
Citation: Yan, X.; Li, J.; Yang, D.; Li, J.;

Ma, T.; Su, Y.; Shao, J.; Zhang, R. A

Random Forest Algorithm for

Landsat Image Chromatic Aberration

Restoration Based on GEE Cloud

Platform—A Case Study of Yucatán

Peninsula, Mexico. Remote Sens. 2022,

14, 5154. https://doi.org/10.3390/

rs14205154

Academic Editor: Javier Marcello

Received: 7 September 2022

Accepted: 13 October 2022

Published: 15 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Random Forest Algorithm for Landsat Image Chromatic
Aberration Restoration Based on GEE Cloud Platform—A Case
Study of Yucatán Peninsula, Mexico
Xingguang Yan 1, Jing Li 1,*, Di Yang 2 , Jiwei Li 3,4 , Tianyue Ma 1, Yiting Su 1, Jiahao Shao 1 and Rui Zhang 1

1 College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing,
Beijing 100083, China

2 Wyoming Geographic Information Science Center, University of Wyoming, Laramie, WY 82070, USA
3 Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ 85281, USA
4 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
* Correspondence: lijing@cumtb.edu.cn; Tel.: +86-13488887612

Abstract: With the growth of cloud computing, the use of the Google Earth Engine (GEE) platform to
conduct research on water inversion, natural disaster monitoring, and land use change using long
time series of Landsat images has also gradually become mainstream. Landsat images are currently
one of the most important image data sources for remote sensing inversion. As a result of changes in
time and weather conditions in single-view images, varying image radiances are acquired; hence,
using a monthly or annual time scale to mosaic multi-view images results in strip color variation.
In this study, the NDWI and MNDWI within 50 km of the coastline of the Yucatán Peninsula from
1993 to 2021 are used as the object of study on GEE platform, and mosaic areas with chromatic
aberrations are reconstructed using Landsat TOA (top of atmosphere reflectance) and SR (surface
reflectance) images as the study data. The DN (digital number) values and probability distributions of
the reference image and the image to be restored are classified and counted independently using the
random forest algorithm, and the classification results of the reference image are mapped to the area
of the image to be restored in a histogram-matching manner. MODIS and Sentinel-2 NDWI products
are used for comparison and validation. The results demonstrate that the restored Landsat NDWI
and MNDWI images do not exhibit obvious band chromatic aberration, and the image stacking is
smoother; the Landsat TOA images provide improved results for the study of water bodies, and the
correlation between the restored Landsat SR and TOA images with the Sentinel-2 data is as high as
0.5358 and 0.5269, respectively. In addition, none of the existing Landsat NDWI products in the GEE
platform can effectively eliminate the chromatic aberration of image bands.

Keywords: Google Earth Engine; random forest; Landsat; NDWI; MNDWI; MODIS; Sentinel-2

1. Introduction

In recent decades, satellite imagery has developed, representing an effective source to
monitor natural resources [1], vegetation ecological inversions [2], ecological function [3],
and land–sea interactions [4]. High-quality satellite images normally need to satisfy three
criteria for efficient operation: high-quality mosaic, abundant information, and harmonious
tones [5]. Satellite images are inevitably affected by external disturbances, including
seasonal variations and diverse atmospheric conditions, as well as internal elements, such
as sensors and the satellite re-entry cycle during the image capture process, which all
lead to uneven light distribution in satellite images [6,7]. Especially in large-scale satellite
monitoring of long time series, it is frequently necessary to compare multi-period remote
sensing images in order to distinguish the factors in response to the problem of different
grayscale values of images and the phenomenon of uneven hue of adjacent image strips,

Remote Sens. 2022, 14, 5154. https://doi.org/10.3390/rs14205154 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14205154
https://doi.org/10.3390/rs14205154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4010-6163
https://orcid.org/0000-0002-0275-4872
https://doi.org/10.3390/rs14205154
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14205154?type=check_update&version=1


Remote Sens. 2022, 14, 5154 2 of 15

such as changes in features, as well as image data mosaicked in different time scales, such
as monthly, quarterly, and annual.

