by vegetation dust
retention, separating the extinction effect of foliar dust retention from the normalized difference
vegetation index (NDVI) poses a significant challenge. In this study, we conducted a correlation
test between the relative change in NDVI (δNDVI, an indicator of extinction effect) retrieved by the
Gaofen-4 satellite and the atmospheric PM10 concentration in different meteorological periods (before,
during, and after rainfall) across 14 stations in Shenzhen City, China. The results showed a significant
correlation between δNDVI and atmospheric PM10 concentration during the before-rainfall period
and weaker correlations for the other periods (R = 0.680, p < 0.001, n = 63 when excluding the during-
and after-rainfall data). The correlation was more significant for the stations with low NDVI values,
and a coastal station had a distinct regression slope of δNDVI versus PM10 from the other stations,
indicating that the extinction effect of foliar dust retention in high-NDVI and coastal areas may not
be well predicted by the general δNDVI–PM10 relationship. This provides a new quantitative basis
for estimating the extinction effect of foliar dust retention using PM10 data for future improvement
of the accuracy of vegetation monitoring by remote sensing.

Keywords: foliar dust retention; vegetation index; Gaofen-4 satellite; Shenzhen City; remote
sensing application

1. Introduction

Foliar dust retention occurs when leaves trap particles from the atmosphere, forming
a dust layer on the leaf surface. Numerous studies have shown that mature plants capture
dust mainly through tissues on the leaf surface [1,2], such as grooves [3], trichomes [4],
stomata [5], and leaf waxes [6]. Foliar dust can enter surface runoff under specific rainfall
erosion intensity conditions or become resuspended when the wind blows [7]. For example,
Yang et al. [8] demonstrated that in 2002, vegetation dust retention in central Beijing
removed 772 tons of fine particulates from the atmosphere; while Tallis et al. [9] estimated
that urban canopies in Greater London could remove 852-2121 tons of fine particulates per
year. These findings suggest that dust-retaining urban plants play an important role in
trapping atmospheric particulate matter.

The specific spectral information is controlled by multiple factors, including the
original spectral characteristics of the leaves, dust retention capacity, and dust retention
components [10,11]. However, numerous observations performed with ground object
spectrometers have shown that when leaves are affected by foliar dust, their reflectivity
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generally increases in the visible light band and decreases in the near-infrared band [12].
The change in spectrum absorption caused by dust on leaves is known as the extinction
effect of foliar dust retention (EEFDR) [13].

The optical interference of EEFDR is significant. After analyzing the relationship
between pigment concentration and reflectance spectrum on different levels of foliar dust
retention at a leaf scale, Lin et al. [14] reported that dust deposition could affect the corre-
lation between vegetation chlorophyll and spectrum. Using a double beam spectropho-
tometer to measure reflectance spectra on leaves of Ficus microcarpa, Xu and Yu [15] found
that the reflectance of dirty leaves was overestimated by approximately 6.6% in the visible
light spectrum and underestimated by approximately 25.6% in the near-infrared spectrum.
The counterpart reported by Peng [16] on pear leaves is 7.75% and 10.23%, respectively.
These results indicate that if EEFDR is ignored, the NDVI and other vegetation indices (VIs)
obtained by satellite remote sensing data inversion will be significantly underestimated.
VIs are important optical parameters reflecting vegetation status and are widely used in
remote sensing observations [17]. Therefore, it is essential to correct the optical effects
induced by foliar dust retention, as this will significantly improve the accuracy of VIs
determined via remote sensing inversion.

Although foliar dust retention changes the remote sensing spectrum, it is currently
impossible to invert the EEFDR in remote sensing using foliar dust retention because of
the expense of artificial sampling and the difficulty in promptly updating remote sensing
observations. In addition, the obstacles to retrieving EEFDR by satellite remote sensing
also include cross-scale simulation, ground experiment complexity, dynamic observation
conditions, and complicated dust retention conditions [18–21]. As a result, the state of
foliar dust retention cannot be obtained widely and continuously. The extensive gap in
determining how EEFDR affects satellite remote sensing observations needs to be filled.

Atmospheric PM10 concentration data has an obvious theoretically positive correlation
with foliar dust retention [22]; thus, PM10 data is a potential substitute for foliar dust
retention. PM10 data can be acquired continuously, stably, and at a low cost, which makes
it suitable for remote sensing inversion. Therefore, we believe that atmospheric PM10
concentration can be used as a proxy index of foliar dust retention.

