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Abstract: Microwave remote sensing is widely applied in flood monitoring due to its independence
from severe weather conditions, which usually restrict the usage of optical sensors. However, it is
challenging to track the variation process of flood events in a timely manner by traditional active and
passive microwave techniques, since they cannot simultaneously provide measurements with high
spatial and temporal resolution. The emerging Global Navigation Satellite System Reflectometry
(GNSS-R) technique with high spatio-temporal resolution offers a new solution to the dynamic
monitoring of flood inundation. Considering the high sensitivity of GNSS-R signals to flooding,
this paper proposes a dual-branch neural network (DBNN) with a convolution neural network
(CNN) and a back propagation (BP) neural network for flood monitoring. The CNN module is
used to automatically extract the abstract features from delay-Doppler maps (DDMs), while the
BP module is fed with GNSS-R typical features, such as surface reflectivity and power ratio, as
well as vegetation information from Soil Moisture Active Passive satellite (SMAP) data. In the
experiments, the superiority of the DBNN method is firstly demonstrated by comparing it with the
surface reflectivity and power ratio methods. Then, the spatio-temporal variation process of the 2020
South Asian flood events is analyzed by the proposed method based on Cyclone Global Navigation
Satellite System (CYGNSS) data. The understanding of flood change processes could help enhance
the capacity for resisting flood disasters.

Keywords: GNSS-R; CYGNSS; SMAP; flood monitoring

1. Introduction

The arrival of South Asia’s annual southwest monsoons usually brings continuous
heavy rainfall, leading to significant flood events and other natural disasters in parts
of India, Nepal, and Bangladesh. The particularly noticeable flood inundation event in
2020 was South Asia’s most significant flood disaster over the past decade, causing huge
property losses to local people [1–3]. Due to the highly dynamic nature of floods, rapid and
effective flood monitoring is important for early disaster prevention, midterm relief, and
post-disaster reconstruction [4].

The existing remote sensing means for flood monitoring mainly include optical and mi-
crowave remote sensing. However, optical remote sensing means cannot be used on rainy
and cloudy days due to the sensors’ inherent characteristics, although they are capable of
obtaining Earth surface observations with a satisfactory spatial resolution [4–7]. Conversely,
passive microwave sensors, such as radiometers, have the ability to penetrate clouds and
heavy fog owing to their long wavelength, which is requisite for flood monitoring as floods
often occur during the rainy season. Nevertheless, the low spatial resolution of even dozens
of kilometers limits the successful applications of passive microwave sensors for flood mon-
itoring. On the other hand, active microwave remote sensing normally has a higher spatial
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resolution than passive microwave remote sensing. However, it also has a relatively lower
temporal resolution and is still unable to conduct dynamic flood monitoring in a timely
manner [8]. The recently developed Global Navigation Satellite System Reflectometry
(GNSS-R) is a novel remote sensing technology for physical parameter inversion by means
of GNSS signals reflected from the Earth’s surface [9–11]. The Cyclone Global Navigation
Satellite System (CYGNSS), launched by NASA, provides openly accessed GNSS-R data,
which has been successfully employed in the inversion of sea surface wind speed [12–14],
soil moisture estimation [15–17], flood dynamics monitoring [7,18,19], and other features.
The CYGNSS constellation constitutes eight small satellites, on which the receivers are
mounted to capture the direct and reflected signals from the navigation satellites. The
average revisit period of CYGNSS is only 7 hours, and the spatial resolution is about
3.5 km × 0.5 km on the land surface. Compared with other microwave remote sensing
technologies, CYGNSS simultaneously provides observations with higher spatio-temporal
resolution, which can be more suitable for dynamic flood monitoring [18,20,21].