Google Earth Engine (GEE) is a cloud platform for satellite image visualization, calcula-
tion, and analysis at a planetary scale. A large number of studies have been deployed using
GEE, including disaster monitoring [8], vegetation change [9,10], urban expansion [11],
and land cover analysis [12]. The GEE platform brings together more than 600 datasets,
including Landsat, MODIS, Sentinel, and a large number of multi-spectral satellite images,
facilitating the work of researchers [13]. Increasing trends can be observed in long time
series NDWI and MNDWI analysis, as well as online visualization at a large scale [14–16].
NDWI is a fundamental index used to monitor climate changes that have induced wa-
ter body change and to evaluate the impact of economic development on inland aquatic
ecosystems [17]. NDWI has a clear advantage in assessing the relationship between surface
water and seasonal precipitation [18,19]. When using NDWI for water body assessment,
images of mountain shadows and clouds are easily received, and the results are prone to
inaccuracy [20]. MNDWI is a modified normalized difference water index that enhances
open water features [21]. Long-term monitoring of changes in coastal shorelines using
MNDWI based on long-term of Landsat image series can effectively identify coastal erosion
and coastal exploration. Dynamic monitoring of shorelines and tidal flats using Landsat
image inversion for MNDWI could be a suitable indicator for sustainable development
analysis [22]. The NDWI is commonly used to extract the body of water part of images [23].
However, the MNDWI is more accurate in built-up areas [24]. Moreover, the existing
NDWI analyses over long time series often do not address the striping problems caused by
image mosaics.

There has recently been an increased focus on the color leveling of remote sensing
images. For instance, the Wallis method of filtering is used to differentiate areas of images
with similar mean and variance; GeoDodging software employs this method to align the
color and brightness of different images [25]. The histogram-matching method can be
applied to a single image or image overlap area as a reference and change other images
to be restored in the image mosaic process for color leveling, which is a typical non-linear
image restoration method [26]. Color correction in ArcGIS software is based on the idea of
gamma correction for image leveling in the survey area, which is based on the principle of
interpolation of the correction parameters of non-overlapping areas from the overlapping
areas of an image [27]. The above methods can be effective for color leveling studies of
similar features in multi-scene images; however, for a wide range of image coverage with
multiple image strips with inconsistent color differences in a given area, using the above
image restoration methods causes overall tonal distortion. Currently available methods do
not consider the position relationship between images and cause cumulative errors in color
transfer when used in long-term analyses.

Mainstream machine learning methods include SVM (support vector machine), neural
networks, random forests, etc. SVM can only achieve small-scale sample training and
binary classification with a significant effect [28]. A neural network is a typical gradient
algorithm that solves the global extrema of complex nonlinear functions, with highly
randomized training accuracy depending on the selected network and the quality of
training samples [29]. Compared with other machine learning methods, random forest
methods can provide mutually independent training subsets without feature selection
and can achieve fast parallelization of high-dimensional and complex training data [30].
Random forest methods are widely used for remote sensing image classification, natural
resource surveying, and environmental monitoring [31] but are rarely used for image
restoration; therefore, in this paper, we adopt random forest methods for image restoration.

Three primary issues need to be addressed in the afterglow processing of remote sens-
ing images with grayscale values of existing multi-view images to improve understanding
of long-term NDWI and MNDWI indices. First, in the study of strip color differences caused
by stitching of medium and large-scale multi-view images, it is difficult for existing level-
ing algorithms to achieve basic consistency in terms of brightness and hue among image
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strips after processing [6]. Second, in long-term time series remote sensing monitoring, the
image restoration rules based on multi-source remote sensing are inconsistent and cannot
effectively guarantee the objectivity of current image quality and the accuracy of long-term
image inversion [32,33]. Third, an automatic and robust method is needed to implement
batch processing of large amounts of image restoration for the homogenization of medium-
and large-scale remote sensing images of long-term time series [5,34]. Therefore, there is
an urgent need to solve the problem of how to efficiently and rapidly achieve restoration
using current homologous remote sensing images in long time series and medium- and
large-scale remote sensing image homogenization processes.

To address the above issues, in the present study, we employed a random forest
algorithm to quickly classify the DN values and probabilities of the images separately
based on the GEE platform; the classified results were then matched in a histogram. In
this study, two water body indices, NDWI and MNDWI, were analyzed using Landsat
TM/OLI image band computing from 1993 to 2021, and the results of image restoration were
compared with existing Landsat, MODIS, and Sentinel-2 products to verify the effectiveness
of the method. We propose a machine-learning-based histogram image restoration method
that can provide a theoretical foundation for the homogenization study of long time series
large-scale images.

2. Materials and Methods
2.1. Study Area

The Yucatán Peninsula (18◦50′42”N, 89◦07′32”W) is a peninsula located in northern
Central America and southeastern Mexico [35], separating the Caribbean Sea from the Gulf
of Mexico [36]. It is bordered by the Caribbean Sea to the east, the Gulf of Mexico and the
Bay of Campeche to the west, and Cuba across the Yucatán Strait to the northeast, with an
area of 197,600 square kilometers. The Yucatán Peninsula has an average elevation of less
than 200 m, with a high southern and low northern topography. The average width of the
peninsula is approximately 320 km, and its coastline is approximately 1100 km long [37].
The area analyzed in the present study is within 50 km of coast of the Yucatán Peninsula, as
shown in Figure 1.
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Figure 1. Location of the study area. (a) Location of Yucatán Peninsula in Mexico; (b) path and row
of each Landsat image. (WRS PATH:18–21 WRS ROW:45–48).