Considering the variations of NDVI and the variability of foliar dust retention with
meteorological changes, the revisit time of the satellite should be as short as possible.
Furthermore, Yan [13] argues that the low spatial resolution of MODIS cannot exactly match
the leaf sampling sites because mixing pixels will cause errors. Therefore, we expected that
using the Gaofen-4 satellite with high spatial and temporal resolutions instead of MODIS
would allow for relatively accurate monitoring of the variations in EEFDR with PM10.

This study detected and analyzed the systematic bias caused by EEFDR to the veg-
etation indices retrieved from satellite remote sensing images, using the daily atmo-
spheric PM10 concentration dataset and daily meteorological dataset in Shenzhen City,
China. The study aims to: (1) quantify information on the potential correlation between
δNDVI—an indicator of EEFDR, and atmospheric PM10 concentration—an indicator of
foliar dust retention; (2) identify the space-dependency of the correlation based on site-
specific NDVI; and (3) identify the time-dependency of the correlation based on different
meteorological scenarios.

2. Materials and Methods
2.1. Study Region

Shenzhen City, a mega city in South China (113.7◦–114.6◦E, 22.4◦–22.8◦N), was selected
as the study region. Shenzhen has a subtropical monsoon climate. The city’s total area is
approximately 2000 km2. The vegetation types in the urban area are diverse and complex,
but primarily dominated by evergreen broad-leaved forests. Figure 1 shows the study
region’s location and land cover types. Since China’s opening-up policy was implemented,
Shenzhen has been rapidly urbanized and industrialized, resulting in rapid changes in the
land use structure and pattern. Specifically, large amounts of agricultural land have been,
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and continue to be, transformed into various types of urban development areas, which
has drastically increased the tendency toward vegetation distribution fragmentation. Most
of the existing natural vegetation depicts an island-like distribution, and only the eastern
coastal areas have roughly continuous vegetation banded distribution.
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2.2. Ground Datasets 

Figure 1. Geographical location of the study area. (a) Diagram of the geographical location of
Shenzhen; (b) Land cover of the study region and distribution of air pollution monitoring stations
(purple, n = 15) and meteorological stations (orange, n = 209). The air pollution monitoring station,
Nan’ao station (NA01, black text), is unavailable and excluded.

2.2. Ground Datasets

To separate the dust retention signal from the phenological influence signal, the grow-
ing season must be chosen as the research period (i.e., from January–September), during
which the vegetation index would not decrease due to phenology. Meanwhile, the rainy
season with frequent cloudy and rainy weather occurs from April to September in Shenzhen
and is not conducive to foliar dust accumulation or observation via optical sensors.

Considering the availability of data and the monthly variation trend of NDVI, we
selected 1 January 2021 to 1 April 2021 as the research period, because it is characterized
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by low rainfall frequency, as well as a clear and cloudless growing season. Ten images
obtained by the Gaofen-4 satellite served as the primary data source for this study. Previous
studies have reported that the NDVI in South China, where Shenzhen is located, has been
rising slightly over the same period of years [23], indicating that the declining NDVI trend
is not caused by phenology.

Figure 2 shows the dates of observations and rainfall events during the whole research
period, along with the estimated precipitation amounts (interpolated by Kriging) of three
rainfall events for each station. The ten observation dates were 1 January, 12 January,
16 January, 29 January, 4 February, 7 February, 15 February, 22 February, 6 March, 15 March,
and 26 March, respectively. Herein, we used periods 1–9 to represent the 9 time intervals
between all 10 adjacent remote sensing observations. According to the meteorological
information, we divided them into periods 1–5 (before rainfall), periods 6–8 (during rainfall),
and periods 7–9 (after rainfall), as shown in Figure 2.
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Figure 2. Overview of observational events and rainfall events. (a) Orange and green lines show
the daily variations in average PM10 concentration and the normalized difference vegetation index
(NDVI) of all stations, respectively. Lavender bars = 10 days of remote sensing data collection. Since
the availability of remote sensing satellite imagery is limited by cloud cover, all sampling days
exhibited clear skies; dark blue bars = rain on 10 February; light blue bars = rains on 26 February
and 6 March. The colored bars during the two collection days represent periods 1–9. (b) Simulated
precipitation (interpolated by Kriging) for the three rainfall events at each station in the study period.
Dark blue bars = rain on 10 February; light blue bars = rain events on 26 February and 6 March. A
boundary line of 14mm of precipitation is marked (which is considered the lowest limit for complete
removal of foliar dust).
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The ground datasets consisted of two parts: the dataset of atmospheric PM10 con-
centration and the meteorology. The dataset of the atmospheric PM10 concentration was
provided by 14 government-controlled air-monitoring sites in Shenzhen, and the data
were released daily. According to the Technical Rules for Selection of Ambient Air Quality
Monitoring Stations, the height of monitoring ports of all automatic monitoring stations
is between 3 and 20 meters from the ground. Table 1 shows the abbreviations, latitude
and longitude, dominant vegetation type, and precipitation of each station. The foliar dust
retention particle size mainly ranged from 10–50 µm [24]. Compared with PM2.5, PM10
showed a more significant correlation with vegetation less susceptible to meteorological
conditions [25]; therefore, it was selected as the main indicator. The dataset of meteorol-
ogy included data on rainfall and atmospheric visibility, which were released daily from
209 meteorological stations from the Meteorological Bureau of Shenzhen Municipality [26]
in Shenzhen. The spatial distribution of both the PM10 and meteorological data is shown
in Figure 1. In this study, the Kriging interpolation method was used to interpolate daily
rainfall information into the whole Shenzhen region.

