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Abstract: Rapid and accurate mapping of soil organic carbon (SOC) is of great significance to
understanding the spatial patterns of soil fertility and conducting soil carbon cycle research. Previous
studies have dedicated considerable efforts to the spatial prediction of SOC content, but few have
systematically quantified the effects of environmental covariates selection, the spatial scales and
the model types on SOC prediction accuracy. Here, we spatially predicted SOC content through
digital soil mapping (DSM) based on 186 topsoil (0–20 cm) samples in a typical hilly red soil region of
southern China. Specifically, we first determined an optimal covariate set from different combinations
of multiple environmental variables, including multi-sensor remote sensing images (Sentinel-1 and
Sentinel-2), climate variables and DEM derivatives. Furthermore, we evaluated the impacts of spatial
resolution (10 m, 30 m, 90 m, 250 m and 1000 m) of covariates and the model types (three linear and
three non-linear machine learning techniques) on the SOC prediction. The results of the performance
analysis showed that a combination of Sentinel-1/2-derived variables, climate and topographic
predictors generated the best predictive performance. Among all variables, remote sensing covariates,
especially Sentinel-2-derived predictors, were identified as the most important explanatory variables
controlling the variability of SOC content. Moreover, the prediction accuracy declined significantly
with the increased spatial scales and achieved the highest using the XGBoost model at 10 m resolution.
Notably, non-linear machine learners yielded superior predictive capability in contrast with linear
models in predicting SOC. Overall, our findings revealed that the optimal combination of predictor
variables, spatial resolution and modeling techniques could considerably improve the prediction
accuracy of the SOC content. Particularly, freely accessible Sentinel series satellites showed great
potential in high-resolution digital mapping of soil properties.

Keywords: soil organic carbon; digital soil mapping; Sentinel; covariates selection; model comparison;
resolution

1. Introduction

Soil organic carbon (SOC) is the largest carbon reservoir in the terrestrial ecosystem [1],
which plays a vital role in monitoring the active C-exchange in the global carbon cycle [2,3].
Furthermore, SOC is a key indicator of soil fertility for vegetation and crop growth [4].
Consequently, the precise knowledge concerning the contents and spatial distribution of
SOC contents in cropland soils is of great significance to, e.g., soil quality, ecological balance
and food security in agricultural ecosystems [5,6].

Traditionally, soil information is obtained based on field soil sampling and laboratory
chemical analysis, which is costly and time-consuming, especially at global, national or
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regional scales [7,8]. With the rapid advancement in remote sensing technology during the
recent decades, the use of satellite imagery in digital soil mapping (DSM) has provided the
feasibility to spatially extend point soil observations to a larger scale prediction [6,9,10]. On
the basis that soil molecules can absorb or reflect light at certain spectral bands, the relation-
ships between SOC content and spectral reflectance ranging from the visible to shortwave-
infrared have been widely delineated [11]. In contrast to optical sensors, synthetic aperture
radar (SAR) offers unique capabilities that have the advantages of all-weather and all-day
data acquisition and can provide enriched scattering information of ground objects [12].
However, the potential of radar remote sensing data in improving knowledge of regional
SOC mapping has not been fully explored, especially in southern China, where optical
images are frequently contaminated by cloud cover and suffer from unavailability due to
rainy weather [13,14].

Apart from the application of multi-source remote sensing data in DSM, many efforts
have been made in sifting and developing effective environmental covariates according to
the targeted soil properties and landscapes [15,16]. Generally, in pedology, soil–landscape
is characterized by soil-forming factors of parent material, climate, biology, topography
and time [17,18] and has high spatial variability [19]. Scholars concentrated on how these
soil-forming factors affected soil properties, especially SOC. For example, Wang et al. [20]
proposed that climate factors are highly related to soil moisture and have a profound
effect on the decomposition and accumulation of SOC by affecting plant growth and net
primary productivity. Likewise, Martin et al. [21] considered that topographic factors
determine the vertical distribution of water heat and influence the decomposition and
transformation of SOC. Overall, it is critical to identify key environmental variables affecting
SOC distribution, which are involved as model inputs for SOC prediction, but how to
discern the optimal combination of environmental covariates to improve the modeling
accuracy remains largely unclear.

Moreover, a large number of case studies demonstrated the importance of multi-scale
landscape characteristics and remote sensing sensors for predicting soil variations [22–26].
For example, Behrens et al. [17] and Miller et al. [27] observed that mapping in soil–
landscape modeling using multiple spatial scales of predictors improved prediction ac-
curacies, with RMSE decreasing from 16.1% to 11.2% and adjusted R2 increasing from
negligible to 70%, respectively. Previous studies reasonably assumed that covariates such
as terrain attributes and remote sensing sensors derived at finer spatial resolutions would
perform better in SOC mapping, but several studies have shown the contrary [28–30]. For
instance, Zhou et al. [28] combined Landsat-8, Sentinel-2 and Sentinel-3 with different
spatial resolutions to map the national distribution of SOC content in Switzerland. The
result revealed that the best predictions for SOC content were achieved by all available
predictors at a resolution of 100 m rather than 20 m. Until now, there is still no consensus
on which resolution of the variables has the best prediction accuracy. Whether finer-scale
predictors will lead to superior predictive capability in soil properties mapping still needs
to be addressed.

