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Abstract: Hyperspectral image classification methods based on deep learning have led to remarkable
achievements in recent years. However, these methods with outstanding performance are also
accompanied by problems such as excessive dependence on the number of samples, poor model
generalization, and time-consuming training. Additionally, the previous patch-level feature extraction
methods have some limitations, for instance, non-local information is difficult to model, etc. To
solve these problems, this paper proposes an image-level feature extraction method with transfer
learning. Firstly, we look at a hyperspectral image with hundreds of contiguous spectral bands
from a sequential image perspective. We attempt to extract the global spectral variation information
between adjacent spectral bands by using the optical flow estimation method. Secondly, we propose
an innovative data adaptation strategy to bridge the gap between hyperspectral and video data, and
transfer the optical flow estimation network pre-trained with video data to the hyperspectral feature
extraction task for the first time. Thirdly, we utilize the traditional classifier to achieve classification.
Simultaneously, a vote strategy combined with features at different scales is proposed to improve
the classification accuracy further. Extensive, well-designed experiments on four scenes of public
hyperspectral images demonstrate that the proposed method (Spe-TL) can obtain results that are
competitive with advanced deep learning methods under various sample conditions, with better
time effectiveness to adapt to new target tasks. Moreover, it can produce more detailed classification
maps that subtly reflect the authentic distribution of ground objects in the original image.

Keywords: hyperspectral image; optical flow; feature extraction; image-level; transfer learning

1. Introduction

Remote sensing (RS) is an irreplaceable means to perceive the earth [1]. As one
of the most significant branches of the RS field, hyperspectral imaging technology can
capture provide surface spectral information [2]. Therefore, the characteristic of spatial
information and spectral information fusion in the hyperspectral image (HSI) makes it
possible to identify and classify ground objects accurately. HSI classification is one of the
essential topics of hyperspectral signal processing. It can convert hyperspectral images with
hundreds of bands into classification maps through pixel-by-pixel category labeling, so as
to intuitively reflect the distribution information of ground objects in the images. However,
the data characteristics of HSI such as high-dimensional nonlinearity and spectral mixing,
etc., bring great challenges to the classification task.

In this paper, to achieve image-level feature extraction, we look at the three-dimension
global HSI data which include hundreds of contiguous spectral bands from a sequential
image perspective. Thus, the difference between the two arbitrary single sequence images
in adjacent spectral bands reflects the global spectral variation information between them.
Considering that the optical flow estimation task in computer vision is a crucial method by
which to extract the motion information of contiguous frames from video data, we attempt
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to extract the global spectral variation information between adjacent spectral bands by
using the optical flow estimation method.

On the other hand, current deep-learning-based HSI classification methods with
outstanding performance usually depend on sufficient training samples because of the
large number of trainable parameters in the model. Moreover, the generalization ability of
models is poor, and it is time-consuming to retrain the model when facing a new target
image. To solve these problems, we utilize the transfer learning strategy, a technique that
applies knowledge or patterns learned in one domain to a different but related domain [3].

Therefore, to detect global spectral variation information effectively through accurate
optical flow estimation so as to achieve discriminative image-level feature extraction, the
PWC-Net [4] was applied in our proposed method. The PWC-Net is a compact, efficient
and advanced network for optical flow estimation. We transfer the PWC-Net pre-trained
with video data to the feature extraction target task, and an innovative data adaptation
strategy is proposed to bridge the gap between the HSI and video data. This allows us to
extract image-level features utilizing knowledge learned from the video data by PWC-Net,
avoiding the sample dependence and model retraining. Then, we choose the frequently-
used support vector machine (SVM) [5] as the classifier for our method. Simultaneously,
benefiting from the efficient training and classifying of SVM, we propose a vote strategy
combined with image-level features at different scales when classifying so as to further
improve the accuracy. On the whole, the main contributions of our work can be summarized
as follows:

1. We propose an image-level feature extraction method to achieve more refined HSI
classification, avoiding the inherent defects accompanying the previous patch-level
methods.

2. We look at the global HSI with hundreds of contiguous spectral bands from a sequen-
tial image perspective and extract the global spectral variation information between
adjacent spectral bands using the optical flow estimation method.

3. We transfer the optical flow estimation network PWC-Net that is pre-trained with
the video into the HSI feature extraction target task. To our knowledge, this is the
first work that transfers a network pre-trained on video data to HSI classification with
excellent performance.

4. We design a vote strategy in the classification phase, which utilizes features at different
scales to construct multiple tasks and votes for obtaining the optimal results, so as to
further improve the classification accuracy.

The sections of the paper are arranged as follows. Section 2 describes related work.
Section 3 describes the image-level feature extraction method based on transfer learning
(Spe-TL) in detail. Section 4 mainly consists of experimental details, results and analysis.
Finally, Section 5 concludes the article comprehensively.

2. Related Works
2.1. Hyperspectral Image Classification

Early traditional HSI classification methods usually divide processing into the fol-
lowing two stages: feature extraction and classification. Among them, spectral feature
extraction technology represented by Principal Component Analysis (PCA) [6], etc., spatial
feature extraction technology represented by Gabor [7], Extended MorphoLogical Profiles
(EMP) [8], Local Binary Pattern (LBP) [9] and classifiers such as Support Vector Machine
(SVM) [5] are widely used. However, the traditional methods overly rely on artificial feature
design, which makes it difficult to fully extract discriminative features for classification,
resulting in a poor classification accuracy and poor model robustness, etc.

The methods based on deep learning have been widely used in HSI classification.
Compared with the traditional methods, they can learn more discriminative features adap-
tively by relying on data. After several years of development, these approaches can be
roughly divided into those including spectral features, spatial features, or joint spectral–
spatial features according to different feature extraction levels. As approaches that take
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the whole image as input have been popularized recently, these models can also be di-
vided into different types according to the form of input, such as pixel-level, patch-level,
and image-level. The approaches that take the spectral sequence of one pixel as a 1D
vector as their input can be called pixel-level approaches, such as stacked autoencoder
(SAE) [10] and 1D convolutional neural network (1D-CNN) [11], etc. Then, in order to
make use of both spectral and spatial information, the original image is segmented into a
series of local patches in the central pixel neighborhood as input, which can be called the
patch-level classification approach. For example, the approaches with a 2D convolutional
neural network (2D-CNN) [12,13], the approaches with 3D convolutional neural network
(3D-CNN) [14–19], and other novel models, such as the method based on a capsule neu-
ral network [20], transformer [21,22], etc., have been developed. Although patch-level
approaches have made significant progress as the mainstream approach, they still have
several inherent defects, which are as follows: (1) the distance of information capture
is restricted to a limited range of local patches, which leads to the inability to establish
long-distance information correlation; (2) the original image must be pre-sliced, which
makes a lot of information redundant between patches, increasing the extra computing
overhead; (3) the center pixel category is regarded as the category of the whole patch
when classifying. However, a simple rough label is insufficient to provide complete spatial
distribution information in complex observation scenes.

Therefore, using the global image as input can effectively avoid the flaws of the patch-
level method. This alternative method, which can be called the image-level method [23–29],
is gaining popularity. The practice proves that the image-level method can improve
classification accuracy and efficiency.

However, we note that current feature extraction methods based on deep learning
are all pixel-level and patch-level [30–33]. Therefore, the successful implementation of
the image-level classification method prompts us to attempt to research the special image-
level feature extraction method based on deep learning, so as to obtain more powerful
discriminative features conducive to classification.

2.2. Transfer Learning

Deep learning based on data-driven methods has achieved significant success in
diverse tasks and demonstrates great potential. However, the artificial intelligence (AI)
system constructed using the foundation of data-driven methods is vulnerable and poorly
generalized. Simultaneously, data and labeled samples are often lacking in terms of
realistic task scenarios. To move toward genuine intelligence, transfer learning combines
knowledge-driven and data-driven learning, aiming to solve the dilemma of learning with
insufficient labeled samples for a target task by transferring knowledge learned from source
tasks, so as to develop reliable and extensible AI technologies [34].