Table 1. Rainfall over 3 periods for 15 stations, interpolated by Kriging.

Name Abbreviation Longitude Latitude
Dominant

Vegetation Type
Precipitation (mm)

10 February 26 February 6 March

Nanhai NH01 113.922 22.511 Garden vegetation 38.5 9.4 11.8

Huaqiaocheng HQ01 113.982 22.54 Garden vegetation 43.5 16.8 6.4

Henggang HG01 114.176 22.643 Garden vegetation 44.1 31.4 13.9

Longgang LG01 114.217 22.722 Artificial evergreen
broad-leaved forest 38.4 9.2 11.5

Meisha MS01 114.296 22.597
South subtropical

evergreen
broad-leaved forest

38.2 4.4 22.2

Yantian YT01 114.236 22.566 Artificial evergreen
broad-leaved forest 39.2 9.3 12.5

Kuiyong KY01 114.41 22.634 Artificial evergreen
broad-leaved forest 33.2 6.8 22.9

Nan’ao NA01 114.491 22.538 Artificial evergreen
broad-leaved forest 38.5 9.4 11.8

Xixiang XX01 113.891 22.58 Garden vegetation 35.5 13.5 11.4

Lianhua LH01 114.053 22.557 Artificial evergreen
broad-leaved forest 44.3 29.1 7.4

Tongxinling TX01 114.096 22.545 Garden vegetation 26.2 4.1 5.2

Honghu * HH01 114.115 22.568 Garden vegetation 36.4 1.3 12.2

Minzhi MZ01 114.017 22.615 Orchard 38 12.9 10.2

Guanlan GL01 114.056 22.735 Garden vegetation 38.1 8.3 10.8

Pingshan PS01 114.343 22.711 Garden vegetation 43.4 3.1 18.6

* Since Honghu cannot be interpolated, the minimum distance method was used.

2.3. Gaofen-4 Dataset

In this study, the Gaofen-4 satellite, which is the first high spatial resolution remote
sensing satellite in geosynchronous orbit, served as the space-based remote sensing data
source. The observation range of Gaofen-4 satellites covers the whole territory of China
and its surrounding areas. Furthermore, its onboard camera includes 6 wavebands, and its
temporal resolution reaches up to 20 s. The visible-light/near-infrared imager has a ground
resolution of 50 m, while that of the infrared payload is 400 m. The satellite scans the entire
region of Shenzhen 6 to 20 times a day via pointing control. The Gaofen-4 satellite has a
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spectral response function similar to the other Gaofen satellites; thus, the observed surface
reflectance exhibits the same high-quality continuity and consistency as the other satellites
in this series [27]. The detailed parameters of the Gaofen-4 satellite are shown in Table S1.

The Shenzhen Level-1 Gaofen-4 products were downloaded from the China Center
for Resources Satellite Data Application [28]. As the accuracy of surface reflectance is a
key to ensuring data accuracy, 10 scenes characterized by clear skies, reduced cloud cover,
and stable observations in the region of interest were manually selected. All the 10 scenes
depict an observation-time difference < 1800 s in a day (acquired at around 13:30), with
no significant change in the sensor angle. Thus, the difference between sun azimuth and
sensor azimuth is small.