In addition, numerous techniques, including statistical, geostatistical, hybrid and
machine learning, were widely applied in SOC prediction based on the DSM [18]. The
research of Owusu et al. [31] showed that stepwise multiple linear regression (SMLR) could
be used to depict the relationships between SOC contents and a set of covariates. Many
similar studies also used various linear modeling approaches, such as partial least squares
regression (PLSR) [32,33] and multiple linear regression (MLR) [34] in SOC prediction.
Moreover, taking into account the superior capabilities of machine learning in modeling
the non-linear relationship between soil and environmental factors, many scholars have
applied machine learning algorithms, e.g., random forest [35], support vector machine [36],
neural network [37], boosted regression tree [38], XGBoost [39] and Cubist [40] to model and
map SOC contents. Overall, the quantitative comparison of the linear statistical methods
and various emerging non-linear machine learning algorithms to spatially predict SOC
distribution is scarce and needs to be further evaluated.
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The red soil hilly region in southern China covers an area of 102 million ha and is
primarily distributed in the tropical and subtropical areas of China [41]. This region is
one of the most important agricultural production areas in China. Red soils are usually
characterized by acidification, nutrient-deficient and low organic matter [42]. For decades,
in addition to the fragile environmental conditions, irrational human exploitation has led
to severe soil erosion, strong soil acidity, fertility degradation and soil contamination in the
region [43]. Hence, more attention should be paid to soil properties prediction and mapping
in this region, which can lay a scientific basis for reasonable agricultural management.

Therefore, this study aimed to investigate the spatial distribution of SOC content in a
red soil hilly region of southern China through DSM by linear and non-linear modeling
techniques. In the process, the effects of environmental covariates selection, spatial scale
and model types on the SOC prediction accuracy were systematically assessed. The specific
objectives of this study were to (1) identify the optimal combination of environmental
covariates from a set of predictor variables, including multi-temporal Sentinel-1 SAR
variables, Sentinel-2 multispectral variables, climate variables and terrain attributes; (2)
investigate the variations in prediction accuracy with the changing spatial resolution (10 m,
30 m, 90 m, 250 m and 1000 m) of covariates and determine the optimal prediction scale; (3)
compare the predictive performances among three linear statistical models (MLR, PLSR
and SMLR) and three widely used machine-learners (RF, BRT and XGBoost); and finally,
apply the best model using the optimal covariates set at the optimal spatial resolution to
derive the spatial distribution of SOC content in the study area.

2. Materials and Methods
2.1. Study Area

Taihe County is located in south-central Jiangxi Province, southern China, and covers
an area of 2667 km2. The altitude ranges from 9 m to 1129 m, with an average of 174 m
(Figure 1). As a typical subtropical red soil hilly area, the elevation is higher in the southeast
and western regions, while the central region with low altitude belongs to the hinterland
of the Jitai Basin. It is located in a typical subtropical monsoon climate, with an annual
average temperature of 18.6 ◦C and annual precipitation of 1726 mm. Croplands are mainly
distributed in the central basin and cover an area of approximately 740 km2, accounting
for 28% of the total area. Red soil, belonging to Ferralsols, is the dominant type of soil
distributed widely in the region.

2.2. Soil Samples Collection and Processing

A total of 186 topsoil (0–20 cm) samples in croplands were collected by random sam-
pling in December 2020. At each sampling point, five sub-samples were mixed into a
representative composite sample. The location information was recorded by a portable GPS.
After mixing and packaging, all the samples were sent to the laboratory for further pro-
cessing. The plant residues and stones were first removed from soil samples and air-dried
in the laboratory for half a month. Then, the dried samples were ground, homogenized
and sieved through a 2 mm sieve. SOC content was analyzed by dry combustion in an
elemental analyzer (Vario EL III, Elementar, Langenselbold, Germany).

2.3. Environmental Variables

Based on soil forming factors of soil–landscape (e.g., climate, biology, topography), we
collected four types of available environmental variables, including Sentinel-1 SAR remote
sensing variables, Sentinel-2 multispectral remote sensing variables, terrain attributes and
climate variables (Table 1). These environmental covariates were unified to the WGS84
UTM Zone 50N projection.
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Figure 1. Study area: (a) location of the study area in China; (b) elevation distribution; (c) spatial
distribution of cropland soil samples for model training and validation.

Table 1. Environmental variables used in this study.

Category Variables Description Source Resolution

SAR images

Multi-temporal
backscattering
coefficient predictors
under VV/VH
polarization

Processed from Sentinel-1
Level-1 Ground Range Detected
(GRD) product
(COPERNICUS/S1_GRD)

Google Earth Engine (GEE)
platform (https://
earthengine.google.com/,
accessed on 14 March 2022)

10 m

Optical
images

Surface reflectance
predictors and
vegetation indices (VIs)

Processed from Sentinel-2
Level-2A surface reflectance (SR)
product (COPERNICUS/S2_SR)

GEE platform (https://
earthengine.google.com/,
accessed on 9 March 2022)

B2–B4, B8, VIs: 10 m
B5–B7, B8A, B11, B12:
20 m

Terrain
variables

Terrain attributes
predictors

ASTER GDEM product and
DEM derivatives processed with
SAGA GIS

Geospatial Data Cloud
website (GDC) (https:
//www.gscloud.cn/,
accessed on 12 March 2022)

30 m

Climate
variables Bioclimatic predictors WorldClim version 2.1

bioclimatic data

WorldClim (https:
//www.worldclim.org,
accessed on 10 March 2022)

1 km

In this study, we first extracted the attribute values corresponding to each soil sample
for all environmental variables under their original spatial resolutions, which were used
as inputs for SOC modeling. In order to explore and compare the influence of the single
or joint combination of environmental variables on the variation in SOC, the four types of
environmental variables were regrouped into seven covariate sets (Table 2).