The scarcity of training samples is also a general reality in HSI classification tasks. Al-
though classification methods based on deep learning have led to great achievements, these
methods with outstanding performance are also accompanied by excessive dependence on
the number of samples and complex re-training on the target HSI scene. In recent years,
the transfer learning strategy has been introduced to solve these problems. In the early
period, Yang et al. attempted to pre-train and transfer the low and middle layers of the
network on the source dataset and fine-turn the top layers on the target dataset; however, it
should be kept in mind that the source and the target set are just different scenes obtained
by the same sensor [30]. Windrim et al. [35] and Zhong et al. [36] further attempt to achieve
transfer learning with cross scene and sensors. The above works belonging to homogeneous
transfer learning still require an HSI containing a large number of labeled samples as source
data. Based on the cross-sensor strategy, Zhang et al. further explored the cross-modal
strategy, in which the network is pre-trained on RGB natural image datasets by inflating
the 2D natural images to 3D cubes to resolve the issue of dimensionality mismatch and
then fine-tuned them with the target HSI [37]. The cross-modal strategy is an example of
the heterogeneous transfer learning strategy, and He et al. go one step further by applying
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the VGGNet pre-trained on an ImageNet dataset to the target task of HSI classification
and mapping the HSI to the three-channel data when fine-turning to align heterogeneous
data [38]. Heterogeneous transfer learning enables a network to pre-train on a large number
of existing heterogeneous natural image datasets, so as to effectively avoid the limitation of
the scarcity of labeled samples in HSI, no matter the source or target data.

Our proposed method also belongs to heterogeneous transfer learning and this is the
first work that transfers a network pre-trained on video data to an HSI classification target
task. Furthermore, the former methods based on transfer learning for HSI classification
are all patch-level as far as we know; that is, the HSI must be segmented to patches as
input in the pre-training or fine-turning phase. Additionally, the proposed method directly
takes the global HSI as input, making a conducive pioneering exploration of image-level
methods based on transfer learning for HSI classification.

2.3. Optical Flow Estimation

Optical flow is a significant concept in computer vision (CV). The motion of an object
in 3D space is reflected in the video to form the brightness motion of the image, and the
visible motion of the brightness mode produces the optical flow. Thus, optical flow is
the instantaneous velocity of the motion of pixels on the observed imaging plane of a 3D
moving object. Figure 1 shows two random images and their corresponding ground-truth
optical flow in MPI-Sintel [39] datasets. Optical flow estimation can express the motion of
objects by extracting fine and dense matches, which is widely used in action recognition [40],
moving objects segmentation [41], aided driving [42], and other fields.

a b

Figure 1. Optical flow diagram. (a) Image. (b) Ground truth flow.

Horn and Schunck proposed the Horn–Schunck (HS) algorithm [43] in 1981, which
is a form of the variational method, and carried out the pioneering work of optical flow
estimation. The variational method is a classical and traditional optical flow method, and a
numbers of works [44–48] that aim to improve this method based on the HS have promoted
its development. The characteristics are that multiple constraints are incorporated into the
classical energy minimization framework. Large Displacement Optical Flow (LDOF) [49]
initially incorporated the descriptor matching component into the variational method to
solve the large displacements situation. Then, a series of improvement methods with rigid
matching descriptors [50,51] were developed to help avoid the performance deterioration
at small displacement locations. Furthermore, to effectively deal with the fast, non-rigid
motion, a non-rigid dense matching algorithm is designed for DeepFlow [52]. Although
the continuous optimization of the variational method can achieve good optical flow
results, the long computation time caused by high computational complexity limits its
wider application.

With the rise of deep learning in computer vision, early works using deep learning to
estimate optical flow usually utilize CNN as a high-level feature extractor [53,54]. The ex-
tracted matching component of the feature is used to replace the data term in the variational
approach, so these works do not represent a learnable task. FlowNet [55] is the first attempt
to consider optical flow estimation as a learnable task. FlowNet utilizes CNN to extract
the features of adjacent frames and establishes the corresponding correlation of pixels, so
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as to achieve optical flow estimation. Furthermore, this supervised estimation paradigm
has been adopted and refined. FlowNet2.0 [56] deepens the network by stacking multiple
layers and introduces a subnetwork aiming for small motions, which effectively enhances
the estimation performance. Some subsequent works concentrate on improving the net-
work architecture to obtain more accurate results, such as SPyNet [57], Liteflownet [58],
etc. Among them, PWC-Net [4], as a compact and effective network, achieves excellent
results in the task of optical flow estimation under the supervised learning paradigm. To
this day, it is still widely used in diverse tasks. Thus, we also utilize the PWC-Net as the
fundamental model in our research. Additionally, to overcome the limitation caused by
the scarcity of true optical flow labeled samples in supervised learning paradigms, some
studies [59–61] based on self-supervised training allow the network to be trained in the
video without labels. This kind of task usually uses the optical flow to reduce the difference
between the target image and the reference image to design the specific loss function for the
network to learn. Advanced self-supervised learning methods have achieved competitive
results with supervised learning methods, and this research area will continue to attract
interest in future.

3. Materials and Methods

In this section, we will describe the proposed image-level feature extraction method
with transfer learning (Spe-TL) in detail. The illustration for our approach is shown in
Figure 2. Firstly, in order to achieve image-level feature extraction, it is necessary to utilize
the global image as input; therefore, we used a hyperspectral image with hundreds of
contiguous spectral bands from a sequential image perspective. Therefore, the difference
of arbitrary two single sequence images in adjacent spectral bands actually reflects the
global spectral variation information between them. Then, we extract the global spectral
variation information between adjacent spectral bands by using the optical flow estimation
method. Secondly, in order to take advantage of the abundant knowledge of the model
learned during the optical flow estimation source task, avoid sample scarcity during the
target task, reduce the time consumption and bypass the need to re-train the model, etc.,
we utilize the transfer learning strategy and propose an innovative data adaptation strategy
so that the optical flow network pre-trained on video data can be applied to the image-
level feature extraction target task. Then, by continuously inferring the global variation
information between spectral bands, such information is finally concatenated to obtain the
image-level feature; this process of feature extraction does not require any labeled samples.
Finally, we utilize the traditional classifier SVM to achieve classification. Benefiting from
the efficient training and testing of SVM, we propose a vote strategy. We utilize features at
different scales to construct multiple tasks of training and classification and obtain multiple
classification results; then, the optimal result is finally obtained by voting. The vote strategy
could further improve the classification accuracy. Next, the essential components of our
method will be elaborated on in the following four subsections.
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Figure 2. Illustration of the proposed hyperspectral image-level feature extraction based on transfer
learning (Spe-TL) for hyperspectral image classification.
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3.1. PWC-Net

Since the PWC-Net [4] has been proven to be an efficient and accurate optical flow esti-
mation network for various tasks, we chose the PWC-Net as our basic network. Compared
to FlowNet 2.0 that stacks multiple networks leading to complex training and an expo-
nential increase in the number of trainable parameters, the PWC-Net utilizes multi-scale
features to replace stacked networks, and it uses warping and cost volume operations that
not only enhance the quality of optical flow estimation but also minimize the model size
with no learnable parameters. The illustration of the network is shown in Figure 3. The left
side in the figure is the illustration of the overall information flow, and the right side is the
course-to-fine procedure in PWC-Net. For input images I1, I2 ∈ Rh×w×3 (h and w denote
height and width of image, and the RGB images have 3 channels), the L-level pyramid
features are generated by L-1 continuous convolution layers with a downsample factor of 2.
The value of L actually determines the number of layers of the pyramid extractor and the
depth of the network. Additionally, the setting also requires a consideration of the size of
the input because the smaller input cannot be processed in the deeper pyramid extractor. A
learnable feature pyramids extractor can learn the conducive representation of multi-scale
features with fewer number of trainable parameters. Take the input image as the bottom
feature, that is, C0

t = It, so the top feature is CL
t . The index t denotes the serial number of

two images as input (t = 1,2). At the l-th level (1≤ l < L), the operation of the warping layer
can be formulated as follows:

Cl
warp(x) = Cl

2(x + Upsample( f l+1)(x)) (1)

where x denotes each pixel in the image and f l+1 denotes the optical flow estimation results
calculated by the former-level pyramid features. The warping operation has been proved to
be a critical principle of traditional approaches to estimate large motion [62], which is taken
as a pivotal layer with no learnable parameters in the network for the same purpose. Next,
the cost volume that represents the matching cost between two frames is constructed by
the features of the first image Cl