Research on GNSS-R flood monitoring first began in 2018. Chew produced a flood
inundation map using surface reflectivity (SR) on specular points [18]. Based on CYGNSS
data, Wei Wan and Wentao Yang also conducted flood monitoring by surface reflectivity
in 2019 and 2021, respectively [7,19]. Furthermore, Unnithan produced large-scale, high-
resolution flood inundation maps in 2020 by combining the feature of signal-to-noise ratio
in delay-Doppler maps (DDMs) with the topographic information [22]. Through further
research, Chew proposed a theoretical model for flood monitoring based on changes in
surface reflectivity in different land cover types in 2020. The research results showed
that surface reflectivity was mainly dependent on surface roughness. When flood events
occurred, the surface reflectivity in densely vegetated areas greatly varied, while that of
the relatively smooth surfaces changed little, both before and after the flood [20]. Later,
Al-Khaldi proposed the power ratio (PR) method in 2021 to detect water bodies using the
coherent properties of DDMs from CYGNSS, and found that over 90% of the land surface
reflections presented incoherent scattering, while about 80% of the coherent reflections
were related to water bodies [23].

Reviewing the current GNSS-R flood monitoring methods, it is found that most of
them are only based on a specific GNSS-R physical feature, such as SR, PR, or signal-to-noise
ratio. However, one single GNSS-R feature cannot simultaneously represent the dielectric
constant and roughness of the reflective surface. For example, SR is calculated from the
power of the specular point [7], so it mainly represents the dielectric property of the specular
point rather than the roughness property of the reflective surface, which is essential for the
flood inversion [24]. Furthermore, the impact of vegetation on GNSS (direct and reflected)
signals has not yet been considered in the available literature [24,25]. As the primary
observation data of GNSS-R, DDMs contain much useful detailed information, such as SR
and PR. Some scholars have utilized DDMs-based features for flood monitoring, such as PR
and signal-to-noise ratio. However, the valuable information in DDMs has not yet been fully
excavated. In recent years, deep learning (DL) has been widely employed to automatically
learn feature representations from data and establish the intrinsic relationship between
inputs and outputs [26]. Among a variety of DL algorithms, convolution neural network
(CNN) has surpassed most other DL algorithms in two-dimensional image processing
due to its local connectivity, weight sharing, and down-sampling strategies, which can
reduce the complexity of neural networks and successfully learn feature representations
of images [26]. Moreover, the back propagation (BP) neural networks have powerful
nonlinear mapping ability, which is especially suitable for solving the complicated internal
mapping problem between one-dimensional input vectors and outputs [27]. Therefore,
by combining a CNN and a BP neural network in parallel, a dual-branch neural network
(DBNN) is constructed for better flood monitoring. In the model, the CNN takes two-
dimensional DDMs as input and automatically extracts the deep abstract features in DDMs.
The BP neural network is fed with the existing typical GNSS-R features and the vegetation
information provided by the Soil Moisture Active Passive satellite (SMAP) [28].
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The rest of this paper is organized as follows. Section 2 provides the descriptions of
CYGNSS data, SMAP data, and the study area. Section 3 introduces the proposed method
in detail. The experimental results and discussion are given in Section 4. Finally, Section 5
concludes the study.

2. Data and Study Area
2.1. CYGNSS Data

The GNSS-R data in this study were produced from the CYGNSS constellation, a
bi-static radar system (shown in Figure 1). This constellation is capable of collecting the
near-global (between 38◦N and 38◦S latitudes) daily reflected L-1 coarse acquisition GPS
signals in the form of DDMs [29–32]. CYGNSS data have been widely employed in GNSS-R
scientific research and other practical applications [30]. The mean and median revisit periods
of the CYGNSS were 7 h and 3 h, respectively. The spatial resolution is related to surface
roughness, which is around 3.5 km × 0.5 km on the land surface and about 25 km × 25 km
on the rough sea surface [23]. Compared with conventional microwave remote sensing, the
CYGNSS has higher spatial and temporal resolution in observing the Earth’s surface, which
is conducive to in-depth scientific research by GNSS-R techniques [21,24,33].