The climate of the Yucatán Peninsula is tropical, ranging from semiarid in the north
to humid in the south. The average annual precipitation varies from less than 800 mm in
the driest regions of the northwest to 2000 mm in the southern Petén Basin. Rainfall varies
seasonally, with August and September generally representing the wettest months. As
one of the largest karst landscapes in the world, the Yucatán Peninsula provides a suitable
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habitat for mangrove growth, with a carbon stock of more than 1000 Mg C ha-1 [38]. The
carbon stocks in the Sian Ka’an Biosphere Reserve store the equivalent of approximately
185.7 million Mg CO2e, which is equivalent to almost half (40–46%) of the carbon emissions
of Mexico in 2009 (399.7 million Mg of CO2e) [39]. Mangroves have the potential to help
regulate the atmosphere, particularly by reducing atmospheric carbon concentrations and
sequestering carbon stocks [40].

Due to the extreme karst nature of the whole peninsula, the northern Yucatán Peninsula
is devoid of rivers. Where lakes and swamps are present, the water is typically marshy and
generally unpotable [41]. Dry forests occupy the dry northwestern peninsula and include
dry forests and scrublands, as well as cactus scrub. Moist forests occupy the middle and
eastern portions of the peninsula and are characterized by semi-deciduous forests, where
25% to 50% of the trees lose their leaves during the summer dry season. Belizean pine
forests are found in several enclaves across central Belize. The southernmost portion of the
peninsula is in the Petén–Veracruz moist forests ecoregion, an evergreen rain forest [42].

2.2. Data and Processing
2.2.1. Image Collection

To reduce the images of Landsat 7 ETM data strips for image analysis, we primarily
used Landsat 5 TM and Landsat 8 OLI data, with experimental data obtained from the
GEE cloud platform. By screening the images of the study area, it is found that the Landsat
5 TM dataset from 1984 to 2012 did not include images for 1988, 2004, 2005, or 2006. A large
number of images were missing for 2010, 2009, 2008, 2007, 2003, 2002, 1992, 1991, 1990, and
1989. Complete Landsat 5 TM were available for 1993 to 2001, and complete Landsat 8
OLI date were available for 2013 to 2021. The NDWI synthetic products available on GEE
(ANNUAL, 32-DAY, 8-DAY, and MODIS) and the NDWI images after the Sentinel-2 band
operation were also used as a dataset for comparison and validation. The range of Landsat
image ranks in the study area is: World Reference System (WRS) PATH: 18–21, WRS_ROW:
45–47. A summary of image data details is shown in Table 1.

2.2.2. Image Processing

Figure 2 depicts the technical process employed in this study, which is divided into four
steps. The first step is image preprocessing, which includes (1) time and boundary screening,
(2) cloud and cloud shadow removal, and (3) NDWI and MNDWI calculation to obtain the
mosaic image. The preprocessed images were visually evaluated for the presence of strip
color differences in the second step; portions with strip color differences were segmented
and designated as the target image, and the reference image corresponding to each image
was chosen. In the third step, the probability density function and cumulative distribution
function were calculated for the NDWI and MNDWI values of each target image and
reference image part. In order to obtain the DN values and probability distribution statistics,
a classifier was built using a random forest algorithm, taking the DN values of the reference
image as a training subset and mapping the training results to the target image. The final
step was image analysis, including annual time series image analysis, single-view image
analysis, and multi-source remote sensing image comparison analysis.

We used the existing technical methods of GEE: (1) normalized index calculation
function ee.Image.normalizedDifference(), (2) image filtering boundary filter and time filter
functions ee.ImageCollection.filterBounds() and ee.ImageCollection.filterDate(), (3) single-
band image mosaic function ee.ImageCollection.qualityMosaic(), and (4) random forest
function ee.Classifier.smileRandomForest(). The library of functions called external GEE
includes ee-palettes (a module for generation of color palettes in GEE to be applied to
mapped data). The main improvements and independently implemented parts are as
follows: (1) the removal of clouds and cloud shadows using the QA (pixel_qa) band bit
mask technique in Landsat images, (2) the statistical functions (probability distribution
function and cumulative distribution function) in each band of the image, (3) the image



Remote Sens. 2022, 14, 5154 5 of 15

mapping method using the random forest method, and (4) multi-band image Pearson
correlation analysis function.

Table 1. List of Landsat, MODIS, and Sentinel-2 image data used in this study.