1(x1) and warped features of the second image Cl
warp(x2):

CostV l(x1, x2) =
1
N
(Cl

1(x1))
>Cl

warp(x2) (2)

where N is the length of the column vector Cl
1(x1) and the channel dimension of feature Cl

1,
which varies by layer from 16 to 32, 64, 96, 128 and 196. The x1 and x2 denote each pixel in
the first image and the corresponding matching pixels in the second image, respectively. The
CostV l only needs to be calculated on a limited range of d pixels, that is, |x1 − x2|∞ ≤ d.
The range of d is actually the size of the searching window, which should be smaller
than the size of the feature maps Cl

t at the l-th level, so the range of d is [1, hl wl]. If
the d is too large, it will lead to a huge computational overhead and no performance
improvement; too small a d will lead to insufficient matching retrieval. The cost volume is
a more discriminative representation of optical flow; therefore, a cost volume layer with no
learnable parameters in the network can enhance the final estimation results of optical flow.
Then, the results of the cost volume layer CostV l , Cl

1(x1), and f l+1 after upsampling are
used as the input of the optical estimator. The estimator deploying multiple convolution
layers with a dense connection decreases the number of feature channels layer by layer,
and the whole estimation process is iterative until the bottom level. Finally, the context
network is constructed to further refine the optical flow after completing the estimation
of the final level. It deploys seven layers with dilated convolution (kernel size is 3 × 3)
and the dilation coefficient that controls the spacing between the kernel points gradually
increases, which can effectively expand the receptive field so the context information of a
larger range can be captured.
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Figure 3. Illustration of the PWC-Net architecture and its course to fine procedure.

3.2. Training and Transfer Learning Strategy

For source domain Ds, source task Ts, target domain Dt, and target task Tt, the purpose
of transfer learning is to acquire knowledge in Ds and Ts to help achieve the Tt in the
Dt, as shown in Figure 4. In our method, we aimed to extract the image-level feature by
continually capturing the variation information in adjacent spectral bands. So the target
task is established, and the target data are represented by hyperspectral images awaiting
classification. First, the extraction of an image-level feature requires the global image as
the input. Second, we look at the three-dimension global HSI data I ∈ RH×W×C from a
sequential image perspective, so the number of single-band sequence images is C. Thus,
the difference between two arbitrary single sequence images I1 and I2 in adjacent spectral
bands reflects the global spectral variation information F between them, which can be
formulated as follows:

F(x) = I2(x)− I1(x) (3)

where x denotes the same location of the pixels. Such global variation information provides
a supplementary image-level feature that effectively enhances the original feature. Third,
the motion of the object in 3D space is reflected in the image to form the brightness mode
motion of the image, and the visible motion of the brightness mode produces the optical
flow f = {u, v} [49], which contains a horizontal motion component u and a vertical motion
component v of pixels. Since the HSI is a static scene with no movement in the spatial
dimension, we use the optical flow estimation method to calculate the variation information
F in the spectral dimension, which denotes the direction and degree of variation at the
current point of the spectral curve. Capturing the variation information F depends on
the inference of the transferred optical flow network. The PWC-Net is utilized as source
network in the proposed method. Therefore, the PWC-Net is pre-trained on the source
data (video data) in the source domain, and a multi-scale loss function [55] is utilized when
training, which is as follows:

`(Φ) =
L

∑
l=l0

αl ∑
x

∣∣∣ f l
Φ(x)− f l

Ψ(x)
∣∣∣
2
+ γ|Φ|2 (4)

where Φ denotes the space of trainable parameters, defining the set of all the learnable
parameters in the optical flow estimation network, PWC-Net, which includes the feature
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pyramid extractor and all optical flow estimators. f l
Φ(x) denotes the optical flow estimated

by the network at the l-th level, f l
Ψ(x) denotes the corresponding labels for supervised

learning, αl denotes the contribution weight of the l-th level loss component, and γ is a
trade-off weight for the second term which regularizes the parameters of the model.

Source Data Target Data

Source Task

Source

Network

Target

Network

Target Task

Transfer

Learning

Source

Domain
Target

Domain

Figure 4. Illustration of transfer learning.

After pre-training is completed, the pre-trained PWC-Net is used as the target network.
Then, a common practice is to extend the network according to the requirement of the
target task and fine-tune part or all of the network with target data. However, we observe
that this practice not only requires target training samples but also has a poor classification
effect in the experiment, which indicates that this fine-tuning method for classification
tasks weakens the original ability of the network to capture the variation information.
On the other hand, a satisfactory classification effect is achieved when the transferred
network is directly utilized to capture variation when extracting image-level features,
which indicates that the variation in the captured knowledge of a network trained with
the source video data can to be transferred to the HSI feature extraction task for better
classification. Therefore, we adopt the latter practice.

3.3. Data Adaptation for Feature Extraction

For heterogeneous transfer learning, a pivotal step is bridging the gap between source
data and target data. The optical flow network is pre-trained on the video datasets that
are actually composed of RGB 3-channel sequence images. Additionally, the input of the
source network is two adjacent frames I1, I2 ∈ Rh×w×3 in the video. In order to capture the
variation information between adjacent spectral bands and make the hyperspectral image
data adaptable for the transferred network, we look at HSI with hundreds of contiguous
spectral bands from a sequential image perspective. Then, the following two data adaption
strategies are proposed to achieve the target task: (1) Simply copy an arbitrary single-
band image and then synthesize a 3-channel image; and (2) arbitrary three consecutive
single-band images can be taken as a 3-channel image. We observe that the latter strategy
can achieve a better discriminative feature, which denotes three consecutive single-band
images as the input can better reflect the spectral variation information. Thus, we utilize
the latter strategy to achieve the purpose of data adaptation.

Then, for arbitrary-size global hyperspectral image I ∈ RH×W×C used as the target
data, H, W and C represent the height, width, and number of bands of the HSI, respectively.
According to the data adaption strategy, we continuously take a set of 3-channel image
pairs from HSI data as input of the target network. That is, for the C single-band images, the
foremost three are taken as the first 3-channel image I1, and the following three are taken as
the second 3-channel image I2. Simultaneously, I2 will be taken as the first input at the next
inference, and the procedure above is repeated. In this way, the corresponding variation
information (i.e., optical flow) F= {u, v} ∈ RH×W×2 is inferred constantly, until all image
pairs from HSI data have been processed. Next, all extracted variation information is
concatenated to obtain the final image-level feature.
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Furthermore, the hyperspectral sensor captures spectral information continuously
during imaging, which means that the variation of images between adjacent bands is
relatively small while the difference in images between distant bands is relatively signifi-
cant. Therefore, a different setting of interval D determines the presentation of variation
information which impacts the final feature, and D denotes the distance between two
3-channel images selected from HSI data with a sequential image perspective. This process
is as shown in Figure 5 when D = 0 and D = 3. Thus, one setting of interval D will obtain
one group of image-level features, and interval D actually determines the corresponding
variation degree between inputs when extracting the features. Then, we can set a different
interval D (i.e. D = 0,1,2, ...) to obtain image-level features at different scales. By combining
a vote strategy, features at different scales can be effectively utilized to further improve the
classification performance.

...... ......

(a) (b)

First Image

Second Image

Figure 5. Illustration of selecting 3-channel images from hyperspectral image on different interval D.
(a) D = 0. (b) D = 3.

3.4. Classification Based on Vote Strategy

After feature extraction is completed, we input features into a common classifier SVM
to achieve classification. This simple pattern of classification is more dependent on the
discriminative capacity of the feature. The multi-scale feature has been proven practically
to enhance discrimination [63]. The extraction of features at different scales was introduced
in the last subsection. Directly concatenating them to obtain the multi-scale feature seems
to be a conventional method of implementation, which is also incapable of achieving
better classification results in our experimental attempt. Therefore, we aim to better utilize
the discriminative capacity of features at different scales to achieve classification. A vote
strategy is proposed for this purpose.