The data employed in this study is the 3.0 version CYGNSS product at L1 level,
which primarily contains DDMs and a range of metadata describing the geometry and
instrument parameters in acquisition. CYGNSS data can be acquired in NetCDF format
from https://podaac.jpl.nasa.gov (accessed on 10 September 2021). The primary variables
utilized are summarized in Table 1; including DDMs, the transmitter/receiver distance to
the specular point, transmitter and receiver, antenna gain, etc.
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Figure 1. Schematic of the GNSS-R technique. GNSS satellites transmit signals to the Earth’s surface.
The signal is reflected by the Earth’s surface and captured by GNSS-R receivers onboard low Earth-
orbiting satellites. The specific locations of the specular points depend on the geometric positions of
the transmitting and receiving satellites.

Table 1. Main parameters of CYGNSS satellite data.

Parameters Units Comment

raw_counts watt DDM bin raw counts
gps_tx_power_db_w dBi GPS Space Vehicle transmit power

rx_to_sp_range m Receiver to specular point range
tx_to_sp_range m Transmitter to specular point range

gps_ant_gain_db_i dBi GPS Space Vehicle transmit antenna gain
sp_rx_gain dBi Specular point receiver antenna gain

sp_lat degree Specular point latitude
sp_lon degree Specular point longitude

sp_inc_angle degree Specular point incident Angle

https://podaac.jpl.nasa.gov
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2.2. SMAP Data

The SMAP mission, launched by NASA in January 2015, has been designed to collect
L-band signals which are sensitive to land surface soil moisture (~5 cm of depth). The
SMAP satellite is equipped with active radar and passive radiometer sensors. However,
the radar failed to work in orbit after two months. Hence, the satellite currently relies only
on the L-band radiometer to retrieve land surface information, such as soil moisture and
vegetation information, by measuring brightness temperature. Since the signals received by
SMAP satellite and GNSS signals are both L-band with similar frequencies and sensitivity to
the land surface, SMAP data can be employed for comparison analysis with CYGNSS data.
The SMAP satellite observes land area between 85◦S and 85◦N, with a revisit frequency of
2–3 days [28].

The data product utilized in this study is the SMAP Enhanced L3 Radiometer Global
Daily 9 km EASE-Grid Soil Moisture, available at https://nsidc.org/data/SPL3SMP_E/
versions/4 (accessed on 16 October 2021) [34–36]. The enhanced SMAP product is an
interpolated and gridded result of SMAP Radiometer measurements, which are posted to
the 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). The primary data
are summarized in Table 2. It is worth noting that two datasets from SMAP, soil moisture
and vegetation opacity, were employed in this study. Soil moisture is used to verify the
accuracy of the inversion results, while vegetation opacity information is fed as auxiliary
input data to the model for flood inversion.

Table 2. Main parameters of SMAP mission data.

Parameters Units Comment

latitude degrees_north Latitude of the center of the Earth based
grid cell.

longitude degrees_east Longitude of the center of the Earth based
grid cell.

soil_moisture cm3/cm3 Representative soil moisture measurement
for the Earth based grid cell.

surface_temperature Kelvins Temperature at land surface based on GMAO
GEOS-5 data

vegetation_opacity unitless The measured opacity of the vegetation used
in retrievals in the grid cell.

roughness_coefficient unitless
A unitless value that is indicative of bare soil
roughness used in retrievals within the 9 km

grid cell.

2.3. Study Area

South Asia is an ideal area for flood inversion research using GNSS-R technology,
due to its frequent large-scale flooding inundation. As shown in Figure 2, the subgraph
(a) displays the coverage area of one CYGNSS satellite in a day, and the subgraph (b)
represents the intercepted area of South Asia ranging from 4◦N–28◦N and 66◦E–96◦E. The
northern part of the region is the Himalayan mountains, with an average elevation of
more than 6000 meters; the central part is the Great Plain, with dense river networks and
numerous irrigation canals; and the southern part is the Deccan Plateau. The total land area
of the study area is approximately 3.24 million square kilometers. In addition, the region is
situated in a tropical monsoon climate, with the hot season usually from March to May, the
rainy season usually from June to October, and the cool season usually from November
to the following February. During the rainy season, the southwest monsoons carry large
amounts of water vapor as they pass over the warm ocean, leading to extremely abundant
rainfall in South Asia. In 2020, the rainy season in South Asia lasted from June to September,
causing the region to experience the most severe flooding of the past decade. Therefore,
CYGNSS data ranging from May to October 2020 are selected to conduct the flood inversion,
as well as the spatio-temporal dynamic analysis by the proposed DBNN model.

https://nsidc.org/data/SPL3SMP_E/versions/4
https://nsidc.org/data/SPL3SMP_E/versions/4
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Figure 2. (a) The coverage area of one CYGNSS satellite in a day. (b) The study area in South Asia.