Satellite Type Image Collection Name Date Resolution

Landsat 1

LANDSAT/LT05/C01/T1_TOA
Landsat 5 TM Collection 1 Tier 1 calibrated Top of Atmosphere

Reflectance 1993–2001

30 m
LANDSAT/LT05/C01/T1_SR

Landsat 5 TM Collection 1 Tier 1 calibrated Surface Reflectance
LANDSAT/LC08/C01/T1_TOA

Landsat 8 Collection 1 Tier 1 calibrated Top of Atmosphere
Reflectance 2013–2022

LANDSAT/LC08/C01/T1_SR
Landsat 8 Collection 1 Tier 1 calibrated Surface Reflectance

LANDSAT/LC8_L1T_ANNUAL_NDWI
Landsat 8 Collection 1 Level L1T orthorectified scenes annual

composite NDWI 2013–2017
LANDSAT/LC8_L1T_32DAY_NDWI

Landsat 8 Collection 1 Level L1T orthorectified scenes 32 day
composite NDWI

LANDSAT/LC8_L1T_8DAY_NDWI
Landsat 8 Collection 1 Level L1T orthorectified scenes 8 day

composite NDWI

MODIS 2
MODIS/MCD43A4_006_NDWI

MCD43A4.006 MODIS Nadir BRDF-Adjusted Reflectance Daily
16 day composite NDWI

2000–2022 500 m

Sentinel-2 3
COPERNICUS/S2 Level-1C

The Sentinel-2 data contain 13 UINT16 spectral bands
representing TOA reflectance scaled by 10000

2015–2022 10 m

1 For more details on Landsat images, see https://landsat.gsfc.nasa.gov/ (accessed on 20 April 2022). 2 For more
details on MODIS images, see https://modis.gsfc.nasa.gov/ (accessed on 5 May 2022). 3 For more details on
Sentinel-2 images, see https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook, (accessed
on 5 May 2022).
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2.3. Methods
2.3.1. NDWI and MNDWI

NDWI (normalized difference water index) and normalized difference processing
with green band and NIR (near infrared) bands of remotely sensed images were used to
highlight the water body information in the images [43]. The value range of NDWI is
[−1, 1], and DN ≥ 0 of image elements in NDWI generally indicates that the ground is
covered by water bodies or dark, bare ground, whereas negative values indicate vegetation
coverage [44].

MNDWI is an improved water body index proposed on the basis of the modification
normalized difference water index (MNDWI), which is a normalized ratio index based on
the near-infrared band and the mid-infrared band. Previous studies have demonstrated
that MNDWI achieves better performance than NDWI for water body extraction and can
better reveal changes, such as fine features of water bodies [21,23].

2.3.2. Random Forest Algorithm

The random forest algorithm is a machine learning algorithm based on the combina-
tion of decision trees proposed by Breiman [45,46]. The construction of a random forest
classifier involves two primary aspects: random selection of data and random selection of
features [47]. The basic principles of the algorithm are as follows:

(1) Using put-back sampling, the statistical DN values and the probabilities of the refer-
ence images serve as the original dataset from which a subset of data is constructed
with the same amount of data as the original dataset [48]. The size of each bagging is
approximately 1/2 of the original data, and the size of the test dataset is about 1/2 of
the original dataset, which is known as the out-of-bag (OOB) data. The above parame-
ters are the default values for the bag fraction parameter of the GEE randomization
algorithm.

(2) According to the principle of minimum Gini coefficient, N bagging groups are ran-
domly selected to form N decision trees, and multiple CART decision trees are con-
structed using the subsets of each node variable after internal splitting to form a
random forest [44]; the number of trees selected in this study is 100.

(3) Statistics of image DN values and probability distributions. The magnitude of DN
values in each band of the reference image and the target image are counted using the
probability distributions function, and the probability distribution of the DN values
of the images are counted using the cumulative distribution function to compare
the differences between the reference image and the target image. The image DN
values and probability distributions are prepared for the next step of random forest
classification.

(4) The generated random forest classifier classifies the data. The reference image and the
image to be restored are assigned DN values, and their probability distributions are
classified by the random forest algorithm according to the above steps in the following
process: (1) The DN value classifier of the reference image is derived according to the
statistical DN values of each band of the reference image as a training subset using
the random forest function. (2) The probability of the DN value of each band of the
image to be restored is used as the training subset, and the random forest function is
used to derive the probability classifier of the image to be restored. (3) The DN values
of the reference image are matched with the DN values of the restored image using
the DN value classifier of the reference image to map the probability distribution of
the DN values of the reference image to the reference image.

3. Results

In the process of year-by-year NDWI and MNDWI calculations, the inconsistency
of strip color difference caused by image mosaic is a common occurrence. The strip
color difference of images from 1993–2001 and 2013–2021 were repaired and corrected,
respectively. The mean value of NDWI of Landsat TOA images increased from 0.6243
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to 0.6280, and the standard deviation of image elements decreased from 0.1302 to 0.1272;
the mean value of NDWI of Landsat SR images increased from 0.7042 to 0.7279, whereas
the standard deviation of NDWI decreased from 0.2321 to 0.2100. The mean value of
the restored MNDWI of Landsat TOA images increased from 0.8790 to 0.8819, and the
standard deviation of image elements decreased from 0.0897 to 0.0867; the mean value
of the MNDWI of Landsat SR images increased from 0.7565 to 0.7745, and the standard
deviation decreased from 0.2328 to 0.2183.