Radiometric calibration was performed on all the images, after which fast line-of-
sight atmospheric analysis of hypercubes (FLAASH) atmospheric correction was achieved
using atmospheric visibility data from the ground meteorological stations. Next, rational
polynomial coefficients (RPCs) information was used to carry out image rectification based
on Landsat8 images captured simultaneously. The preprocessing was carried out using
ENVI 5.6, and software preprocessed data was regarded as the real surface reflectance.
Subsequently, cloud masks were constructed using a set of verified cloud recognition
processes based on the dynamic-spectral-threshold algorithm for Gaofen-4 data [29]. Finally,
the VIs were calculated using MATLAB R2020 software.

Considering the sensor’s optical limitations, in this experiment, we evaluated five of
the most widely used vegetation indices (Table 2). NDVI is the most widely used vegetation
index to detect vegetation growth status and vegetation coverage [30]. The soil-adjusted
vegetation index (SAVI) can minimize the disturbance of soil brightness, which can effectively
adjust the sensitivity of soil background with incompletely covered vegetation [31]. The
ratio vegetation index (RVI), also known as the simple ratio index (SR), shows a higher
performance in high vegetation cover areas, compared with NDVI [32]. the two-band
enhanced vegetation index (EVI2) can increase sensitivity in areas of high vegetation cover
and reduce soil background and atmospheric disturbance [33]. Note that EVI2 does not use
the blue band that introduces errors, and thus, it is considered superior to the three-band
enhanced vegetation index (EVI1). The modified soil-adjusted vegetation index (MSAVI) is
a modified version of the SAVI. MSAVI uses a self-adjustment L value and shows better
performance for the vegetation sensitivity and soil noise reduction in areas with dense
vegetation and complex vegetation types [34].

Table 2. Calculation methods of different vegetation indices.

Index Acronym Formula * Reference

normalized difference
vegetation index NDVI (ρNIR−ρR)

(ρNIR+ρR)
[30]

soil-adjusted
vegetation index SAVI (ρNIR−ρR)(1+L)

(ρNIR+ρR+L) [31]

ratio vegetation index RVI ρNIR
ρR

[32]

two-band enhanced
vegetation index EVI2 2.5(ρNIR−ρR)

(ρNIR+(6− 7.5
c )ρR+1)

[33]

modified soil-adjusted
vegetation index MSAVI 2ρNIR+1−

√
(2ρNIR+1)2−8(ρNIR−ρR)

2
[34]

* ρNIR and ρR are denoted as reflectance of near-infrared and red wavelengths. L = 0.5 and c = 2.

Results obtained from correlation analysis showed that the correlation coefficient was
closest to the global optimal when using the NDVI, as compared to the other selected
VIs. Moreover, not only was the NDVI well understood and widely applied [35], but
the Gaofen-4 NDVI has also passed the consistency test with other Gaofen satellites [27].
Therefore, only the NDVI is discussed hereafter.
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2.4. Data Availability

Clouds and cloud shadows cause errors in measuring the surface reflectance variation
between two images. If the corresponding pixels on two consecutive images were not
simultaneously disturbed by clouds and cloud shadows, nor covered by water, they were
termed as “available pixels”. When the number of “available pixels” accounted for ≥70%
of all the pixels at a single station, the surface reflectance of these pixels was averaged and
used for fitting. In all other cases, station data for the period were excluded and treated
as missing.

It is generally believed that when rainfall intensity and precipitation reach certain
levels, foliar dust is completely resuspended and removed, after which retention will begin
anew [36]. If the rainfall or rainfall intensity is insufficient, foliar dust will be retained
in different degrees due to differences in vegetation species [37]. From 7–15 February,
Shenzhen experienced >30 mm of heavy rainfall, resulting in the complete removal of
foliar dust. From 22 February–15 March, parts of Shenzhen experienced light to moderate
rains. In this case, the distribution of rainfall and rainfall intensity between stations was
not uniform or predictable.

Ten satellite images were collected, and nine satellite differencing images were gener-
ated. Each difference image represented changes in a period between two adjacent remote
sensing observations and corresponded to atmospheric particle concentration data collected
at 15 stations. As a result, 135 sets of “δNDVI - atmospheric PM10 concentration” data
pairs were obtained—114 of which passed the cloud monitoring test and were found to
be available pixels. However, the Nan’ao station (NA01) is too close to the sea, and the
number of available pixels was often too small. In this study, NA01 had too little data
available (2 out of 9) to fit, so it was excluded. In total, 112 sets of data from 14 stations
were analyzed.