3. Method

In this study, a DBNN model for flood monitoring is proposed, which is mainly
composed of two parallel subnetworks: the CNN and BP neural network. In this model,
two-dimensional DDMs are input into the CNN, which automatically extracts the abstract
features from images, while the BP neural network is fed with seven typical GNSS-R
features, including surface reflectivity [18], power ratio [23], and the leading edge of
slope [37], etc., as well as vegetation information from SMAP data [28]. The output results
of the model are the probability values that DDMs belong to the submerged region. The
proposed method consists of three steps, as follows: (1) data pre-processing and features
extraction; (2) construction and training of DBNN model; and (3) prediction of DBNN
model. The process of this method is shown in Figure 3.
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3.1. Data Pre-Processing and Features Extraction

In order to obtain good inversion results, only CYGNSS data meeting the following
conditions are employed in this study:

(1) If the SNR of DDM is too small, there are fewer signals and more noise in the DDM.
Therefore, the DDMs are filtered out with SNR less than 1.5 dB.

(2) The left-handed circular polarization signals received by CYGNSS decrease with
the increase of the incident angle. When the incident angle is larger than 65◦, the
proportion of the left-handed circular polarization signals rapidly decreases; thus,
DDMs with the incident angle larger than 65◦ are filtered out in this study [7,38].

(3) In this study, only DDMs with transmitter and receiver antenna gain greater than 0
are selected according to the references [25,38].

(4) The positions of the peak points move toward the edge of DDMs with altitude, and
the DTU10 digital elevation model used by CYGNSS does not sufficiently consider
the effect of land topography, which results in significant errors in the estimation of
positions of specular points with elevations greater than 600 m [23]. Thus, in this
study, only DDMs with peak points occurring in delay bins inside of 7–10 pixels are
retained [38].

The power values of some pixels in DDMs, which cannot be mapped to the real Earth’s
surface, are mainly generated by thermal noise (as shown in the white area in Figure 4).
Fortunately, the thermal noise pixels in DDMs can be eliminated by using the method
provided by Al-Khaldi [23] after screening CYGNSS data. The DDMs before and after
removing the thermal noise pixels are displayed in Figure 5.

The dielectric constant and roughness of the land surface obviously vary when floods
occur, so they can be regarded as very useful physical parameters for judging whether
floods have occurred or not. Therefore, seven features related to the above two parameters
are extracted from DDMs in this study as the inputs of the BP neural network, which
include surface reflectivity [18], power ratio [32], leading edge of slope [37], trailing edge
of slope [25], peak point power, DDM average [39], and signal-to-noise ratio [12] (as shown
in Table 3).
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Figure 4. Mapping relationship between the spatial coordinate system and delay-Doppler coordinate
system. The subfigure on the left depicts the spatial coordinate system. The ellipse and the curve
represent a delay isoline and a Doppler shift isoline, respectively. The subfigure on the right represents
the delay-Doppler coordinate system, where the blue and yellow delay Doppler pixels in DDMs
correspond to one and two spatial points in the left subfigure, respectively, while white pixels
represent the thermal noise pixels without corresponding spatial point. SP: the specular point.
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noise pixels.

Table 3. Features extracted from DDMs.