Benefiting from the near-real-time efficient training and classifying of SVM, we utilize
SVM to implement multiple training runs and tests without significantly increasing time
consumption. The feature at different scales can be defined as FeaD ∈ RH×W×2(C−D−3)

because interval D determines the scale of the final feature. Then, the k + 1 (D = 0, 1, ..., k)
groups of features FeaD at different scales are concatenated with the original feature
I ∈ RH×W×C of HSI, respectively. The concatenated feature can be formulated as follows:

FeaD
concat = Concat(FeaD, I) (5)

A multi-scale features set Θk contains k + 1 groups of different concatenated features
FeaD

concat , and k decides the number of FeaD
concat. Different FeaD

concat in set Θk are utilized
to construct k + 1 training tasks, respectively, with the same training samples. Therefore,
the corresponding prediction results from different trained SVM are combined to obtain
P ∈ RH×W×(k+1). We vote P for the final prediction labels. Specifically, for each predicted
value sequence in P, the predicted value with the most occurrence times is taken as the
corresponding final predicted label of the sequence. When more than one category occurs
the same number of times, the one that occurs first will be selected as result by default.
With the vote strategy, the relatively prominent discrimination advantages of features at
different scales can be utilized, and the classification errors can be smoothed, so as to
improve the accuracy further. Its effectiveness will be demonstrated in the subsequent
experimental section.
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4. Results and Discussion

The environmental hardware is an Intel Core Intel (R) Xeon (R) Gold 6152 processor,
256G RAM and Nvidia A100 PCIE GPU. All the programs are developed with Python and
Pytorch library.

4.1. Datasets and Evaluation Criterion

The video data involving FlyingChairs [55], FlyingChairs3D [64], and MPI-Sintel [39]
datasets are used as source data for pre-training of PWC-Net, which is consistent with the
original literature. Four open-source benchmark hyperspectral image scenes are selected
as target data to demonstrate and analyze the effectiveness of the proposed method for
the target task of feature extraction and classification. They are two rural scenes including
Indian Pines, Salinas and two urban scenes including Pavia University, Houston 2013.

Indian Pines : This scene was photographed in North-Western Indiana by the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. It contains 200 bands from
0.4 µm to 2.5 µm, and it has an image size of 145× 145 with a 20 m spatial resolution.
The gross number of ground categories in this scene is 16, and 10,776 samples are labeled
artificially with expertise.

Salinas: This scene was photographed in Salinas Valley, California, by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. It contains 204 bands from 0.4 µm
to 2.5 µm, and it has an image size of 512× 217 with a 3.7 m spatial resolution. The gross
number of ground categories in this scene is 16, and 54,129 samples are labeled artificially
with expertise.

Pavia University: This scene was photographed at Pavia University, Northern Italy,
by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor. It contains 103 bands
from 0.43 µm to 0.86 µm, and it has an image size of 610× 340 with a 1.3 m spatial resolution.
The gross number of ground categories in this scene is 9, and 42,776 samples are labeled
artificially with expertise.

Houston 2013: This scene was photographed at Houston, South-Eastern Texas, by the
ITRES CASI-1500 sensor in June 2012. It contains 144 bands from 0.38 µm to 1.05 µm, and it
has an image size of 349× 1905 with a 2.5 m spatial resolution. The gross number of ground
categories in this scene is 15, and 15,029 samples are labeled artificially with expertise.

In order to demonstrate the performance of the proposed method under the condition
of small samples classification, 10 training samples of each ground category are selected to
compose the training dataset, and the rest of the labeled samples are utilized as the test
dataset. To ensure the preciseness of the experiment, all experiments are repeated 10 times,
and the results are averaged. In these 10 experiments, diverse groups of 10 training samples
are selected to demonstrate the authentic performance of different methods under different
sample distributions. Additionally, the selection of training samples in each iteration is
completely identical by setting the same random number for all methods, which guarantees
the fairness of comparison. Furthermore, the accuracy per category, the overall accuracy
(OA), average accuracy (AA), and Kappa coefficient are taken as the evaluation criterion
for evaluating the comprehensive performance of different approaches. Among them, the
accuracy per category is just the percentage of the number of correctly classified samples of
a category to the total number of samples of the category. OA denotes the percentage of
the number of correctly classified samples in the total number of samples, which is used to
evaluate the overall performance of the classification method. AA represents the average
percentage of the number of correctly classified samples in each category in terms of the
total number of samples in the category, which is used to evaluate the performance of the
classification method for different categories. The Kappa coefficient adopts the discrete
multivariate analysis method, which can provide a fairer evaluation of the classification
method under the condition of the large uncertainty of classification results.
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4.2. Implementation Details

The pre-training process of PWC-Net is carried out according to the original literature
to obtain the optimal optical flow estimation capability. Specifically, the layer number of
the pyramids extractor is set as L = 6, and the weights in the training loss function are set
as α6 = 0.32, α5 = 0.08, α4 = 0.02, α3 = 0.01 and α2 = 0.005. The trade-off weight γ is set to
0.0004. The calculation distance d of matching between the two pixels of two features in
the cost volume layer is set to 3. The model is firstly trained on a FlyingChairs dataset with
the initial learning rate 0.0001, and the cropped image size is 448× 384. Then, the model
is further trained on FlyingChairs3D dataset, and the cropped image size is 768× 384.
Finally, the MPI-Sintel dataset is utilized to fine-tune the model with data augmentation,
and the cropped image size is also 768× 384. So, the pre-training of the source network
PWC-Net is achieved. Next, the pre-trained model can be transferred to the image-level
feature extraction target task.

After completing feature extraction, the SVM is taken as the classifier. For SVM
with a radial basis function (RBF) kernel, we utilize a cross-validation strategy to ob-
tain the optimal regularization parameter λ and kernel parameter ϕ in the range of
λ= {2−2,2−1, . . . ,27} and ϕ= {2−2,2−1, . . . ,27}, respectively.

4.3. Analysis of Vote Strategy

In order to verify the effectiveness of the voting strategy and analyze the discriminative
capacity of image-level features at different scales, we set k = 10 to observe the variation
of classification performance as the interval D increases. The experimental results are
shown in Table 1, and the results in the rows represent the mean ± standard deviation
of 10 experiments under a specific setting. As we mentioned before, a different setting of
interval D determines the presentation of variation information, so as to impact final image-
level feature and classification performance. However, for different scenes, the optimal
variation scale is not consistent. For example, the optimal scale is D = 5 on the Indian Pines
scene but D = 8 on the Houston scene. It is not an intelligent choice to find the optimal
scale to adapt to different scenes, while the vote strategy best utilizes the classification
results of different variation scales to improve the ultimate accuracy. Simultaneously, it
avoids the tedious search process for optimal parameters. Since increasing k cannot help
to significantly improve classification performance, to balance efficiency and accuracy, we
follow the setting of k = 10 in the subsequent experiments.

Table 1. The analysis results of overall accuracy with features at different scales and vote strategy.

Indian Pines Salinas Pavia University Houston

D = 0 85.70 ± 3.00 96.01 ± 1.06 88.92 ± 2.28 81.87 ± 2.30
D = 1 84.76 ± 3.23 96.48 ± 1.03 88.54 ± 2.55 82.25 ± 1.76
D = 2 85.28 ± 2.43 95.94 ± 1.17 89.29 ± 2.47 82.22 ± 1.68
D = 3 85.13 ± 2.37 96.23 ± 0.93 89.45 ± 2.99 82.25 ± 1.85
D = 4 85.05 ± 3.12 96.27 ± 1.16 90.42 ± 2.18 81.72 ± 1.64
D = 5 85.86 ± 2.34 95.17 ± 1.62 89.82 ± 1.78 82.59 ± 1.41
D = 6 85.10 ± 2.96 96.06 ± 0.97 89.56 ± 2.54 82.23 ± 2.50
D = 7 85.32 ± 2.33 96.32 ± 0.74 90.36 ± 1.93 81.60 ± 1.78
D = 8 85.08 ± 2.41 96.41 ± 0.92 89.94 ± 2.63 82.83 ± 2.02
D = 9 85.16 ± 1.75 96.10 ± 1.03 89.76 ± 2.50 81.74 ± 1.37

D = 10 85.07 ± 2.31 96.78 ± 0.65 90.44 ± 2.72 81.88 ± 3.03

Vote 86.17 ± 2.25 96.69 ± 0.94 90.97 ± 2.23 83.15 ± 1.69

4.4. Comparative Experiments

In order to conduct a comprehensive comparison with the proposed method, Spe-
TL, we select seven open-source influential methods, including Extended Morphological
Profiles (EMP) [8], Local Binary Patterns (LBP) [9], Deep Few-Shot Learning (DFSL) [31],
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3D Convolutional Auto-Encoder (3D-CAE) [32], Spectral-Spatial Transformer Network
(SSTN) [21], Patch-Free Global Learning Framework (FreeNet) [25], and CNN-Enhanced
Graph Convolution Network (CEGCN) [65].