The optimal combination of environmental covariates was determined through the
comparison of modeling performance. Subsequently, to further explore the influence of
spatial resolutions on SOC prediction, all environmental variables filtered by the above
process were converted into raster layers with spatial resolutions of 10 m, 30 m, 90 m, 250 m
and 1000 m using the nearest neighbor resampling algorithm [44], during which the most

https://earthengine.google.com/
https://earthengine.google.com/
https://earthengine.google.com/
https://earthengine.google.com/
https://www.gscloud.cn/
https://www.gscloud.cn/
https://www.worldclim.org
https://www.worldclim.org
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suitable spatial scale for modeling was determined based on accuracy metrics. The basic
description and source information of all variables were shown as follows:

Table 2. Different combinations of environmental covariates used as model inputs for SOC prediction.

No. Covariate Set Predictor Variables

1 Set I Sentinel-1 SAR images
2 Set II Sentinel-2 multispectral images
3 Set III Sentinel-1 and Sentinel-2 predictors
4 Set IV Terrain attributes and climate variables
5 Set V Sentinel-1 predictors, terrain and climate variables
6 Set VI Sentinel-2 predictors, terrain and climate variables
7 Set VII Sentinel-1/2-derived predictors, terrain and climate variables

2.3.1. SAR Remote Sensing Variables

Synthetic aperture radar (SAR) images were obtained from the C-band Sentinel-1 Level-
1 Ground Range Detected (GRD) product (COPERNICUS/S1_GRD) on the Google Earth
Engine (GEE) platform (https://earthengine.google.com/, accessed on 14 March 2022).
The mode of this product is interferometric wide swath (IW), and the spatial resolution is
10 m. Thermal noise removal, radiometric calibration and terrain correction using SRTM 30
DEM were applied to preprocess the original images. The final terrain-corrected values
of SAR data were converted to a decibels (dB) scale backscatter coefficient via log scaling
(10 × log10(x)). The backscatter coefficient value under VV (vertical-vertical) and VH
(vertical-horizontal) polarization of multi-temporal Sentinel-1 images were considered as
the SAR variables in this study (Table 3).

Table 3. The basic information of the multi-temporal Sentinel-1 data used in this study.

Date Imaging Mode Polarization Abbreviation

15 March 2020 IW
VV S1_VV1
VH S1_VH1

8 April 2020 IW
VV S1_VV2
VH S1_VH2

10 November 2020 IW
VV S1_VV3
VH S1_VH3

22 November 2020 IW
VV S1_VV4
VH S1_VH4

16 December 2020 IW
VV S1_VV5
VH S1_VH5

2.3.2. Optical Remote Sensing Variables

Optical images were acquired from the Sentinel-2 Level-2A surface reflectance (SR)
product (COPERNICUS/S2_SR) derived from the GEE cloud platform. The Sentinel-2 SR
product was preprocessed with atmospheric correction and orthorectification and contained
12 spectral bands, including 10 m resolution visible (red, green, blue) and near-infrared
bands, 20 m resolution red edge and short-wave infrared bands, and 60 m resolution
aerosols and water vapor bands. The Sentinel-2 SR images from 3 March 2020 were
collected with a cloud cover of less than 10%, and ten bands (B2, B3, B4, B5, B6, B7, B8, B8A,
B11, B12) were selected as the optical predictor variables in this research. Additionally,
previous studies showed that remote-sensing vegetation indices generated by optical
bands were effective in predicting SOC [14,45]. Therefore, vegetation indices, including
enhanced vegetation index (EVI), modified soil adjustment vegetation index (MSAVI) and
normalized difference vegetation index (NDVI), were also calculated as optical predictors
using Sentinel-2 bands. The calculation formula of EVI, MSAVI and NDVI are as follows:

EVI = 2.5× NIR− R
NIR + 6 R− 7.5 B + 1

(1)

https://earthengine.google.com/
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MSAVI =
2 NIR + 1−

√
(2 NIR + 1)2 − 8 (NIR − R)

2
(2)

NDVI =
NIR− R
NIR + R

(3)

where NIR, R and B correspond to the near-infrared band (B8), red band (B4) and blue
band (B2) of Sentinel-2 images, respectively.

2.3.3. Terrain Variables

Terrain variables were composed of elevation, slope, aspect, plain curvature (PLC),
profile curvature (PRC), topographic wetness index (TWI), terrain ruggedness (TRI), vertical
distance to channel network (VDCN), channel network base level (CNBL), valley depth
(VD), relative slope position (RSP), multiresolution index of valley bottom flatness (MRVBF)
and multiresolution index of ridge top flatness (MRRTF). Elevation was directly derived
from the ASTER GDEM product at 30 m resolution, which was provided by the Geospatial
Data Cloud website (GDC) (https://www.gscloud.cn/, accessed on 12 March 2022). The
other terrain variables were calculated from DEM with SAGA GIS (http://saga-gis.org/,
accessed on 12 March 2022).