Number Features Symbol Features Name

1 DDMA DDM average
2 TES Tail edge of slope
3 LES Leading edge of slope
4 SR Surface reflectivity
5 PR Power ratio
6 SNR Signal to noise ratio
7 Peak DDM peak value

3.2. Construction and Training of DBNN Model
3.2.1. Construction of DBNN Model

The DBNN model consists of two parallel sub-networks, the CNN module and the
BP neural network module, which are followed by a concatenate layer, a full connection
layer, and an output layer, as illustrated in Figure 6b. In this model, the CNN module
consists of two convolutional layers, made up of 16 and 32 the 3 × 3 convolution kernels,
respectively, and two pooling layers. Each convolution kernel can be regarded as a feature
extractor, which convolves with the input DDMs to generate feature maps. Taking the
operation of the kth convolution kernel in the first convolution layer as an example, the
input DDM is processed by the convolution kernel to generate the feature map h(1)k , which
can be expressed as follows:

h(1)k = f
((

W(1)
k ∗ X

)
+ b(1)k

)
(1)

where X is the input DDM, W(1)
k and b(1)k are the weight and bias of the kth convolution

kernel respectively, ∗ represents the convolution operation, and f denotes the activation
function; this study adopts the widely used ReLU function with the following equation:

f (z) = max(0, z) (2)

The max pooling layers with size 2 × 2 and stride 2 are applied in the CNN module to
downsample the feature maps from the convolution layers, so as to reduce the redundant
information and retain critical features.

In the DBNN model, the BP module consists of two fully connected layers equipped
with 16 and 32 neurons, respectively. Each neuron in the module conducts the weighted
summation operation on the inputs, which is subsequently processed by the ReLU acti-
vation function to create an output feature. As an example, consider the operation of the
ith neuron in the first fully connected layer, its output feature y(1)i can be expressed by the
following equation:
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y(1)i = f
(
∑
(

xj × w(1)
ij

)
+ b(1)i

)
(3)

where xj is the jth input feature of the neuron, w(1)
ij and b(1)i are the weight and bias of this

neuron, respectively. f (·) denotes the ReLU activation function.
The features output from the CNN module and the BP module are then transferred into

the concatenation layer. After being further nonlinearly processed by the full connection
layer with 64 neurons, these concatenated features are finally delivered to the output layer.
The output layer contains two neurons with the softmax activation function [40–42] and
outputs probabilities pi of the input DDM corresponding to the submerged region and the
unsubmerged region, respectively. The probabilities pi can be expressed as follows:

pi =
exp(vi)

∑k
j=1 exp

(
vj
) where i = 1, 2 (4)

where k is the number of neurons in the output layer, set to 2; and v1, v2 are the input
values of the softmax function. It should be noted that the softmax function in the neural
networks outputs a set of probability values belonging to each classification category, and
the summation of all probability values equals 1, where the category corresponding to the
largest probability value is the attribution category of the sample. As a binary classification
model, the proposed DBNN model only outputs two probability values. Therefore, if there
is a probability value greater than 0.5, the corresponding category will be identified as the
classification category. Since there are only two probability values output from the DBNN
model and their summation is 1, the probability value belonging to the flooded region can
be selected as the prediction result of the model. Therefore, samples with probability values
greater than 0.5 are regarded as submerged.
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Figure 6. (a) Flooding monitoring process of DBNN method; (b) DBNN model structure. FC: full
connection layer.
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3.2.2. Training of DBNN Model

The dataset in this study is obtained by spatio-temporal matching of CYGNSS data and
SMAP data ranging from May to September 2020, where CYGNSS data provide DDMs and
seven features, as shown in Table 3, and SMAP data offer vegetation information and the
target label derived from the classification results of inundated versus non-inundated areas
classified by SMAP soil moisture [43]. In this study, 50,000 samples were randomly selected
from the dataset as the sample set of the DBNN model, and the sample set was divided
into training, validation, and testing subsets at a rate of 80%, 15%, and 5%, respectively [15].
These subsets are designed to provide sufficient data to train the network, evaluate its
performance, and tune the hyper-parameters. In addition, all the remaining samples in the
dataset are predicted by the DBNN model for the inversion of flood monitoring.