2.5. Optimal Spatial Scale between Remote-Sensing Data and Ground-Based Data

The spatial scale of the foliar dust retention process is determined by aerodynamic char-
acteristics. That is, particles with larger sizes are more likely to be captured by vegetation
surfaces [38] and to gather near the ground; they are less likely to migrate horizontally [39].
Considering that atmospheric particulate matter concentration and the dust retention effect
have spatial autocorrelation, we used the average value of 19 × 19 pixels (i.e., 950 × 950 m)
around the station to improve the fitting accuracy, since all 5 VIs achieve maximum cor-
relations around this point (Figure 3). Zhao et al. [10] reported that dust from coal mines
in Inner Mongolia has a radius of influence of approximately 900 m on the surrounding
grassland canopy, while the range of maximum dust retention is 300–500 m. Considering
that trees can also shorten the particles’ migration distance by reducing near-surface wind
speed [7], we found that the maximum correlation radius in this study was 425 m, which is
consistent with the results of aforementioned study.

2.6. Theoretical Basis for Correlation between PM10 Concentration and δNDVI within a Station

Previous spectral experiments have shown that the five VIs used in this study were
all linearly or logarithmically correlated with foliar dust retention [35,40], which is the
theoretical basis for the potential correlations between NDVI and EEFDR.

The relationship between atmospheric PM10 concentration and foliar dust retention is
mathematically expressed as follows [22]:

Fp = Vd × Cp (1)

where Fp is the mass particle flow rate (µg s−1m−2) towards the leaf surface; Vd represents
the deposition velocity (m s−1) as a measure of filtration performance, which is a dynamic
parameter determined by factors, such as vegetation physiological characteristics, meteoro-
logical conditions, and particle physicochemical characteristics; and Cp is the atmospheric
particle concentration (µg s−1m−3).
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occurs at the spatial distance of 950 m.

In this study, we expected that Fp was linearly correlated with the δNDVI; Cp can be
represented by the daily atmospheric PM10 concentration obtained from the air pollution
monitoring stations, and Vd was closely related to the vegetation characteristics. As the
vegetation composition and structure were considered unchanged at a given station within
the study period, Vd was treated as a constant. According to Equation (1), the δNDVI
impacted by the dust retention effect would be linearly correlated with the atmospheric
PM10 concentration at the same station during this period.

3. Results
3.1. Space-Dependent δNDVI-PM10 Relationship

We analyzed the correlation between PM10 and δNDVI based on all samples. NDVI is
expected to be responsible for the differences in fitting between different stations. Linear
regression analysis was performed on the data of δNDVI and atmospheric PM10 concentra-
tion for data from all stations and from each station (Figure 4). Table S2 shows the original
and fitting curve data for each station, including their root mean squared error (RMSE),
correlation coefficient (PCC(δNDVI-PM10)), and regression slope (RS(δNDVI-PM10)). All the
samples in each station have passed the Shapiro–Wilk parametric hypothesis test. Therefore,
PCC is used to measure data correlation within the same station. Given the skewed distri-
bution of the cross-station PM10 dataset, we used the Spearman correlation analysis on the
overall dataset to verify the cross-station correlation of PM10-δNDVI. There are significant
correlations between the δNDVI and the atmospheric PM10 concentration for data from all
stations. For individual stations, 8 out of 14 stations showed significant correlations.

The NDVI significantly correlated with the PCC(δNDVI-PM10) (n = 14, p < 0.001; Figure 5a)
and correlated with the RS(δNDVI-PM10) across stations (n = 14, p < 0.05; Figure 5b). This
result demonstrates that the site-specific PCC(δNDVI-PM10) and RS(δNDVI-PM10) were both
significantly related to the site-specific NDVI. That is, a station with a smaller NDVI is
likely to have a more significant correlation and a more negative regression slope of δNDVI
versus atmospheric PM10 concentration. The RS(δNDVI-PM10) for Yantian station (YT01) was
much smaller (−1.73 × 10−5) than those of all the other stations (range of −9.53 × 10−4 to
−1.43 × 10−4).
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The radius of the solid circle represents the number of available data at a station.