Among them, EMP and LBP are two representative traditional feature extraction
methods. DFSL and 3D-CAE are two patch-level deep-learning-based feature extraction
methods. DFSL, which aims for small samples classification, pre-trains its network on the
source HSI data with sufficient labels, and it is fine-tuned using the target HSI data with
limited labels. The 3D-CAE is capable of learning spatial–spectral features unsupervised
on unlabeled HSI data when restoring the relevancy between output and input. The above
mentioned feature extraction methods and our method all utilize the SVM for training
and classification, so the discriminative capacity of features from different approaches
can be directly compared. SSTN is an outstanding patch-level method which operates by
introducing a transformer to replace the conventional convolution operations, and it is
verified practically to perform better than other advanced influential patch-level methods
such as SSAN [66], SSRN [17], etc. FreeNet and CEGCN are two representative image-level
methods with better efficiency and accuracy than patch-level methods. FreeNet constructs
the global learning network based on a fully convolution network that captures context
information of a larger range. CEGCN combines the advantages of CNN in extracting local
features and GCN in performing convolution operations in large-scale irregular regions, so
as to achieve better performance than other advanced mainstream approaches based on
CNN, such as FDSSC [67] and DBDA [68].

Tables 2–5 quantitatively show the experimental results with all comparative ap-
proaches for the four scenes (only 10 training samples in each ground category); the results
in the rows represent mean ± standard deviation of the 10 experiments under a specific
setting. As we can observe, in the feature extraction approaches, the feature of DFSL
aiming for small sample classification seems to have better discriminative power under the
condition of only 10 training samples than 3D-CAE and the two traditional methods. The
image-level feature of Spe-TL has the best feature discrimination. Additionally, its process
of feature extraction is unsupervised, while DFSL requires HSI source data with a large
number of labels when pre-training. The superior discriminative capability of Spe-TL also
demonstrates the advantage of the image-level feature extraction methods compared with
the patch-level. Furthermore, each of the deep-learning-based classification approaches
has its advantages in a particular scene under the small sample condition. For example,
SSTN performs relatively well on Indian Pines and Pavia University scenes but relatively
poorly on Salinas and Houston scenes. FreeNet performs relatively well on Indian Pines
and Salinas scenes but relatively poorly on the Pavia University scene. CEGCN performs
relatively poorly on the two rural scenes while it achieves relatively higher accuracy for
the two urban scenes. As for Spe-TL, it achieves the highest accuracy on all scenes and
has an apparent increase in OA compared with CEGCN on two rural scenes (increases
of 7.83%, and 5.00%, respectively). Therefore, Spe-TL was demonstrated to be capable of
achieving competitive classification performances compared with the several influential
deep-learning-based classification methods; furthermore, it had improved performance for
the scenes containing an extensive range of planar ground objects, such as the rural scenes.

To focus on the analysis of single category, we used IP as an example to discuss the
differences in accuracy per category. As we can see in Table 2, Spe-TL achieves the highest
accuracy for the six categories of ground objects, including 2, 5, 11, 13, 14 and 16, which
shows the advantage of Spe-TL in terms of accuracy per category. Additionally, Spe-TL
also achieves results close to the highest in other categories of ground objects. However, as
for categories 7 and 9, Spe-TL has a relatively poor performance because there are three
methods, including SSTN, FreeNet, CEGCN that achieve an accuracy of 100%. Interestingly,
other comparative methods also perform poorly for these two categories, which shows the
difficulty of identifying them. Due to the transformer architecture of SSTN and patch-level
input of FreeNet and CEGCN, these three methods perform well when capturing long-
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distance spatial information, which leads a better performance in categories 7 and 9 that is
hard to distinguish merely with the spectral feature.

Table 2. The analysis results of accuracy with different approaches on the Indian Pines scene (%)
(10 training samples in each category).

Traditional Method Patch-Level Image-Level

EMPs LBP DFSL 3D-CAE SSTN FreeNet CEGCN Spe-TL

1 40.76 ± 4.86 80.89 ± 13.78 86.01 ± 6.24 48.50 ± 8.99 98.69 ± 2.21 99.13 ± 1.06 93.91 ± 5.79 87.88 ± 9.85
2 49.69 ± 6.71 62.19 ± 8.15 67.78 ± 2.91 57.11 ± 4.57 79.97 ± 8.25 63.22 ± 12.35 66.26 ± 14.97 81.28 ± 6.06
3 49.54 ± 9.70 66.55 ± 13.63 71.55 ± 3.15 59.12 ± 5.30 80.05 ± 10.02 80.39 ± 7.51 57.34 ± 10.54 76.94 ± 6.92
4 44.25 ± 9.32 59.02 ± 8.27 87.45 ± 1.66 51.10 ± 5.58 95.02 ± 2.77 96.20 ± 3.80 86.62 ± 5.14 80.01 ± 10.05
5 54.36 ± 4.32 78.06 ± 4.74 91.07 ± 2.45 69.51 ± 3.97 89.39 ± 3.18 83.80 ± 9.37 88.75 ± 5.31 94.15 ± 3.01
6 87.59 ± 6.45 87.02 ± 8.01 94.48 ± 2.68 93.40 ± 2.05 97.56 ± 2.53 94.28 ± 3.12 99.01 ± 0.57 95.48 ± 4.24
7 36.39 ± 7.08 49.74 ± 11.38 89.17 ± 3.82 60.85 ± 10.31 100.00 ± 0.00 100.0 ± 0.00 100.00 ± 0.00 87.29 ± 10.29
8 97.96 ± 1.23 95.53 ± 6.18 96.56 ± 1.29 98.96 ± 0.71 99.81 ± 0.25 99.18 ± 1.34 99.70 ± 0.29 95.79 ± 2.32
9 25.94 ± 4.48 34.07 ± 20.37 83.33 ± 15.91 54.55 ± 11.12 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 78.45 ± 10.11

10 47.33 ± 14.38 59.14 ± 8.10 77.96 ± 2.90 63.37 ± 3.26 82.80 ± 8.53 84.80 ± 7.26 88.49 ± 6.09 73.91 ± 11.83
11 66.59 ± 6.23 88.96 ± 5.25 63.03 ± 1.53 80.29 ± 2.87 79.49 ± 6.08 76.43 ± -3.98 64.82 ± 6.76 92.23 ± 3.91
12 33.40 ± 6.09 66.80 ± 13.10 77.50 ± 3.52 48.12 ± 3.49 86.23 ± 5.59 72.56 ± 8.40 68.09 ± 19.40 73.51 ± 8.00
13 88.38 ± 6.71 96.74 ± 4.21 97.84 ± 2.09 95.71 ± 2.86 99.75 ± 0.58 98.43 ± 1.96 99.75 ± 0.45 99.81 ± 0.32
14 89.40 ± 3.21 96.93 ± 2.23 89.76 ± 1.87 94.50 ± 2.31 93.83 ± 4.69 95.11 ± 3.89 93.28 ± 3.42 99.65 ± 0.25
15 61.38 ± 10.73 74.47 ± 5.94 69.54 ± 3.65 71.71 ± 4.63 93.37 ± 5.53 94.76 ± 7.15 90.72 ± 6.67 91.34 ± 8.31
16 98.14 ± 3.82 96.61 ± 7.01 97.27 ± 2.52 98.82 ± 0.31 97.63 ± 3.29 98.60 ± 1.18 99.35 ± 1.09 99.66 ± 0.54

OA 61.06 ± 2.66 74.96 ± 2.16 76.39 ± 0.55 71.90 ± 1.43 85.41 ± 1.44 82.47 ± 1.82 78.34 ± 2.71 86.17 ± 2.25
AA 60.69 ± 1.50 74.55 ± 2.46 83.77 ± 0.78 71.61 ± 1.66 86.10 ± 0.77 85.81 ± 1.27 86.26 ± 1.96 86.71 ± 1.98

Kappa 56.03 ± 3.11 71.9 ± 2.35 73.15 ± 0.61 68.42 ± 1.51 84.61 ± 1.62 80.21 ± 2.03 75.54 ± 2.99 84.85 ± 2.54

Table 3. The analysis results of accuracy with different approaches on the Salinas scene (%) (10 training
samples in each category).