The information forward propagation and the error back-propagation algorithms
are adopted for the training of the DBNN model. During the forward propagation, the
parameters of the neural network are constant, while in the backward propagation, the
parameters are automatically updated to minimize the loss function using the Adam
optimizer. The loss function of the model is given in Equation (6):

L =
1
M

M

∑
m=1

K

∑
k=1

yk
m × log(hθ(xm, k)) (5)

where M is the number of training samples in each round; K is the number of classes, set
to 2 in this study; yk

m is the target label, which is derived from the classification results of
inundated versus non-inundated areas classified by SMAP soil moisture [43], for training
example m for class k; x is the input for training example m; hθ is the neural network model
with weights θ. In each round of training, the weights θ of the DBNN model are updated
according to the following formula:

g = ∇θ L
m = β1m + (1− β1)g
s = β2s + (1− β2)g2

m̂ = m
1−βt

1
ŝ = s

1−βt
2

θ = θ − ηm̂/
√

ŝ + ε

(6)

where ∇θ and g denote the gradient operation and the gradient value of the loss function L
on the parameter θ; η is the learning step, defaulted to 0.001; m and s denote the first- and
second-order moment variables (initialized to be 0), respectively; β1 and β2 represent the
exponential decay coefficients of m and s; ε is a small constant, set to 10−6; t is the number
of iterations, which is set to 300 in this experiment.

Specifically, the training process of the proposed DBNN model can be described as
follows:

(1) Initialize the parameters of the neural network, and input the training data into the
neural network.

(2) Proceed forward propagation and compute the loss function using Formula (6).
(3) Update the parameters in the neural network by means of the back propagation and

Adam optimizer.
(4) Complete the training when the variation of the loss function values is less than

0.001 among ten consecutive epochs, or the training times reach the preset number of
iterations.
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3.3. Prediction of DBNN Model

The trained DBNN model can be applied as a classifier for flood monitoring. The flow
of flood monitoring is presented in Figure 6a: (1) CYGNSS data are input into the DBNN
model to obtain the probability values that the CYGNSS data belong to the submerged
area. Specifically, probability values greater than 0.5 are regarded as the submerged areas,
while those less than 0.5 are considered as the non-submerged areas. (2) Afterwards, the
geolocation of each DDM is realized by using the longitude and latitude of its specular
point, and the scatter maps of the predicted results are drawn by combining the prediction
results with the location of DDMs. (3) Finally, the scatter maps of the prediction results are
gridded into 9 km × 9 km images.

4. Results and Discussion

Flood monitoring is conducive to understanding the dynamic process of flood occur-
rence and development, which further helps with disaster prevention, relief, and post-
disaster reconstruction. In this study, the experimental district was drawn from South Asia,
since it had experienced severe flood incidents in the past decade, and especially in 2020.
The effectiveness of the DBNN method was first validated by comparing it with the con-
ventional SR and PR methods, and then the spatio-temporal dynamic process of the flood
inundation during the 2020 rainy season was investigated using the proposed method.

4.1. Effectiveness Validation

In this study, the proposed DBNN model is compared with conventional SR and PR
methods, which are frequently employed for flood monitoring. The SR can be calculated
following the equations in the literature [20]. Most studies on flood monitoring by SR
methods use simple threshold judgments [18,19], where the average value of the surface
reflectivity of permanent water bodies throughout the study area is used as the classification
threshold [18–20]. In this study, 15 dB is used as the threshold of the SR method to delineate
the flood inundation areas. In addition, the PR is computable according to the literature [23]
and uses the constant value of 2 as the threshold to distinguish between flood or land. In
this study, the CYGNSS data ranging from 1 to 15 October 2020 are used as an example
to investigate the inundation extent of the study area. In Figure 7, the inversion and
classification results are presented for the flood monitoring in the study area, where the
inversion results refer to the continuous values output by the methods, such as the surface
reflectivity output of the SR method, and the classification results refer to the extent of
flooding and land divided by the thresholds in various methods. In this study, the reference
for judging the flood inundation range is obtained by the SMAP soil moisture threshold
method due to the lack of measured data of the surface flood extent. Areas with soil
moisture greater than 0.4 cm3/cm3 are classified as the inundated areas, and areas less than
0.4 cm3/cm3 are regarded as non-inundated areas [43]. Figure 7a shows the continuous
spatial distribution of soil moisture, and Figure 7b shows flood inundation extent extracted
by the soil moisture threshold method.