The results of the time-series analysis of NDWI and MNDWI from 1993–2001 and
2013–2021 are shown in Figure 3. The fluctuations of Landsat TOA images before and after
restoration are smaller than those of Landsat SR. MNDWI is consistently smoother than
NDWI over time, and there are obvious differences between Landsat SR images in 2001 and
2013 in the articulation section. Due to the variances in sensors, picture timing, and climatic
circumstances, as well as the various cloud removal techniques used by TOA photographs
and SR images, it is also evident that Landsat TM and OIL images differ from one another
and because SR images and TOA images use various de-clouding techniques. The R2

of Landsat SR and TOA images after NDWI correction decreased by 0.0450 and 0.0333,
respectively, in comparison to that before restoration, whereas the R2 of Landsat SR and
TOA images after MNDWI image correction increased by 0.0321 and 0.0405, respectively,
compared with that before restoration.
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3.1. Single-Image Analysis

By analyzing the images year by year, differences between the results of Landsat
TM images and OIL images were discovered. To further analyze the effect before and
after image restoration, 1998 and 2016 were selected for separate analyses; the restored
single-view images are shown in Figures 4 and 5. The results demonstrate that the NDWI
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and MNDW images after image restoration are smoother without the strip color difference
created by the mosaic of single-view images, indicating that the restored images can more
accurately depict the desired outcomes.
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The areas with chromatic aberrations in the 1998 and 2016 images were restored in
accordance with the image-stitching stripes, and the mean and standard deviation of NDWI
and MNDWI before and after restoration were calculated based on the idea of restoring
smaller areas. The statistical results are displayed in Table 2. The standard deviation of
the image elements of Landsat SR and TOA images decreased by an average of 0.0283 and
0.0107, respectively, indicating that the effect of using Landsat TOA images for water body
index calculation is superior to that of Landsat SR.

Table 2. Mean values and standard deviations of NDWI and MNDWI of Landsat TOA and SR.

Landsat TOA Landsat SR

Original Restoration Original Restoration

Year Index Mean
Standard

Devia-
tion

Mean
Standard

Devia-
tion

Mean
Standard

Devia-
tion

Mean
Standard

Devia-
tion

1998 NDWI 0.5765 0.1165 0.6065 0.0982 0.6373 0.2255 0.7008 0.1643
MNDWI 0.8751 0.0998 0.8872 0.0783 0.8299 0.1868 0.8638 0.1459

2016 NDWI 0.6486 0.1414 0.6533 0.1400 0.7569 0.2432 0.7814 0.2320
MNDWI 0.8498 0.0900 0.8548 0.0883 0.6262 0.2995 0.6336 0.2996

In order to verify the effect of the restored images of the random forest, the area
random points of the restored image area and the reference image in 1998 were prepared,
with the reference image as the true value and the restored image as the actual value. As
shown in Figure 6, the correlations of both the restored image and the reference image are
high, whereas the correlations of the Landsat SR image NDWI and MNDWI (R2 = 0.9467
and R2 = 0.9451) are slightly lower than those of Landsat TOA images (R2 = 0.9834 and
R2 = 0.9779). In addition, we confirmed that Landsat TOA images were superior to Landsat
SR images for restoration purposes.
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3.2. Multi-Source Image Comparison Analysis

To compare the differences between the restored results of the images matched by the
random forest method and the existing GEE products, a portion of the restored areas of the
2016 images was selected for the present study. Figure 7 shows a comparison of the results
of the restored images of the area to be restored in 2016 with those of the existing products.
The restored results of Landsat TOA and SR image NDWI are shown in Figure 7b,c, and
the corresponding comparison images are shown in Figure 7d–h; Landsat 8-day, 32-day,
and annual images all have varying degrees of band color difference. The results of the
restored areas are better than those of the existing Landsat products. It is sufficient to
determine, by comparing them to the MODIS products, that the MODIS images lack strip
chromatic aberration. The resolution of MODIS is too coarse to determine the presence
of noise, making it unsuitable for the study of images of small areas, whereas the results
of the Sentinel-2 data are more precise. Compared to the Sentine-2 image, the restored
Landsat image has more significant tonal stratification and more accurately reflects the
actual condition of the coastline.
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Figure 7. Comparison of restoration area with different images in 2016. (a) Restoration area in the
study area; (b) post-restoration Landsat TOA NDWI image; (c) post-restoration Landsat SR NDWI
image; (d) Landsat 8-day NDWI image; (e) Landsat 32-day NDWI image; (f) Landsat annual NDWI
image; (g) MOD13Q1 NDWI image; (h) Sentinel-2 NDWI image.