2.3.4. Climate Variables

Climate variables were downloaded from WorldClim (https://www.worldclim.org,
accessed on 10 March 2022). In this study, we used the WorldClim version 2.1 bioclimatic
dataset, which was the average for the years 1970–2000 [44,46]. This dataset contained 19
bioclimatic variables with four spatial scales (10 min, 5 min, 2.5 min and 30 s). In order
to better match other finer resolution environmental variables, we chose the 30 s grid
(approximately 1 km) data covering the study area. The bioclimatic variables were derived
from the monthly temperature and rainfall values to generate more biologically meaningful
variables. Annual trends (e.g., mean annual temperature, annual precipitation), seasonality
(e.g., annual range in temperature and precipitation) and extreme or limiting environmental
factors (e.g., the temperature of the coldest and warmest month, and precipitation of the
wet and dry quarters) could be presented by these climate covariates. Detailed information
on the bioclimatic variables is shown in Table 4.

Table 4. The information on the bioclimatic variables.

Code Name Abbreviation

BIO1 Annual Mean Temperature AMT
BIO2 Mean Diurnal Range (Mean of monthly (max temp–min temp)) MDR
BIO3 Isothermality (BIO2/BIO7) (×100) ITM
BIO4 Temperature Seasonality (standard deviation × 100) TS
BIO5 Max Temperature of Warmest Month MTWM
BIO6 Min Temperature of Coldest Month MTCM
BIO7 Temperature Annual Range (BIO5-BIO6) TAR
BIO8 Mean Temperature of Wettest Quarter MTWetQ
BIO9 Mean Temperature of Driest Quarter MTDQ
BIO10 Mean Temperature of Warmest Quarter MTWarQ
BIO11 Mean Temperature of Coldest Quarter MTCQ
BIO12 Annual Precipitation AP
BIO13 Precipitation of Wettest Month PWM
BIO14 Precipitation of Driest Month PDW
BIO15 Precipitation Seasonality (Coefficient of Variation) PS
BIO16 Precipitation of Wettest Quarter PWetQ
BIO17 Precipitation of Driest Quarter PDQ
BIO18 Precipitation of Warmest Quarter PWarQ
BIO19 Precipitation of Coldest Quarter PCQ

https://www.gscloud.cn/
http://saga-gis.org/
https://www.worldclim.org
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2.4. Modeling Techniques

Three linear models, including multiple linear regression (MLR); partial least squares
regression (PLSR); stepwise multiple linear regression (SMLR); and three non-linear ma-
chine learning models, including random forest (RF), boosted regression tree (BRT), extreme
gradient boosting (XGBoost) were employed to model and map the distribution of SOC
content in the study area.

2.4.1. Linear Models

As one of the most widely used linear models, multiple linear regression (MLR) can
determine the functional relationship between predictive variables and target variables by
least square fitting. The “stats” package of R statistical software version 4.1.3 was used to
implement the MLR model in our research.

Partial least squares regression (PLSR) combines the advantages of principal com-
ponent regression, canonical correlation analysis and multiple linear regression methods.
By projecting predictive variables and target variables into a new space, this method
constructed a linear regression model, which effectively prevents the multicollinearity
issue [33]. In this study, we used the “pls” package in R to construct the PLSR model.

Stepwise multiple linear regression (SMLR) is essentially a variable selection method
that aims to remove the weakly correlated variables based on forward and backward Akaike
information criteria [47]. We developed the SMLR model through the “stats” package in R.

2.4.2. Non-Linear Models

Random forest (RF) is an ensemble learning classifier based on multiple decision trees.
The decision variables of a single tree are randomly selected to predict the target variables,
and the final result is voted by each decision tree. The bootstrap sampling strategy was
used to sample the training dataset, and the out-of-bag (OOB) samples omitted from the
bootstrapped samples were used to estimate error and predictor importance [48]. Given the
capability of estimating the importance of variables and the high stability, random forest is
generally preferred in digital soil mapping [49]. In this paper, we used the “randomForest”
package of R to construct the RF model. The two main tuning parameters, the number of
input variables (mtry) and the number of trees (ntree), were used to optimize the RF model.

Boosted regression tree (BRT) is an additive regression model that combines the
advantages of a regression tree and boosting algorithm. By adding a new tree to the
previous trees to minimize the loss function, the boosting technique can keep the model
from overfitting [50]. The BRT algorithm is an iterative process in which tree-based models
are fitted iteratively using recursive binary splits to identify poorly modeled observations
in existing trees until minimum model deviance is reached [51]. In our research, we used
the “gbm” package of R to fit the BRT model. The number of trees (n.trees), the learning rate
(shrinkage) and the max depth of each tree (interaction.depth) are the primary parameters
for optimizing the BRT model.

Extreme gradient boosting (XGBoost) is an effective machine learning method, which
is improved on the basis of the gradient-boosted decision tree (GBDT). Through the sup-
plemental training strategies, XGboost extends a “strong” learner from a set of “weak”
learners [39]. The key to this approach is using a regularization term to control the com-
plexity of the model and avoid overfitting [52]. The “xgboost” package of R was used to
construct the XGBoost model. The learning rate (eta), max depth of trees (max_depth), the
number of samples supplied to a tree (colsample_bytree) and the max number of boosting
iterations (nrounds) are the main hyper-parameters for the XGBoost model to be optimized.