3.2. Time-Dependent δNDVI-PM10 Relationship

We detected the significant change of correlation in continuous time influenced by
rainfall events. Figure 6 shows the data pairs and their frequency histogram of δNDVI and
atmospheric PM10 concentration in the three different meteorological scenarios: before,
during, and after rainfall. Compared with data from periods 1–5 (before rainfall), data from
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periods 6–9 (during and after rainfall) showed obvious deviations, i.e., a greater increase in
δNDVI during rainfall and a larger decrease in δNDVI after rainfall. Two fitting lines of pe-
riods 1–9 and periods 1–5 (excluding data from periods 6–9, which were biased by rainfall)
are also shown. Compared to the Spearman’s R based on all data (periods 1–9; R = −0.468,
n = 112, p < 0.001), Spearman’s R based on data from periods 1–5 was significantly improved
(R = −0.680, n = 63, p < 0.001).
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Figure 6. Scatter diagram of atmospheric PM10 concentration and the variation rate of the normalized
difference vegetation index (δNDVI) at 14 stations over the study period, along with their fitting
curves. (a) Points and fitted line of data from period 1 to 9 (black line, R = −0.468, n = 112, p < 0.001).
This highlights the data pairs from period 6 (dark blue), period 7 (dark gray), period 8 (light blue),
and period 9 (light gray), which deviate from the other data due to the influence of rainfall. A period
refers to a time interval between two adjacent remote sensing observations. Note that data from
period 8 and period 9 were influenced by uneven rainfall (See Figure 2 for specific data). (b) Points
and fitted line of data from period 1 to 5 (salmon pink line, R = −0.680, n = 63, p < 0.001).



Remote Sens. 2022, 14, 5103 11 of 16

4. Discussion
4.1. NDVI-Dependent Performance in Estimating δNDVI by PM10

As PCC is the commonly used statistic for the goodness of fit, the significant negative
correlation between PCC(δNDVI-PM10) and NDVI suggests that the δNDVI could be more
accurately estimated by PM10 in areas with low NDVI. This could be attributed to three
possible reasons: First, densely planted trees reduce air exchange near the surface. Thus,
particles are mostly deposited on the forest edges and only partially enter the forest interior
at high wind speeds [41]; foliar dust retention in the inner forest canopy is affected to a
greater extent by factors such as wind speed, as opposed to atmospheric particle concen-
tration, which may partially contribute to the less significant δNDVI-PM10 correlations in
forests with high NDVI. Second, during the growing season, the NDVI in densely vegetated
areas is mainly regulated by plant phenological factors instead of EEFDR. However, the
areas with sparse vegetation are mostly urban, and their NDVI may be more influenced by
the anthropogenic PM10 emission source, which may contribute to the more significant
δNDVI-PM10 in urban areas with low NDVI. Third, foliar dust can settle on the overall
plant surface. As such, the total leaf surface should be considered instead of just the leaf
surface observed by remote sensing. Beckett et al. [7] suggested that using estimated LAI
instead of real LAI values may result in a 10-fold difference in total foliar dust estimates.
This is manifested here as a decrease in correlation between EEFDR and observable leaf
surface. Thus, the higher the NDVI, the more complex the vegetation community struc-
ture and stratification, and the bigger the total leaf surface, resulting in less significant
δNDVI-PM10 correlations.

RS(δNDVI-PM10) is also significantly positively correlated with the NDVI, possibly due
to two reasons. First, the forest edge blocks the free diffusion of particles through the forest
canopy and slows EEFDR in the forest interior, resulting in smaller absolute RS(δNDVI-PM10)
values, i.e., a lower sensitivity of δNDVI to PM10, in a forest with high NDVI. Second,
atmospheric humidity changes the size of atmospheric particles. That is, when humidity
rises, the particles absorb water and become larger, and are more easily captured by the
leaf surface [38]. Hanel [42] compared the deposition velocities of three aerosol types
under different humidity levels and found a clear exponential relationship between the
deposition velocity and relative humidity. Areas with dense vegetation usually have
higher humidity than areas with sparse vegetation. This local meteorological difference
may be one of the reasons why RS(δNDVI-PM10) increases with the NDVI. We also noted
that station YT01 yielded a distinctly lower RS(δNDVI-PM10) value and lower atmospheric
PM10 concentrations compared to all the other stations. Chen et al. [43] proposed that on
coasts with high humidity and low wind speeds, a government-controlled air-monitoring
station will significantly underestimate the true value of PM10. Therefore, the distinct
RS(δNDVI-PM10) value in YT01 may be attributed to the fact that YT01 is a station that is
adjacent to the coast (<800 m from the shoreline). Excluding the YT01 station from the whole
dataset, the PCC between RS(δNDVI-PM10) and NDVI rose from 0.583 to 0.799, implying that
the EEFDR of stations or areas similar to YT01 may not be well predicted by a general
δNDVI–PM10 relationship.