In this study, type I error, type II error, and overall accuracy are used to evaluate the
classification results, which can be calculated as follows:

E1 = a
a+b+c

E2 = b
a+b+c

C = c
a+b+c

(7)

where E1 and E2 denote the type I error and type II error, respectively. C represents the
overall accuracy, a indicates the number of samples that misclassify water bodies as land,
b is the number of samples that misclassify land as water bodies, and c is the number of
correctly classified samples.
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Figure 7. The inversion and classification results for the flood monitoring in the study area. (a) Soil
moisture values provided by SMAP mission and (b) flood inundation extent classified by threshold
method, respectively. The inversion results of (c) DBNN method, (e) PR method, and (g) SR method.
The classification result of (d) DBNN method, (f) PR method, and (h) SR method.

According to flood inundation extent delineated by the SMAP soil moisture threshold
method, the overall accuracy, type I error, and type II error of the classification result
of SR, PR, and DBNN methods are shown in Figure 8 and Table 4, where the DBNN
method has the highest inversion accuracy of 85.4%, and the SR and PR methods have
inversion accuracies of 80.17% and 81.34%, respectively. In addition, the DBNN method is
additionally superior to SR and PR methods in terms of both type I error and type II error,
which can be mainly attributed to the following aspects. Firstly, the DBNN model can fully
exploit the underlying abstract features from DDMs, while combining the representative
features as inputs of the model, which greatly enhances the utilization of GNSS-R data.
Secondly, the DBNN model considers the influence of the vegetation factor on GNSS direct
signals and reflected signals. However, it is worth noting that the DBNN model is fed with
vegetation information from SMAP, whereas the previous SR and PR methods operate
based on the CYGNSS data only.

Table 4. Classification error and accuracy of PR and DBNN.

Type I Error (%) Type II Error (%) Accuracy (%)

SR 10.76 9.07 80.17
PR 9.25 9.41 81.34

DBNN 7.29 7.17 85.54
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Figure 8. (a) The difference image between SR classification result and SMAP classification result.
(b) The difference image between PR classification result and SMAP classification result. (c) The
difference image between DBNN classification result and SMAP classification result.

4.2. Spatio-Temporal Analysis of Flood Inundation

In order to provide support for disaster-resistant activities in the study area, it is crucial
to understand the development process of flood events. Therefore, the particularly severe
flood incident occurring from May to September 2020 is selected as a flood monitoring case,
and the experimental results retrieved by the DBNN model on CYGNSS data are shown in
Figures 9 and 10. Before the onset of the 2020 rainy season in the study area, the regions
occupied by water bodies are mainly distributed in coastal areas such as Bangladesh,
covering about 6.6% of the total land area. From 20 May 2020, the areas inundated by
floods gradually expanded to Nepal and the northeast of India with the arrival of frequent
rains. The flooded areas accounted for about 17.9% of the total area on 20 June 2020, and
reached 28.7% by 20 July 2020. On 20 August 2020, the areas flooded reached their largest,
covering around 34.8% of the total area. After 20 August 2020, the flooded areas gradually
reduced because of the decrease in rainfalls. Observing the process of flood changes, we
could find the increased area, which refers to the difference between the maximum flood
area detected during the rainy season and the area of water bodies before the rainy season,
accounting for 28.2% of the total study area, mainly in Nepal and the northeastern states of
India. In particular, the proportion of the increased flood area in some states is calculated
and summarized in Table 5, where Bihar State experienced the most severe flooding event
with an increased area accounting for 89.92% of the total area, while Magway State had the
smallest increased area, only covering about 5.50%.

Table 5. The proportion of the increased flood area to the state area.