Traditional Method Patch-Level Image-Level

EMPs LBP DFSL 3D-CAE SSTN FreeNet CEGCN Spe-TL

1 96.42 ± 3.87 99.96 ± 0.12 98.62 ± 0.68 96.17 ± 3.14 94.58 ± 9.42 79.78 ± 9.89 99.96 ± 0.12 98.50 ± 1.56
2 98.73 ± 0.48 98.21 ± 1.95 99.37 ± 0.41 98.88 ± 0.52 98.50 ± 4.24 98.76 ± 2.32 96.12 ± 1.62 99.80 ± 0.24
3 87.36 ± 5.04 69.06 ± 11.23 98.74 ± 1.20 92.26 ± 2.19 93.75 ± 8.87 99.76 ± 0.37 100.00 ± 0.00 98.33 ± 1.85
4 97.54 ± 0.72 90.02 ± 6.03 99.47 ± 0.27 97.87 ± 0.47 98.91 ± 1.32 98.20 ± 3.84 99.77 ± 0.13 97.25 ± 0.54
5 95.96 ± 3.84 97.25 ± 2.23 96.17 ± 0.89 96.70 ± 4.38 95.43 ± 2.18 97.65 ± 1.32 98.05 ± 1.45 98.43 ± 0.50
6 99.95 ± 0.14 97.20 ± 3.24 99.62 ± 0.21 99.96 ± 0.08 99.46 ± 0.93 97.67 ± 3.04 99.97 ± 0.04 99.94 ± 0.06
7 95.44 ± 2.81 98.79 ± 1.37 99.47 ± 0.16 97.95 ± 1.54 99.20 ± 1.40 99.60 ± 0.59 99.86 ± 0.11 99.13 ± 0.17
8 80.02 ± 4.26 79.56 ± 6.03 78.83 ± 3.75 82.72 ± 1.77 76.15 ± 9.66 89.25 ± 6.38 84.92 ± 9.69 99.33 ± 1.05
9 99.41 ± 0.15 96.92 ± 3.60 98.42 ± 1.17 99.27 ± 0.32 99.15 ± 0.83 99.97 ± 0.05 99.51 ± 1.17 98.99 ± 0.45
10 85.73 ± 5.13 91.62 ± 3.73 91.82 ± 1.03 87.27 ± 1.78 91.77 ± 3.98 94.45 ± 5.86 90.33 ± 3.82 95.51 ± 1.60
11 69.40 ± 6.60 84.25 ± 6.37 96.30 ± 1.30 78.69 ± 2.89 97.42 ± 1.67 99.10 ± 1.20 98.87 ± 1.37 91.80 ± 6.08
12 93.64 ± 2.01 93.67 ± 3.09 99.89 ± 0.11 94.83 ± 1.36 99.14 ± 0.92 99.37 ± 0.72 97.20 ± 2.90 94.89 ± 1.85
13 86.43 ± 7.40 93.85 ± 4.20 98.41 ± 0.66 94.17 ± 0.86 99.82 ± 0.39 99.84 ± 0.23 99.78 ± 0.34 68.36 ± 14.84
14 92.19 ± 4.18 94.12 ± 4.25 96.48 ± 1.02 95.02 ± 1.08 99.44 ± 0.68 99.22 ± 0.96 99.34 ± 0.49 89.99 ± 1.75
15 62.57 ± 7.05 58.56 ± 3.37 68.01 ± 5.03 63.48 ± 5.65 81.03 ± 9.25 91.80 ± 8.76 70.56 ± 10.34 93.15 ± 5.01
16 87.75 ± 5.65 76.86 ± 9.84 98.67 ± 0.52 91.13 ± 3.20 96.03 ± 5.16 98.37 ± 2.75 98.49 ± 1.23 99.68 ± 0.47

OA 86.07 ± 1.84 84.40 ± 1.49 89.88 ± 0.27 87.86 ± 1.18 90.78 ± 2.09 95.00 ± 1.82 91.69 ± 2.52 96.69 ± 0.94
AA 89.28 ± 1.15 88.74 ± 1.75 94.89 ± 0.20 91.65 ± 0.54 94.99 ± 1.34 95.42 ± 2.30 95.76 ± 1.38 96.19 ± 0.89

Kappa 84.57 ± 2.01 82.73 ± 1.63 88.72 ± 0.29 86.54 ± 1.29 89.77 ± 2.31 94.44 ± 2.02 90.75 ± 2.79 96.32 ± 1.04
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Table 4. The analysis results of accuracy with different approaches on the Pavia University scene (%)
(10 training samples in each category).

Traditional Method Patch-Level Image-Level

EMPs LBP DFSL 3D-CAE SSTN FreeNet CEGCN Spe-TL

1 96.38 ± 1.44 91.20 ± 3.48 76.32 ± 4.10 97.57 ± 0.77 92.66 ± 4.72 85.57 ± 6.92 92.01 ± 6.18 97.13 ± 3.00
2 88.73 ± 2.07 96.87 ± 1.74 82.89 ± 4.39 93.97 ± 1.16 88.89 ± 5.15 77.12 ± 7.40 87.55 ± 4.91 98.04 ± 0.92
3 51.77 ± 5.21 53.45 ± 7.31 82.63 ± 1.95 70.92 ± 2.85 83.43 ± 7.01 77.85 ± 10.96 90.91 ± 10.20 83.51 ± 10.45
4 82.90 ± 15.55 80.76 ± 6.69 94.55 ± 2.17 92.88 ± 3.42 90.35 ± 6.06 95.96 ± 2.10 93.83 ± 2.97 77.64 ± 7.94
5 98.51 ± 1.67 99.10 ± 1.73 99.16 ± 0.26 98.11 ± 1.60 99.58 ± 0.57 99.97 ± 0.06 99.96 ± 0.06 93.01 ± 5.50
6 47.85 ± 7.52 70.21 ± 4.26 83.87 ± 6.06 55.70 ± 7.44 91.84 ± 4.04 94.08 ± 6.36 95.95 ± 3.32 86.35 ± 6.87
7 61.16 ± 11.52 55.98 ± 12.17 93.46 ± 1.35 72.21 ± 5.03 98.63 ± 3.27 94.33 ± 4.55 99.57 ± 0.61 85.94 ± 8.46
8 82.79 ± 5.26 76.48 ± 6.43 83.46 ± 2.44 91.00 ± 1.34 92.43 ± 4.03 94.75 ± 5.79 86.61 ± 9.01 78.20 ± 6.71
9 99.95 ± 0.07 73.08 ± 20.10 99.83 ± 0.22 99.89 ± 0.21 97.83 ± 1.44 99.41 ± 0.81 99.27 ± 0.55 99.81 ± 0.10

OA 77.89 ± 2.29 82.73 ± 3.36 84.03 ± 1.34 85.18 ± 2.19 90.20 ± 2.14 85.07 ± 3.60 90.78 ± 2.19 90.97 ± 2.23
AA 78.89 ± 1.79 77.46 ± 4.18 87.46 ± 0.57 85.81 ± 1.16 91.83 ± 1.11 91.01 ± 1.77 91.96 ± 1.26 89.07 ± 2.59

Kappa 71.64 ± 2.45 77.94 ± 4.05 79.37 ± 1.58 80.94 ± 2.58 88.04 ± 2.67 81.10 ± 4.23 88.11 ± 2.71 89.08 ± 2.80

Table 5. The analysis results of accuracy with different approaches on the Houston 2013 scene (%)
(10 training samples in each category).