2.5. Evaluation of Model Performance

In this study, we developed SOC prediction models based on the aforementioned
three linear statistical methods and three non-linear machine learning algorithms using
seven different combinations of environmental covariates at multiple spatial resolutions,
including 10 m, 30 m, 90 m, 250 m and 1000 m. Covariate Set I contained only Sentinel-1 SAR
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images, while Set II included only Sentinel-2 optical images. Set III was composed of both
SAR and optical images. Set IV was composed of terrain attributes and climate variables.
Set V included SAR images, terrain and climate auxiliary variables. Set VI included optical
images, terrain and climate auxiliary variables. Meanwhile, Set VII contained all available
environmental variables (Table 2). Through this process, the optimal combination of
environmental variables, modeling technique and spatial scale was determined in order to
derive the SOC map of the highest quality (Figure 2). The performances of models were
evaluated by the coefficient of determination (R2), the root means square error (RMSE)
and mean absolute error (MAE). The experimental data of sample points were randomly
divided into 70% as the training data and the remaining 30% as the validation data [53].
The spatial distribution of soil samples for model training and validation is depicted in
Figure 1c. In this study, we used independent validation data to evaluate and compare the
capability of predictive models.

R2 =
∑n

i=1
(
Pi −Oi

)2

∑n
i=1
(
Oi −Oi

)2 (4)

RMSE =

√
∑n

i=1 (Oi − Pi)
2

n
(5)

MAE =
∑n

i=1 |Oi − Pi|
n

(6)

where n represents the number of samples, i represents the single sample, Oi represents the
observed value of SOC, Pi represents the predicted value of SOC, and Oi represents the
average value of SOC observations.
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2.6. Quantitative Spatial Analysis Technique

The standard deviational ellipse (SDE) method was introduced for the quantitative
analysis of the spatial distribution pattern of predicted SOC contents. This technique was
first proposed by Lefever in 1926 and was utilized to analyze the distribution characteristics
of discrete data [54]. SDE was an excellent detector of the directionality and clustering
of geographical features [55]. In SDE, the long axis of the ellipse represents the direction
of SOC distribution, and the short axis represents the spatial clustering degree of SOC
distribution (Figure 3). Generally, the difference between the long axis and short axis shows
the directional strength of SDE. Meanwhile, the center of SDE indicated the center of gravity
of SOC distribution. In this study, the standard deviational ellipse tool embedded in the
ArcGIS 10.7 environment was used to implement SDE analysis.
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3. Results
3.1. Descriptive Statistics of SOC

The basic descriptive statistics of SOC are shown in Table 5. The content of the
measured SOC in this study area ranged from 6.45 g/kg to 41.43 g/kg, with an average of
23.78 g/kg. The standard deviation of 5.42 g/kg and variation coefficient of 0.23 indicated
a moderate variability of the total SOC observations. Similar ranges and average levels of
SOC were observed in both the training and validation datasets. Moreover, the standard
deviation and coefficient of variation in SOC suggested a similar distribution among the
total, training and validation samples. According to the skewness value and Kolmogorov–
Smirnov test, the distribution of SOC contents was confirmed to be a normal distribution.

Table 5. Basic descriptive statistics of the total, training and validation datasets for SOC.

N Min (g/kg) Max (g/kg) Mean (g/kg) SD (g/kg) CV Skew K-S

Total 186 6.45 41.43 23.78 5.42 0.23 0.07 0.20
Training 135 7.57 40.40 23.78 5.41 0.23 0.05 0.20

Validation 51 6.45 41.43 23.77 5.49 0.23 0.13 0.20

Notes: N is the number of various sample sets. Min, Max, SD, CV and Skew refer to the minimum, maxi-
mum, standard deviation, coefficient of variation and skewness, respectively. K-S represents the normal test of
Kolmogorov–Smirnov at 95% significance level.
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3.2. Comparison and Selection of Different Covariate Sets

Environmental covariates, including Sentinel-1 SAR images, Sentinel-2 optical images,
terrain attributes and climate variables, were individually considered and assembled to
evaluate the SOC prediction accuracy using six modeling techniques. Therefore, the op-
timal combination of environmental variables was determined for SOC prediction based
on accuracy indicators. The result showed that different covariate sets as input predic-
tors significantly affected the performance of SOC prediction (Figure 4). For instance,
the covariate set II (only Sentinel-2 optical variables) generated better predictions than
covariate set I (only Sentinel-1 SAR variables) under all six predictive models, indicating
that multi-spectral reflectance information is relatively more important than SAR-derived
backscattering coefficient predictors in SOC prediction models. Moreover, it was found that
the joint application of Sentinel-1 and Sentinel-2 images (covariate set III) yielded generally
higher prediction accuracy in contrast to employing a single satellite sensor, especially for
the three machine learning models. For example, for the BRT model, the combination of
Sentinel-1/2 increased R2 from 0.11 in covariate set I and 0.15 in covariate set II to 0.22
in covariate set III. As we expected, the best predictive performance was obtained when
Sentinel-1 images, Sentinel-2 images, terrain attributes and climate variables were all ap-
plied as model inputs. This suggests that covariate set VII was the optimal environmental
covariate set for SOC prediction.
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3.3. Assessment of Linear and Non-Linear Models Prediction at Multiple Resolutions