4.2. Three Scenarios of Spectral Characteristics of Foliar Dust Retention

Foliar dust retention increases gradually over time, but does not depict a linear rela-
tionship with time, because it is frequently disturbed by meteorological factors [44]. During
the dust retention process, the following three scenarios are alternately observed:

Scenario A: before rainfall—fluctuation of the maximum dust retention during the dry
period: The Spearman’s R reaches 0.680 (p < 0.001) for data from periods 1–5, indicating
a significant correlation between δNDVI and PM10. Note that there are multiple points
(25 out of 63) where the δNDVI is greater than 0; this is because once the maximum dust
retention is reached (usually within 15 days of rainfall), foliar dust retention will no longer
increase, but fluctuate with the ambient PM10 atmospheric concentration. The maximum
dust retention is defined as the state where the sum deposition velocity reaches zero. Due
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to the simultaneous deposition and resuspension of foliar dust, the sum deposition velocity
is dynamic [45], and can be expressed as:

|Vsum| = |Vdep| − |Vres| (2)

where Vsum, Vdep, and Vres represent the sum deposition velocity, net deposition velocity
to the leaf surface, and resuspension velocity flowing out of the leaf surface, respectively.
According to Equation (2) Vres is positively related to foliar dust accumulation [46] and is
one of the main reasons for the variability associated with sum deposition velocities [22].

The first rainfall in this experiment occurred 116 d after the previous rainfall, on
October 17 of the previous year. Therefore, periods 1–5 were included in scenario A. In this
scenario, when PM10 is high, the Vsum is greater than 0, and the maximum dust retention
increases, resulting in a more significant EEFDR and negative δNDVI, and vice versa.

Scenario B: during rainfall—foliar dust retention being washed off by rainfall: A
rainfall event occurs accompanied by prolonged periods of cloudy days, which are not
conducive for remote sensing observations. For instance, in this study, 2 d before and 4 d
after the rainstorm on February 10 were all cloudy days in Shenzhen. Therefore, the during-
rainfall period inevitably included several cloudy days before and after rainfall. Neverthe-
less, the NDVI rose sharply in period 6, indicating that the cleaning effect of rainfall on the
foliar dust still dominated period 6. Note that period 8 contained two localized rainfalls
that were not strong, which resulted in a generally weak and uneven cleaning effect. The
cloudy weather also lasted longer (i.e., 3 d before the first rainfall, and 8 d after the sec-
ond rainfall), which resulted in a long-term dust retention process after the rain, partially
offsetting the rising of NDVI, hence producing a lower δNDVI value than period 6.

Scenario C: after rainfall—net accumulation of foliar dust retention on clean leaves In
this scenario, when exposed under the same atmospheric PM10 concentration, the NDVI
would be reduced faster than in scenario A, i.e., the absolute value of the negative δNDVI
in scenario C would increase more than that in scenario A. Foliar dust is washed away
during rainfall events and will resettle after the rain stops. According to Equation (1), the
deposition velocity of dust should be proportional to the atmospheric particle concentration.
Foliar surfaces will rapidly accumulate dust until they reach their maximum capacity.
Wang et al. [47] reported that it takes, on average, 3 weeks for 19 species of common plants
in Suzhou City to reach maximum dust accumulation capacity. This scenario is reflected in
the data deviation observed after rainfall events—i.e., periods 7 and 9—as compared with
data collected during other times throughout the experiment. Note that data points from
period 9 are scattered because the rainfall intensity and precipitation in period 8 did not
meet the requirements of complete scouring; thus, the degree of scouring of foliar dust at
each station was different.

Therefore, excluding the during- and after-rainfall data (i.e., periods 6–9 here) im-
proves the goodness of fit between δNDVI and PM10 (from R = −0.468, n = 112, p < 0.001
to R = −0.680, n = 63, p < 0.001) (Figure 6).

4.3. Potential for EEFDR Modeling

The high goodness of fit between δNDVI and PM10 (R = −0.680, n = 63, p < 0.001)
not only confirms the observability of EEFDR by remote sensing, but also provides a
theoretical basis for the continuous simulation of EEFDR using PM10 data in natural
meteorological scenarios. To the best of our knowledge, this is the first study using a high
spatitemporal resolution satellite to examine the correlation between δNDVI data and
atmospheric PM10 data based on the extinction effect of foliar dust retention on NDVI. In
terms of the theoretical relationship between foliar dust retention and vegetation spectrum,
the high goodness of fit is consistent with our expectations.