Traditional Method Patch-Level Image-Level

EMPs LBP DFSL 3D-CAE SSTN FreeNet CEGCN Spe-TL

1 88.43 ± 7.04 77.48 ± 5.12 89.48 ± 6.14 84.83 ± 6.31 83.46 ± 5.98 89.73 ± 5.48 87.91 ± 5.57 85.76 ± 7.40
2 92.21 ± 7.10 69.32 ± 6.78 91.73 ± 5.33 91.27 ± 6.88 88.99 ± 8.64 82.06 ± 10.30 93.95 ± 5.82 84.15 ± 7.86
3 72.70 ± 13.04 72.82 ± 6.15 98.82 ± 0.59 73.19 ± 11.46 99.11 ± 2.06 98.10 ± 2.10 99.97 ± 0.09 90.69 ± 7.86
4 95.74 ± 6.05 82.81 ± 7.27 93.10 ± 2.28 95.64 ± 5.93 94.53 ± 3.49 93.45 ± 2.68 93.95 ± 0.72 89.45 ± 4.88
5 90.26 ± 3.98 75.47 ± 6.15 97.75 ± 1.62 89.35 ± 2.76 96.23 ± 4.93 99.27 ± 1.29 98.82 ± 2.59 91.77 ± 4.17
6 83.24 ± 14.37 70.11 ± 7.05 90.30 ± 5.93 83.55 ± 13.46 89.63 ± 7.16 91.35 ± 5.73 90.80 ± 5.96 85.96 ± 11.4
7 81.87 ± 4.44 76.60 ± 6.54 79.91 ± 4.11 78.95 ± 3.10 76.52 ± 13.12 82.83 ± 9.80 83.75 ± 6.64 87.04 ± 5.63
8 68.99 ± 14.10 61.84 ± 10.20 50.18 ± 9.18 60.54 ± 9.34 58.48 ± 13.21 52.42 ± 11.96 55.26 ± 8.85 66.75 ± 12.43
9 78.76 ± 8.77 76.56 ± 7.87 75.19 ± 3.76 75.76 ± 13.95 79.66 ± 8.61 85.82 ± 8.19 81.18 ± 5.29 66.89 ± 7.22

10 65.08 ± 7.80 63.90 ± 7.16 63.81 ± 11.08 54.12 ± 9.72 64.96 ± 15.82 88.13 ± 11.79 93.25 ± 7.59 79.70 ± 9.22
11 68.06 ± 6.30 79.37 ± 10.26 59.86 ± 7.37 74.64 ± 10.60 60.02 ± 18.95 74.87 ± 12.75 77.09 ± 11.06 82.34 ± 5.97
12 63.45 ± 5.65 61.10 ± 5.81 54.10 ± 10.08 58.82 ± 6.52 45.04 ± 22.28 80.55 ± 8.65 81.23 ± 7.77 74.86 ± 5.41
13 73.66 ± 7.82 71.16 ± 9.54 31.11 ± 8.76 74.27 ± 10.03 70.02 ± 27.50 88.46 ± 5.61 47.46 ± 19.25 60.90 ± 11.56
14 79.76 ± 8.55 77.06 ± 8.16 97.50 ± 1.35 76.74 ± 7.35 99.72 ± 0.41 99.88 ± 0.21 99.97 ± 0.07 99.98 ± 0.07
15 97.79 ± 0.91 88.81 ± 8.50 98.81 ± 0.38 96.23 ± 1.98 98.69 ± 2.51 97.98 ± 3.01 99.57 ± 0.38 96.84 ± 1.72

OA 78.64 ± 1.78 72.63 ± 1.52 77.22 ± 1.01 76.05 ± 1.33 77.91 ± 2.34 81.12 ± 2.04 82.41 ± 1.82 83.15 ± 1.69
AA 80.00 ± 1.54 73.63 ± 1.55 78.11 ± 0.70 77.86 ± 1.74 80.34 ± 2.32 82.99 ± 1.62 83.64 ± 1.97 83.87 ± 1.43

Kappa 76.94 ± 1.92 70.45 ± 1.64 75.36 ± 1.08 74.14 ± 1.43 76.16 ± 2.53 83.45 ± 2.20 83.22 ± 1.97 83.75 ± 1.83

However, an approach with high accuracy may not produce a high-quality full-domain
classification map, which doubtlessly weakens its practical application value. The accuracy
is obtained by calculating only with labeled samples, while the full-domain classification
map is obtained by classifying all sample including the labeled and the unlabeled elements.
Therefore, the accuracy is not equal to the quality of the full-domain classification maps. A
high-accuracy method only has practical value when it produces high quality classification
maps. Therefore, we further produce the full-domain classification maps of different
approaches with the four scenes to qualitatively and visually estimate their authentic
performance, as shown in Figures 6–9. As we can observe, except for LBP, the several
feature-extraction-based methods utilizing SVM as a classifier can produce maps with
clear category boundaries. However, a relatively low classification accuracy also results
in numerous scatter noises that severely degrade the overall effect of the maps. As for
LBP, although the texture feature can increase the classification accuracy, it is unable to
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produce practicable classification maps, which also verifies the conclusion mentioned above.
Moreover, the several advanced deep-leaning-based classification methods with higher
accuracy mitigate the noise phenomenon. Yet, some details are lost, and some category
boundaries are blurred at the same time, which is mainly due to the smoothing effect of
spatial information. Therefore, such problems lead to the classification map being slightly
distorted compared to the original HSI, while Spe-TL better combines the advantages of
both sides. On the one hand, the classification pattern of SVM guarantees the refined
restoration of details. On the other hand, the powerful discriminative capacity of the
image-level feature effectively decreases the number of noises so as to obtain a better visual
effect. In order to demonstrate the ability of Spe-TL to restore details more clearly, we
enlarge some areas on four scenes, as shown in Figures 6–9. From these areas, we observe
that Spe-TL can not only achieve accurate classification, but also subtly reflect the authentic
distribution of ground objects compared with other methods. For example, on the Indian
Pines scene, there are planar stone areas and a linear trees road located in the north, as
well as a linear grass lane located in the middle. On the Salinas scene, there is a linear
vinyard trellis path located in the south, and a linear romaine path and planar rough plow
area located in the west. On the Pavia University scene, there is a planar roof of metal
and asphalt located in the north. On the Houston scene, there is a planar roof of a circular
commercial mall, planar soil, grass area, and linear road, which are located in the northwest.

Alfalfa

Corn-notill

Corn-mintill

Corn

Grass-pasture

Grass-trees

Grass-pasture-

mowed

Hay-windrowed

Oats

Soybean-notill

Soybean-mintill

Soybean-clean

Wheat

Woods

Buildings-Grass-

Trees-Drives
Stone-Steel-

Towers

Background (unlabeled)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Figure 6. The full-domain classification maps of different approaches on the Indian Pines scene:
(a) False-color image. (b) Ground-truth map. (c) EMP. (d) LBP. (e) DFSL. (f) 3D-CAE. (g) SSTN.
(h) FreeNet. (i) CEGCN. (j) Spe-TL.
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Figure 7. The full-domain classification maps of different approaches on the Salinas scene: (a) False-
color image. (b) Ground-truth map. (c) EMP. (d) LBP. (e) DFSL. (f) 3D-CAE. (g) SSTN. (h) FreeNet.
(i) CEGCN. (j) Spe-TL.



Remote Sens. 2022, 14, 5118 16 of 22

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Asphalt

Meadows

Gravel

Trees

Painted metal sheets

Bare Soil

Bitumen

Self-Blocking Bricks

Shadows

Background (unlabeled)

Figure 8. The full-domain classification maps of different approaches on the Pavia University scene:
(a) False-color image. (b) Ground-truth map. (c) EMP. (d) LBP. (e) DFSL. (f) 3D-CAE. (g) SSTN.
(h) FreeNet. (i) CEGCN. (j) Spe-TL.
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Figure 9. The full-domain classification maps of different approaches on the Houston 2013 scene:
(a) False-color image. (b) Ground-truth map. (c) EMP. (d) LBP. (e) DFSL. (f) 3D-CAE. (g) SSTN.
(h) FreeNet. (i) CEGCN. (j) Spe-TL.