The performance results of covariate set VII (all available environmental variables)
based on six models at five different resolutions are presented in Table 6. Meanwhile,
the variation in prediction accuracy of linear (MLR, PLSR and SMLR) and non-linear (RF,
BRT and XGBoost) models under five resolutions are shown in Figure 5. The comparative
analysis of model performance illustrated that model types under multiple resolutions of
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covariates significantly influenced the prediction accuracy of SOC contents. For instance,
as shown in Table 6, the resolutions of covariates significantly controlled the model per-
formance. Compared with coarser resolution, the finer resolution led to higher accuracy
for each predictive model, and this can be described clearly by Figure 5, which depicted
obvious change trends of the accuracy of modeling techniques at five spatial scales. When
we focused on resolutions, all models had the best predictive accuracy at 10 m resolution,
which suggested that the coarser-scale covariates had a worse explanatory ability for the
variation in SOC. In addition, the significant effect of model types was also exhibited in
Figure 5. More specifically, non-linear models performed better than linear models at all
spatial scales. The prediction performance assessed by R2, RMSE and MAE of validation set
followed the order of XGBoost > BRT > RF > PLSR > SMLR > MLR. Furthermore, the best
competitive model was XGBoost at the 10 m spatial resolution of all available predictive
variables (XGBoost-10 m), and the highest accuracies performed by XGBoost-10 m were
R2 = 0.49, RMSE = 3.90 and MAE = 2.98.

Table 6. The performance of six modeling techniques at different spatial resolutions for SOC predic-
tion using validation data. The most accurate result is shown in bold.

Model Type Models R2 RMSE (g/kg) MAE (g/kg)

Linear model

MLR
10 m 0.15 5.24 3.75
30 m 0.09 5.93 4.36
90 m 0.06 5.91 4.73
250 m 0.04 6.42 4.85

1000 m 0.02 6.16 4.70

PLSR
10 m 0.27 4.67 3.44
30 m 0.19 5.00 3.73
90 m 0.15 5.02 3.75
250 m 0.13 5.12 3.95

1000 m 0.11 5.28 4.13

SMLR
10 m 0.22 4.84 3.67
30 m 0.15 5.22 3.97
90 m 0.13 5.15 3.96
250 m 0.09 5.64 4.25

1000 m 0.06 5.55 4.38

Non-linear model

RF
10 m 0.39 4.56 3.28
30 m 0.32 4.58 3.31
90 m 0.29 4.86 3.50
250 m 0.25 4.83 3.52

1000 m 0.16 5.05 3.62

BRT
10 m 0.42 4.28 3.21
30 m 0.35 4.47 3.34
90 m 0.32 4.52 3.47
250 m 0.29 4.70 3.75

1000 m 0.18 4.96 3.76

XGBoost
10 m 0.49 3.90 2.98
30 m 0.46 4.20 3.24
90 m 0.34 4.43 3.37
250 m 0.32 4.61 3.64

1000 m 0.21 4.97 3.70
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3.4. Relative Importance of Environmental Covariates

The relative importance of adopted predictor variables was measured with the best
model, namely the XGBoost at 10 m spatial scale (Figure 6). Among the top fifteen important
variables, S2_B5 was the most important variable, explaining 9.50% of SOC variation. In
addition, in the XGBoost model, eleven remote sensing variables (six optical + five SAR)
occupied the top fifteen most important variables. Sentinel-2-derived predictors were
the main explanatory variables for SOC prediction, with a relative importance of 37.86%,
followed by climate (30.07%) and Sentinel-1 variables (29.40%). Notably, Sentinel-1 and
Sentinel-2 variables together explained 67.26% of SOC variation, which suggested that
remote sensing imagery had the most important effect on predicting SOC in the study area.
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Moreover, MDR and TS were the primary bioclimatic variables affecting SOC dis-
tribution. Both MDR and TS were located in the top four most important variables. For
bioclimatic variables, all the variables included in the top fifteen most important variables
were related to temperature parameters, which indicated that temperature variables were
more important than the precipitation variables in explaining the variation in SOC. In
contrast, terrain factors accounted for only 2.67% of the relative importance of SOC predic-
tion in the XGBoost model. This indicated a weak effect of topographic variables on SOC
prediction, which may be ascribed to the fact that croplands were largely distributed in the
flat basin in our study area (Figure 1c).

3.5. Spatial Prediction of SOC Contents

The spatial distribution of SOC contents in croplands of the study area predicted by
the XGBoost model at five spatial resolutions is displayed in Figure 7. Broadly speaking,
the five prediction maps shared similar patterns and showed a strong spatial variation in
SOC contents in our study area. Specifically, there was a decreasing trend of SOC contents
from southeast to northwest, with the lowest content in the north-central region near the
Ganjiang River. In contrast, the highest predicted value of SOC content occurred in the
southeast, where were mountainous regions. This was in accordance with the distribution
trends of the observed SOC samples in this study. However, there was still a discrepancy
in SOC contents prediction among five maps under various spatial scales. For example,
the map of SOC contents modeled by XGBoost at 10 m resolution presented a lower
minimum value (4.82 g/kg), whereas the range showed on the prediction map with 1000 m
resolution was comparatively larger (8.52 g/kg to 40.11 g/kg). In addition, all prediction
maps also had several slight differences in the average and standard deviation values of
predicted SOC content. The best accuracy and finest map details were performed in the
10 m resolution prediction map of SOC.
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Figure 7. The distribution maps of cropland SOC contents predicted by the XGBoost technique at
10 m, 30 m, 90 m, 250 m and 1000 m resolution, respectively. The maps were masked by GlobeLand30
2020 land cover dataset to derive SOC contents of croplands in the study area. AVE and SD correspond
to the average values and standard deviation values of predicted SOC, respectively.