Landsat TOA and SR images of the restored area in 2016 were compared with Landsat
8-day, 32-day, annual, MODIS, and Sentinel 2 results. The statistical results of the differences
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between the restored images and other data products were determined by comparing the
maximum, minimum, mean, and standard deviation of their images of the restored area,
as shown in Table 3. Table 4 shows that the NDWI values of the restored Landsat TOA
images and the higher-resolution Sentinel-2 images are closer, with mean values of 0.7595
and 0.7499, respectively, and the restored Landsat SR images have a high value of 0.9530,
whereas the rest of the Landsat NDWI products are correspondingly low, and the NDWI
values of the lower-resolution MODIS products are relatively high. NDWI values are
relatively high for the lower-resolution MODIS products.

Table 3. Statistical analysis of Landsat images, MODIS images, and Sentinel-2 images.

NDWI Min Max Mean stdDev

Landsat

TOA −0.4465 0.8590 0.7595 0.0194
SR −0.6822 0.9999 0.9530 0.2441

ANNUAL −0.2335 0.8764 0.2478 0.0705
32DAY 0.0469 1 0.5473 0.0568
8DAY 0.1204 1 0.5758 0.0679

MODIS MOD13Q1 −0.9999 1 0.8312 0.2827
Sentinel-2 Level-1C −0.6911 0.8579 0.7499 0.1310

Table 4. Pearson correlation analysis of NDWI with different images.

Landsat MODIS Sentinel-2

NDWI TOA SR ANNUAL 32 Day 8 Day MOD13Q1 Level-1C

Landsat

TOA 1 0.8760 0.2843 −0.0190 0.1734 0.1684 0.5236
SR 0.8755 1 0.2789 0.0010 0.1081 0.1698 0.5350

ANNUAL 0.2789 0.2763 1 0.1137 0.2219 0.0103 −0.0419
32DAY −0.0190 0.0007 0.1137 1 0.7096 −0.0588 −0.1336
8DAY 0.1711 0.1069 0.2219 0.7096 1 0.0362 −0.0806

MODIS MOD13Q1 0.1672 0.1689 0.0103 −0.0588 0.0362 1 0.2197
Sentinel-2 Level-1C 0.5269 0.5358 −0.0419 −0.1336 −0.0806 0.2197 1

Correlation analysis results of the corrected 2016 Landsat images with other data
products are presented in Table 4. With the exception of the higher correlation between the
restored Landsat TOA and SR images, the highest correlation between the restored Landsat
SR images and Sentinel-2 images is 0.5358, followed by the highest correlation between the
Landsat TOA images and Sentinel-2 images. The highest correlation is 0.5269, indicating
that the results of the restored images are most similar to those of the Sentinel-2 images
without strip chromatic aberration, followed by the Landsat annual composite images. Due
to the variable degrees of strip chromatic aberration in Landsat’s multiple composites, the
findings are less similar.

4. Discussion

In this study, we used the GEE platform to first segment the strip chromatic aberrations
in the NDWI and MNDWI image mosaics after the waveform operation and then count the
DN values and their probability distributions of the image to be restored and the reference
images, respectively, by histogram, and used the random forest function to map the DN
values and their probability distributions of the reference image to the image to be restored.
The results show that the restored images are superior to the images before the restoration
in terms of effectively communicating the desired results. Additionally, the restored images
lack any overt banding chromatic aberrations, and the chromatic aberrations are smoother
following the image mosaic. In addition, in order to reduce the image restoration process,
the total area of the image to be restored was limited to less than 50% of the total of the
study area to avoid the results of the restored image from being distorted and thus to
improve the image inversion accuracy.
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Compared with existing research on image restoration, this study has the following
features: 1. In contrast with traditional image restoration techniques based on local ArcGIS
and ENVI software, the technique proposed in this study is based on the GEE cloud plat-
form, which can effectively reduce the time spent on image preprocessing and considerably
improve the efficiency of image restoration. 2. The principle set out in this study is to
restore less than 50% of the area, which can effectively reduce the over-restoration of the
image, avoiding distorted image values. 3. The reference image is also the adjacent area
of the composite image, which ensures the consistency of the tones of the simultaneous
images throughout the restoration process, making it suitable for water index inversion
study of long time series synthesized by Landsat, such as monthly, quarterly, and annual.