To further demonstrate the performance of the proposed method comprehensively,
we continually increase the number of training samples in each category to 20, 50, 80,
100, 150, and 200; the performance variation trend of different approaches is shown in
Figure 10. As we can observe, Spe-TL maintains an absolute superiority on the Indian Pines
and Salinas scenes no matter how the training sample size varies. This fact again verifies
the conclusion mentioned above that Spe-TL has improved performance on the scenes
containing an extensive range of planar ground objects (Indian Pines, Salinas), which is due
to the more distinct variation contained in the scenes and the more powerful discriminative
capacity of image-level features. However, on other two urban scenes of Pavia University
and Houston, Spe-TL does not gain a significant advantage with a varying sample size
compared with advanced CEGCN. However, it still achieves competitive results with the
highest accuracy. Simultaneously, as the number of training samples increases for these two
scenes, the two image-level methods of FreeNet and CEGCN experience a degeneration in
performance to different degrees, which indicates that the same increase in the number of
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bad samples limits the preferable fitting of the image-level network. However, for Spe-TL,
no such limitation exists. Therefore, Spe-TL can achieve a performance that is competitive
with the current state-of-the-art (SOTA) deep-learning-based methods regardless of how
the training sample size varies.

（c） （d）

（a） （b）

Figure 10. The variation line graph of the overall accuracy of different approaches with a different
number of training samples for four scenes. (a) Indian pines. (b) Salinas. (c) Pavia University.
(d) Houston 2013.

Pursuing a more rounded comparison, we further compare Spe-TL with the existing
HSI classification methods based on transfer learning, including 3D-LWNet [37], Two-
CNN-transfer [30], HT-CNN-Attention [38], and CSDTL-MSA [36]. Since these methods
are not open-source, we directly compare the results under certain experimental conditions
in the original literature, as shown in Table 6. Because these methods also utilize the
standard criterion of overall accuracy (OA) to indicate accuracy, we continue to use OA for
comparison. The results in parentheses (·) are for Spe-TL under a completely consistent
number of training samples on the target data. As we can observe, on multiple scenes and
sample sizes, Spe-TL has a significant advantage over previous methods based on transfer
learning, which demonstrates the superiority of our transfer learning strategy that transfers
knowledge on optical flow estimation into an image-level feature extraction task. It also
illustrates that our work is a novel and meaningful attempt.

Table 6. The overall accuracy of different approaches based on transfer learning on the diverse scenes
(%). The results in parentheses (·) are for the Spe-TL under the same number of training samples.

Methods Training Sample Number per Class Indian Pines Salinas Pavia University

3D-LWNet 50 94.18 (96.73 ) / 95.57 (96.85))
Two-CNN-transfer 50 / 91.83 (99.07) 85.40 (96.85)

HT-CNN-Attention 200 90.86 (99.36) 94.70 (99.73) 94.25 (99.30)
CSDTL-MSA 50 / / 94.70 (96.85)
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4.5. Analysis of Training and Inference Speed

For a meaningful comparison with Spe-TL, we select three representative methods
with advanced performance for efficiency analysis, as shown in Table 7. Image-level
methods FreeNet and CEGCN have a higher efficiency than the patch-level method of
SSTN when training and testing. Additionally, the running time of image-level methods is
not obviously extended with the expansion of training sample size, while the patch-level
methods are opposite. Compared with other methods, the pre-trained Spe-TL helps to
directly extract features of HSI so they can be classified without re-training, for which
the running time is proportional to the image size and number of bands. Then, Spe-TL
utilizes SVM for near-real-time efficient training and testing. Benefiting from this, a vote
strategy that requires executing multiple training runs and tests is implemented, so the
running time also increases (results in Table 7 are when k = 0 and k = 10). Even so,
Spe-TL still has an advantage in efficiency and operation speed. Furthermore, it achieves
near-real-time training and testing after extracting features as k further decreases. Therefore,
Spe-TL is capable of quickly adapting to a new target HSI scene, which is more practical
in application.

Table 7. The running time of different approaches on the different scenes.

SSTN FreeNet CEGCN Spe-TL (k = 0) Spe-TL (k = 10)

Indian Pines
Feature Extraction / / / 1.27 s 9.35 s

Training 461.19 s 47.34 s 8.96 s 0.34 s 3.48 s
Test 7.08 s 0.12 s 0.24 s 0.45 s 4.84 s

Salinas
Feature Extraction / / / 1.76 s 11.19 s

Training 1379.62 s 133.03 s 12.62 s 0.41 s 3.98 s
Test 24.82 s 0.28 s 1.08 s 0.69 s 5.38 s

Pavia University
Feature Extraction / / / 1.04 s 7.89 s

Training 851.48 s 144.88 s 40.15 s 0.29 s 2.45 s
Test 27.94 s 0.29 s 1.64 s 0.67 s 5.82 s

Houston
Feature Extraction / / / 4.59 s 38.09 s

Training 186.97 s 565.65 s 96.94 s 0.31 s 2.94 s
Test 65.96 s 0.34 s 13.82 s 1.12 s 7.40 s

4.6. Analysis of Image-Level Feature

In this subsection, we explore the characteristics of image-level features by utilizing
the visualization method. Firstly, the final presentation of the image-level feature is closely
related with the global variation contained in each band. Therefore, we produce five groups
of RGB images with an identical interval on all scenes, and each of them come from three
consecutive single-band images in HSI. Additionally, the corresponding global variation
information when extracting the feature is presented in optical flow diagrams, as shown in
Figure 11. As mentioned above, we look at the HSI as a sequence of images. Therefore, for
each of these images, the variation of the homogeneous region is similar while the variation
of the heterogeneous region is distinguishable. The optical flow diagrams utilize different
colors to represent the direction of spectral variation, i.e., similar colors denote the areas of
approximately consistent variation at the current band. Moreover, the brightness of color is
utilized to represent the degree of variation at an area with similar variation, i.e., the higher
brightness denotes the more prominent variation. Such variation information is utilized to
construct the final image-level feature that has greater discriminative power.

The dimension-reduced-based T-SNE visualization method can map high-dimensional
features to two-dimensional space, and can make features with a high similarity in a high-
dimensional feature space with adjacent distance in a two-dimensional space. To further
present the discriminative capacity of the image-level feature intuitively, we utilize the T-SNE
visualization method to process features before and after extraction on different scenes, as
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shown in Figure 12. For a certain scene, different colored dots represent different categories of
samples, and the distance between them in two-dimensional space can be approximately seen
as the feature-similarity between them in a high-dimensional space. Except for the Indian Pines
scene that only uses 600 samples per class because of the relatively small number of samples,
all scenes select 1000 samples per class for visualization. As we can observe, the heterogeneous
samples that overlap in the low-dimension space largely exist before feature extraction. This
illustrates the high-similarity of original features, which makes them difficult to distinguish.
Then, Spe-TL clearly enhances the distinguishable power of feature-by-feature extraction.
This is reflected in the fact that homogeneous samples become more concentrated, and the
distance between heterogeneous samples increases in low-dimensional space. Therefore, the
image-level feature is more suitable for identification and classification.

（a） （b）

Figure 11. Three consecutive single-band images on different scenes and the corresponding global
variation information. (a) RGB images. (b) Optical Flow Diagrams.

（a） （c） （d）（b）

Figure 12. The T-SNE visualization results for the features before (first row) and after (second row)
extracting on four scenes. (a) Indian pines. (b) Salinas. (c) Pavia University. (d) Houston 2013.

5. Conclusions

In this article, an image-level feature extraction method with transfer learning (Spe-TL)
was proposed for HSI classification.

Several defects that exist in current deep learning methods and the successful practice
of the image-level classification methods prompted us to attempt to research the special
image-level feature extraction method with the transfer learning strategy. For this purpose,
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we bridge the gap between the HSI and video data, to successfully transfer the source
network PWC-Net pre-trained on the video data to the hyperspectral feature extraction
target task.

Our well-designed experiments on four open-source benchmark HSI scenes led to
the following conclusions. (1) The proposed vote strategy best utilizes the classification
results of different variation scales to improve the ultimate accuracy. (2) Spe-TL is capable
of achieving a competitive classification performance compared with the current SOTA
methods under various training sample sizes, and it has improved performance for the
scenes containing an extensive range of planar ground objects such as the rural scenes. (3)
Spe-TL produces detailed full-domain classification maps that subtly reflect the authentic
distribution of ground objects. (4) After pre-training is completed, Spe-TL is capable of
quickly adapting to the new target HSI scene, which is more practical in application.
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