In our study, for the first time, PM10 as a proxy of dust was used instead of foliar dust
retention sampling. The manual sampling and weighing of foliar dust have numerous
disadvantages, including high cost, limited number of sampling points, and difficulty in
matching the data with remote sensing data at different spatial scales. Moreover, diverse
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sampling and experimental processes and conditions make it difficult to compare results
among different studies. Previous studies on foliar dust retention spectral characteris-
tics were mostly carried out in the laboratory at the leaf level instead of with aerospace
remote sensing at the canopy level: Between these two levels, the dust retention effect
transformation involves canopy attributes, dorsiventral leaf reflectance properties, and the
vegetation community’s morphology, among factors [48–50]. Furthermore, using PM10
data also avoids the difference in spectral response between different sensors [10] and the
interpretation of mixed pixels [51].

Previous studies suggested that the difference between two remote sensing images
could be regarded as EEFDR under similar weather backgrounds. Ma et al. [35] used
2 Landsat images taken 11 years apart, Yan [13] used 3 MODIS images obtained several
months apart, and Kayet [50] used 2 images each from Landsat and Hyperion taken 11 years
apart. Similar approaches have been applied to other satellites (e.g., Sentinel-2, EO-1) to
simulate foliar dust retention [51–54].

In contrast, we used 10 images within 90 days. Such high temporal resolution of
observations not only reduces possible interference to NDVI from phenology and LUCC,
but also makes it possible to observe continuous changes in EEFDR. This is because foliar
dust retention fluctuates wildly with meteorological events, such as precipitation or high
winds, which will cause significant shedding of foliar dust [40,44]. Observations too far
apart will not be able to distinguish these meteorological events.

More importantly, all of the above experiments assume that the EEFDR in the remote
sensing image are equal to the difference between the two remote sensing observations.
This assumption is doubtful and shaky, especially considering that two observations were
obtained more than years apart. Our method can be applied to circumstances where this
assumption does not apply.

Variable influence of vegetation species and vegetation topography will also lead to
differences in dust retention capacity [55]. This may be one of the important reasons for the
different PM10-δNDVI correlations among different stations. However, the good correlation
between different stations proves that our method can resist such disturbance. All tree
species in the experimental area are evergreen broad-leaved species, which minimizes
seasonally-driven leaf shedding and growth, which is an advantage of studying foliar dust
retention in low-latitude regions. Species differences should be one of the future research
priorities in high-latitude regions.

Although the temporal resolution of the Gaofen-4 satellite reaches 20 s, the average
interval for obtaining cloud-free images is still approximately 9 d, and it is limited by the
weather conditions in the study area. Observations would be even more challenging in the
rainy season, which makes it almost impossible to quantify the EEFDR on and after the
day of rainfall.

The Gaofen-4 satellite used in this study has only six bands, which may cause some
important spectral features to be omitted [38]. However, our research targets NDVI rather
than hyperspectral data, which is sufficient for general satellite remote sensing. Zhao [10]
used hyperspectral drones to retrieve the distribution of dust retention in a grassland based
on random forest regression. Continuous joint observations of satellites and drones may be
a future feasible method for a more complete and accurate quantification of dust retention
and vegetation indices.

5. Conclusions

Based on the Gaofen-4 satellite imagery dataset, the atmospheric PM10 concentration
dataset, and the meteorological station dataset, we checked the correlation between NDVI
and PM10 to estimate the extinction effect of foliar dust retention on urban vegetation. We
quantified the correlations between δNDVI and atmospheric PM10 concentration, which
were expected to not only show NDVI-dependency, but also vary under different meteoro-
logical scenarios. The main conclusions drawn as a result of this study are as follows:
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(1) The use of PM10 data can replace artificial sampling and laboratory experiments,
which creates the possibility for the large-scale inversion of EEFDR.

(2) Dense vegetation will weaken the correlation between PM10 and EEFDR.
(3) The effect of rainfall on foliar dust retention must be taken into account; thus,

a complete foliar dust retention process should include three different meteorological
scenarios, which is the premise for the continuous observation of EEFDR.

This study demonstrates the direct influence of EEFDR on remote sensing NDVI
observation and provides new possibilities for estimating the regional EEFDR, building
multi-factor EEFDR models, and correcting the vegetation indices based on remote sensing
in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14205103/s1, Table S1. Main technical indexes of the Gaofen-4
camera. Table S2. Detailed information of all stations’ data and fitting lines. Latitude and longitude
are detected in the WGS84 coordinate system; plants are all evergreen. Figure S1. Fitting curves of
14 stations between their atmospheric PM10 concentrations and the normalized difference vegetation
index (δNDVI). They were separated from Figure 4.
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