In this study, we relied on the powerful cloud computing capabilities of the GEE
platform, which can determine image DN values and probability distribution statistics
using random forest classification and histogram matching in a short period of time.
The study process of image restoration does not correlate with the geographical location,
topography, and climatic conditions in the study area, and the strip color difference of
Landsat’s normalized water body index (NDWI and MNDWI) for long time series is more
generalized. The images processed by the algorithm can eliminate the inconsistency of
color difference, and there is no obvious difference in tones at the edges of the images. In
addition, this algorithm does not encounter the problem of error accumulation caused by
color transfer, so it can be used for multiple color leveling according to the hue of each image
area to be restored, avoiding images being restored based on the same reference image.
The method is suitable for processing the hue inconsistency in the study area because it is
larger than the range of single-view images processed with multiple time-phase synthesis.

Restoration was mainly applied in this research using two indices, NDWI and MNDWI,
and the indices of other multi-band operations were not analyzed. Further analysis of the
indices calculated for other bands is planned in the future to validate and compare the
proposed technique with other method among the indices. Although the method proposed
in this paper can effectively improve image strip chromatic aberration, the identification of
areas where the image strip boundary is not obvious still needs to be improved; in future
research, we will focus on the automatic identification and repair of the strip boundary in
the study area.

We argue that large areas for Landsat image restoration require significant computa-
tional resources and efficient implementation, which was achieved in the present study
using the GEE free platform. Because synthetic images of different time scales produce dif-
ferent chromatic aberration areas, the random forest method used in this study is applicable
to all areas where image chromatic aberration restoration is required in the process of water
surface data processing. In order to verify the regional applicability, we again selected the
Southern African Ocean for analysis; the results show that the method is still applicable.
The relevant code can be viewed at https://code.earthengine.google.com/13697e3deee0
7ac64c6da3a69208ed86?hideCode=true, (accessed on 15 August 2022). We also created
an app for NDWI image restoration for any region of the world, which can be accessed
at https://bqt2000204051.users.earthengine.app/view/landsat5-image--ndwi-restoration,
(accessed on 1 October 2020).

5. Conclusions

In this study, we use a random forest algorithm to restore Landsat images with strip
chromatic aberrations within 50 km of the coastline of the Yucatán Peninsula for a long
time series (1993–2001 and 2013–2021) based on the GEE cloud platform. After restoration,
the overlap between the Landsat SR and TOA images is smoother, and in accordance
with the principle of minimum image restoration, we propose a new algorithm for the
restoration of Landsat images with strip chromatic aberrations. To prevent image distortion
and successfully resolve the problem of strip chromatic aberration in single-view image
mosaics, the restored area is less than 50 percent.

https://code.earthengine.google.com/13697e3deee07ac64c6da3a69208ed86?hideCode=true
https://code.earthengine.google.com/13697e3deee07ac64c6da3a69208ed86?hideCode=true
https://bqt2000204051.users.earthengine.app/view/landsat5-image--ndwi-restoration
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Our results show that Landsat TOA images produce better results in terms of chromatic
aberration and image restoration than Landsat SR images for both the Landsat 5 and
Landsat 8 series. The restored Landsat images more accurately depict the actual conditions
when compared to existing Landsat NDWI images, especially when compared to the
correlation with the 10 m resolution Sentinel-2 images. A comparison of the year-by-year
results of Landsat TOA and SR images shows that Landsat TOA images were smoother in
the long time series of water body index studies compared to Landsat SR.

In general, this paper provides a set of efficient technical processing methods based
on the GEE cloud platform for image restoration of large-scale and long time series water
body indices, solving the problem of strip color difference after Landsat image inversion to
a certain extent. The restoration method described in this paper can be applied to Landsat
images in long time series studies to effectively compensate for image shortcomings.
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30. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

31. Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine
Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2020, 13, 6308–6325. [CrossRef]

32. Liu, J.; Wang, X.; Chen, M.; Liu, S.; Shao, Z.; Zhou, X.; Liu, P. Illumination and Contrast Balancing for Remote Sensing Images.
Remote Sens. 2014, 6, 1102–1123. [CrossRef]

33. Fu, X.; Sun, Y.; LiWang, M.; Huang, Y.; Zhang, X.-P.; Ding, X. A novel retinex based approach for image enhancement with
illumination adjustment. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Florence, Italy, 4–9 May 2014; pp. 1190–1194. [CrossRef]

34. Richter, R. A fast atmospheric correction algorithm applied to Landsat TM images. Int. J. Remote Sens. 1990, 11, 159–166.
[CrossRef]

35. Pinedo-Escatel, J.A.; Aragón-Parada, J.; Dietrich, C.H.; Moya-Raygoza, G.; Zahniser, J.N.; Portillo, L. Biogeographical evaluation
and conservation assessment of arboreal leafhoppers in the Mexican Transition Zone biodiversity hotspot. Divers. Distrib. 2021,
27, 1051–1065. [CrossRef]

36. Lopez, Y.; Berkes, F. Restoring the environment, revitalizing the culture: Cenote conservation in Yucatan, Mexico. Ecol. Soc. 2017,
22, 7. [CrossRef]