In order to quantitatively compare the spatial distribution patterns of SOC contents
predicted at the five resolutions, we divided SOC contents into three levels (low, middle and
high) using the natural breaks (Jenks) method in ArcGIS 10.7 [56]. A standard deviational
ellipse approach was applied to detect the direction and center of the distribution of SOC.
As shown in Figure 8, the directions and centers were quite similar in general SOC content
of the whole cropland region among all five spatial scales. The predicted SOC is maintained
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in the southeast-to-northwest direction, which is consistent with the spatial prediction
maps depicted in Figure 7. However, significant differences in SOC distribution patterns
were presented at the specific lower, middle and higher levels of SOC content. For instance,
in the region with low-level SOC content, the center of gravity at the 250 m spatial scale
significantly deviated from others. Meanwhile, the directions of the spatial distribution of
SOC maps at various content levels were different. The higher SOC content had a larger
rotation angle value. On the whole, there are almost no differences in the direction and
center of the distribution of general SOC at various spatial resolutions, while significant
differences exist in the direction and center of the distribution of specific content levels
of SOC.
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Figure 8. The standard deviational ellipses and centers of gravity of spatially predicted SOC at
five different spatial resolutions for the whole, high-level, middle-level and low-level SOC content
regions, respectively.

4. Discussion
4.1. Effects of Various Variable Combinations on SOC Prediction

The comparison and selection of environmental covariate sets in this study suggested
that different variable combinations significantly affected the accuracies of SOC predic-
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tion. The covariate set VII (SAR+ Optical+ Terrain+ Climate) had the highest accuracy
in most predictive models. Therefore, the combination of SAR data, optical data, terrain
and climate data were superior to either SAR or optical covariate set in SOC mapping.
Similar improvements were also observed in previous studies, which demonstrated that the
combination between different satellite sensors and various environmental variables could
be successfully applied for effective SOC prediction [35,40]. Comprehensively considering
more useful variables is of significance in improving SOC prediction [45]. Moreover, we
found that set I (SAR bands only) was simulatively inferior to set II (optical bands only) in
all models (Figure 4), which indicated that optical-based image data had stronger predic-
tive power than SAR-based image data in this study. This was consistent with the study
of Zhou et al. [35], who revealed that the optical bands were more important than SAR
bands in the SOC prediction of the Heihe River Basin. However, this finding differs from
previous studies, which for instance, proved that Sentinel-1 images were useful for SOC
prediction [57]. Therefore, a competitive accuracy based on SAR data is expected to be
further explored.

4.2. Comparison of Models Performance under Multi-Scales

The results showed that the overall prediction accuracy of non-linear models was gen-
erally better than that of linear models (Figure 5), indicating that SOC contents probably had
non-linear relationships with covariates. This was consistent with previous studies [58,59],
which confirmed that machine learning algorithms, i.e., RF, Cubist and BRT, outperformed
linear models such as PLSR and SMLR. Therefore, it appears that non-linear models have
sufficient potential to estimate the variability of SOC content [28,40,60]. However, several
studies reported the opposing result that the PLSR model had shown better performance
compared with other models [61,62]. The model’s performance is usually affected by some
other factors, such as the condition of the study area and the representativeness of sampling
sites, and few models could be well fit for any research. Apart from the capability of
different algorithms with various statistic functions, the input covariates under different
conditions, i.e., the spatial resolution, also resulted in the difference in model performances
for SOC prediction [63]. This was confirmed by our finding that the finer-resolution co-
variates had better model performances than the coarser covariates. Similar results were
reported in existing studies. For example, Guo et al. [64] studied the selection of key
terrain attributes with multi-scale for SOC prediction and concluded that the coarser grid
sizes deteriorated the accuracy of terrain parameters and influenced the capability of soil
properties prediction. Further, the approach that converted finer scales to coarser scales
probably lost important information and gave rise to the worse performance of modeling
techniques. However, some scholars also pointed out that the predictive models run by
coarser spatial resolution variables can produce better prediction results than models based
on higher spatial resolution variables [28,65]. However, their studies were mostly based
on a national scale with high spatial variations, which can be strongly influenced by the
scale effect [66]. By comparison, our study area has a smaller extent and lower spatial
variation. Correspondingly, it is not difficult to understand that coarser resolutions are
good at capturing the global characteristics of the landscape, while finer resolutions are
ideal for soil properties prediction with relatively small spatial variation.