State Proportion (%) State Proportion (%)

West Bengal 39.83 Bihar 89.92
Assam 16.35 Narayani Zone 37.33

Rakhine State 18.65 Lumbini Zone 41.79
Chattogram 15.88 Uttar Pradesh 76.12
Karnali Zone 25.92 Odisha 51.70

Seti Zone 66.67 Ayeyarwady 45.12
Janakpur Zone 31.84 Yangon 67.20

Sagarmatha Zone 28.44 Bago 39.74
Bhojpur 24.65 Jharkhand 65.25

Mechi Zone 17.12 Madhya Pradesh 17.42
Sagaing 12.26 Chhattisgarh 53.82
Rangpur 19.57 Magway 5.50



Remote Sens. 2022, 14, 5129 13 of 16Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 9. The spatial distribution of the study area flood inundation retrieved by DBNN model on 

CYGNSS. The period spans from May to September 2020. 

 

Figure 10. The temporal variation process of the flooded area, spanning from May to September 

2020. “CYGNSS-DBNN” indicates flood inundation area retrieved by DBNN method based on 

CYGNSS data, while “SMAP-Threshold” denotes flood inundation area classified by threshold 

method based on SMAP data. 

LandFlood Ocean

May 10 May 20 May 30

Jun 10 Jun 20 Jun 30

Jul 10 Jul 20 Jul 30

Aug 10 Aug 20 Aug 30

Sep 10 Sep 20 Sep 30

CYGNSS-DBNN

SMAP-Threshold
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Through further observation of Figures 9 and 10, it can be found that the flooded areas
are mostly located in Bangladesh, Nepal, and northeast of India, which is mainly caused by
three factors; i.e., the large quantities of water vapor carried by the southwest monsoons, as
well as the influence of topography and water systems. In terms of topography, the region
is located at the southern foothills of the Himalayas and on the windward slope of the
southwest monsoons. When the southwest monsoon is blocked by the northern mountains,
it is forced to lift up and form topographic rain, leading to high rainfall in the study area. In
terms of the water system, rainwater from the northern foothills is usually collected in the
northeast of the study area, due to the low topography and dense river networks, making
the region more vulnerable to the threat of flooding.

4.3. Discussion

Compared to SMAP data, the regions with more errors in the inversion results of
CYGNSS data are mainly located in high altitude and inland permanent water regions, such
as the Western Ghats and the Malwa plateau. The reason for such errors is that CYGNSS
uses the DTU10 digital elevation model to calibrate the locations of specular points [23],
which does not sufficiently consider the effect of land topography, resulting in high errors
in the estimated positions of specular points with altitudes greater than 600 m on land. In
addition, the difference in spatial resolution between CYGNSS data and SMAP data can
also increase errors in the inversion results. For example, a small area of water may be
identified by CYGNSS data, but not by SMAP data with a lower spatial resolution, which
will increase the errors in inversion results.

Although the DBNN method could achieve a relatively higher inversion accuracy in
flood monitoring, its accuracy would decrease in some special areas, such as flat areas. The
DBNN method may misclassify the flat areas as water bodies because both of them have less
surface roughness, thus producing similar coherent DDMs. In future research, inversion
accuracy in flat areas is expected to be improved by extracting new physical features. In
addition, considering that the DBNN method needs to learn an abundance of parameters
and takes a large amount of computation to construct the optimal neural network model
compared with the traditional methods, more lightweight models for flood monitoring
should be anticipated to highly improve their operational efficiency in the future.

5. Conclusions

This study proposes a DBNN model for GNSS-R flood monitoring, which is mainly
composed of a CNN module and a BP neural network module. The former is adopted to
extract the underlying abstract features from DDMs, while the latter takes typical GNSS-R
physical features and vegetation information as input. This kind of dual-branch neural
network scheme can adequately combine GNSS-R physical features with the abstract
features mined by CNN, which helps the DBNN model better utilize GNSS-R data for flood
inversion and dynamic monitoring of inundation. Taking the study area in South Asia
as an example, the effectiveness of the DBNN method was verified by comparison with
the SR and PR methods. Then, the 2020 flood inundation in the study area was retrieved
by the DBNN method, and it was found that DBNN had significant flood monitoring
capabilities and could track the evolution process of floods over time. This study indicates
that although CYGNSS is designed to observe ocean surface wind speed during hurricanes,
it also possesses a promising future in flood monitoring applications.
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