37. McColl, R.W. Encyclopedia of World Geography; Infobase Publishing: New York, NY, USA, 2005; p. 1216.
38. Adame, M.F.; Santini, N.S.; Torres-Talamante, O.; Rogers, K. Mangrove sinkholes (cenotes) of the Yucatan Peninsula, a global

hotspot of carbon sequestration. Biol. Lett. 2021, 17, 20210037. [CrossRef] [PubMed]
39. Adame, M.F.; Kauffman, J.B.; Medina, I.; Gamboa, J.N.; Torres, O.; Caamal, J.P.; Reza, M.; Herrera-Silveira, J.A. Carbon Stocks

of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS ONE 2013, 8, e56569. [CrossRef]
[PubMed]

40. Cinco-Castro, S.; Herrera-Silveira, J. Vulnerability of mangrove ecosystems to climate change effects: The case of the Yucatan
Peninsula. Ocean Coast. Manag. 2020, 192, 105196. [CrossRef]

41. Torrescano-Valle, N.; Folan, W.J. Physical Settings, Environmental History with an Outlook on Global Change. In Biodiversity and
Conservation of the Yucatán Peninsula; Springer: Cham, Switzerland, 2015; pp. 9–37. [CrossRef]

42. Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.;
Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A New Global Map of
Terrestrial Ecoregions Provides an Innovative Tool for Conserving Biodiversity. Bioscience 2001, 51, 933–938. [CrossRef]

43. McFeeters, S.K. Using the Normalized Difference Water Index (NDWI) within a Geographic Information System to Detect
Swimming Pools for Mosquito Abatement: A Practical Approach. Remote Sens. 2013, 5, 3544–3561. [CrossRef]

http://doi.org/10.1007/s12524-021-01463-x
http://doi.org/10.3390/atmos12070866
http://doi.org/10.1016/j.rsase.2017.08.010
http://doi.org/10.1016/j.rsase.2021.100547
http://doi.org/10.1080/01431160600589179
http://doi.org/10.1016/j.rse.2020.111665
http://doi.org/10.3390/rs13040786
http://doi.org/10.3390/rs14092218
http://doi.org/10.14358/PERS.71.9.1079
http://doi.org/10.5194/isprsarchives-XL-7-W3-735-2015
http://doi.org/10.1016/j.isprsjprs.2012.04.001
http://doi.org/10.1016/j.ecolmodel.2005.11.007
http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.1109/JSTARS.2020.3026724
http://doi.org/10.3390/rs6021102
http://doi.org/10.1109/icassp.2014.6853785
http://doi.org/10.1080/01431169008955008
http://doi.org/10.1111/ddi.13254
http://doi.org/10.5751/ES-09648-220407
http://doi.org/10.1098/rsbl.2021.0037
http://www.ncbi.nlm.nih.gov/pubmed/33947219
http://doi.org/10.1371/journal.pone.0056569
http://www.ncbi.nlm.nih.gov/pubmed/23457583
http://doi.org/10.1016/j.ocecoaman.2020.105196
http://doi.org/10.1007/978-3-319-06529-8_2
http://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
http://doi.org/10.3390/rs5073544


Remote Sens. 2022, 14, 5154 15 of 15

44. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

45. Reza, M.; Miri, S.; Javidan, R. A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset. Int. J.
Adv. Comput. Sci. Appl. 2016, 7, 20–25. [CrossRef]

46. Jin, Z.; Shang, J.; Zhu, Q.; Ling, C.; Xie, W.; Qiang, B. RFRSF: Employee Turnover Prediction Based on Random Forests and
Survival Analysis. In WISE 2020: Web Information Systems Engineering—WISE 2020; Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2020; Volume 12343, pp. 503–515. [CrossRef]

47. Chen, C.; Liaw, A.; Breiman, L. Using Random Forest to Learn Imbalanced Data. Discovery 1–12. Available online: https:
//statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf (accessed on 6 September 2022).

48. Sadras, V.; Bongiovanni, R. Use of Lorenz curves and Gini coefficients to assess yield inequality within paddocks. Field Crop. Res.
2004, 90, 303–310. [CrossRef]

http://doi.org/10.1080/01431169608948714
http://doi.org/10.14569/IJACSA.2016.070603
http://doi.org/10.1007/978-3-030-62008-0_35
https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
http://doi.org/10.1016/j.fcr.2004.04.003

	Introduction 
	Materials and Methods 
	Study Area 
	Data and Processing 
	Image Collection 
	Image Processing 

	Methods 
	NDWI and MNDWI 
	Random Forest Algorithm 


	Results 
	Single-Image Analysis 
	Multi-Source Image Comparison Analysis 

	Discussion 
	Conclusions 
	References