4.3. Analysis of the Relative Importance of Environmental Covariates

The relative variable importance demonstrated that the most influential factors were
remote sensing data (Sentinel-2 and Sentinel-1 images) at 10 m spatial resolution. Sentinel-2
band 5 (red edge band) was especially confirmed as the most important predictor in the
XGBoost model. As reported in much previous research, the red edge band (centered at
740 nm) of Sentinel-2/MSI is highly closed to the absorption feature spectrum of the N-H
chemical bond, which characterizes some compounds of soil organic matter [67,68]. Simi-
larly, Castaldi et al. [69] used a random forest algorithm to explore the relative importance
of environmental covariates for SOC prediction in croplands area, and their results indi-
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cated that Sentinel-2 red edge bands (band 4 and band 5) contributed the most important
as well as SWIR bands (band 11 and band 12). In addition, our study also exhibited the
capability and potential of Sentinel-1 data for an effective explanation of the variation
in SOC. Many studies confirmed the possibility of SAR for predicting SOC through the
relationship observed in soil–vegetation systems [70,71]. Therefore, both optical data and
SAR data have great impacts on the prediction of SOC content. Moreover, bioclimatic
variables introduced in this study also showed considerable influence on SOC prediction.
Among them, temperature-dependent variables TS (temperature seasonality) and MDR
(mean diurnal range) were the most important bioclimatic variables. Scholars conceived
that temperature can have a positive effect on biota activities and further accelerate the
decomposition of soil organic matter and the accumulation of SOC [44]. By contrast, terrain
variables were found to have a weak effect on the variation in SOC in this study. However,
numerous studies regarded that terrain factors greatly affected the distribution of SOC
content and were the necessary variables for SOC prediction [64,72,73]. However, as the
croplands of this research are mostly located in flat areas (Figure 1), the soil samples are
limited to represent the overall terrain characteristics. Therefore, the effort of terrain vari-
ables for accurately mapping SOC is insufficient. This is also supported by Zhang et al. [11]
and Song et al. [74], who noted that terrain attribute covariates played less important roles
in SOC prediction than other environmental covariates in a flat terrain area.

4.4. Research Limitations and Future Work

Our study provided a quantification analysis framework of the effects of environmen-
tal covariates selection, spatial scales and model types on soil organic carbon prediction in
croplands. Although the SOC prediction maps successfully explained the variation in SOC
in our research, several limitations still need to be improved. First, as mentioned in many
recent studies, soil parent materials and agronomic management factors have important
influences on SOC modeling [75,76]. Thus, some environmental covariates which can
represent the soil parent materials and agriculture management of SOC in cropland should
be considered.

Second, in this study, in order to explore the impact of spatial scales of environmental
covariates on SOC predictive performance, we transformed the spatial resolutions of envi-
ronmental variables simply through the nearest neighbor resampling method. Although
this method is commonly used in previous studies, the upscaling and downscaling tech-
niques for resampling environmental covariates produced additional uncertainties. Thus,
discrepancies in spatial resolution among multi-source data may generate high-uncertainty
prediction results. For example, the original resolution of climate variables in this research
is 1 km; however, both of the remote sensing data are much finer (10 m or 20 m), and
uncertainties may occur during the resampling process especially downscaling from 1 km
to 10 m. In fact, coarse-resolution climate variables cannot provide detailed information at
finer scales [75]. In consideration of this issue, increasing studies have attempted to apply
more advanced scale transformation algorithms. For instance, Wu et al. [77] effectively
downscaled the land surface temperature (LST) using an improved multi-factor geograph-
ically weighted regression (MFGWR) algorithm. In future studies, more effective scale
transformation methods should be developed and compared to assess the uncertainty of
SOC prediction.

Moreover, despite the proven applicability of the current research framework for
SOC prediction, the potential of the research framework proposed in this study for other
soil properties prediction and mapping still needs to be evaluated in future work. The
combination of multiple soil properties (e.g., soil total nitrogen, phosphorus, potassium
and pH) mapped at high spatial resolution and with superior prediction accuracy is of
great significance for soil health assessment and cropland resource management.
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5. Conclusions

In this study, the spatial distribution of soil organic carbon was modeled and mapped
through DSM in croplands of a red soil hilly region in southern China. In particular, the
impacts of diverse environmental covariates selection, spatial scale and model types (linear
and non-linear techniques) were comprehensively investigated. The main conclusions can
be summarized as follows:

(1) For the covariate sets selection, the optimal set was the covariate set VII, which
was the combination of Sentinel-1 SAR bands, Sentinel-2 optical bands, terrain attributes
and climate variables. This revealed that the use of different satellite sensors and various
environmental variables could be effectively applied for SOC prediction;

(2) Among all predictive models, the optimal model was the XGBoost model at 10 m
resolution (R2 = 0.49, RMSE = 3.90, MAE = 2.98). The prediction accuracy order was
followed by XGBoost > BRT > RF > PLSR > SMLR > MLR, and the overall performance of
non-linear machine learning models was better than the linear models;

(3) Environmental variables, especially remote sensing data, made significant contri-
butions to SOC prediction in the XGBoost model. Our study highlighted the potential of
Sentinel series satellite images, especially Sentinel-2 imagery, in SOC prediction. In addi-
tion, the spatial resolution of environmental covariates significantly affected the prediction
of SOC. The finer resolution of auxiliary variables contributed to better model performance,
and the best resolution was 10 m for all models;

(4) The spatial patterns of the distribution maps of SOC generated by XGBoost at
various spatial scales (10 m, 30 m, 90 m, 250 m, 1000 m) were quite similar, which presented
a decreasing trend of SOC contents from southeast to northwest, consistent with the
distribution of observed SOC ones. However, the specific content level of SOC (low, middle,
high) had significant differences in the direction and center of the spatial distribution of
SOC as indicated by the standard deviational ellipse (SDE) method.

Overall, this study revealed that the prediction of SOC contents in the framework of
digital soil mapping could be affected not only by the source and resolution of covariates but
also by the model types, including linear and non-linear models. Therefore, future studies,
especially in agroecosystems with similar environmental conditions, should consider the
use of covariates with different sources and resolutions and choose a suitable model to
increase SOC prediction accuracy.
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