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Abstract: The proliferation of massive polarimetric Synthetic Aperture Radar (SAR) data helps
promote the development of SAR image interpretation. Due to the advantages of powerful feature
extraction capability and strong adaptability for different tasks, deep learning has been adopted in
the work of SAR image interpretation and has achieved good results. However, most deep learning
methods only employ single-polarization SAR images and ignore the water features embedded in
multi-polarization SAR images. To fully exploit the dual-polarization SAR data and multi-scale
features of SAR images, an effective flood detection method for SAR images is proposed in this
paper. In the proposed flood detection method, a powerful Multi-Scale Deeplab (MS-Deeplab)
model is constructed based on the dual-channel MobileNetV2 backbone and the classic DeeplabV3+
architecture to improve the ability of water feature extraction in SAR images. Firstly, the dual-
channel feature extraction backbone based on the lightweight MobileNetV2 separately trains the
dual-polarization SAR images, and the obtained training parameters are merged with the linear
weighting to fuse dual-polarization water features. Given the multi-scale space information in
SAR images, then, a multi-scale feature fusion module is introduced to effectively utilize multi-
layer features and contextual information, which enhances the representation of water features.
Finally, a joint loss function is constructed based on cross-entropy and a dice coefficient to deal
with the imbalanced categorical distribution in the training dataset. The experimental results on
the time series of Sentinel-1A SAR images show that the proposed method for flood detection
has a strong ability to locate water boundaries and tiny water bodies in complex scenes. In terms
of quantitative assessment, MS-Deeplab can achieve a better performance compared with other
mainstream semantic segmentation models, including PSPNet, Unet and the original DeeplabV3+
model, with a 3.27% intersection over union (IoU) and 1.69% pixel accuracy (PA) improvement than
the original DeeplabV3+ model.

Keywords: synthetic aperture radar; feature fusion; Deeplab model; flood detection

1. Introduction

Floods and secondary disasters caused by persistent heavy precipitation weather not
only bring huge economic loss but also pose serious threats to people’s lives every year.
Extreme climate changes under the control of unstable monsoon circulation have led to
frequent flooding in recent years, which triggers a series of urban flooding, flash floods,
and river breaches [1,2].

In the era of big data for earth observation, massive amounts of satellite data show
great promise for real-time flood mapping. Without field investigation, satellite-based
Synthetic Aperture Radar (SAR) sensors can obtain a wide range of disaster situations in
a short time [3]. Especially, the Sentinel-1 data, which has a short revisit cycle and can
be downloaded online for free, has greatly promoted the application of SAR images in
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disaster monitoring [4]. Flood disasters are often accompanied by cloudy and rainy weather,
in which case SAR sensors can also provide thorough surface observation in comparison
with traditional optical sensors [5]. Thus, it is of significant importance to use SAR images
for real-time monitoring and disaster assessment of floods [6–8].

The segmentation algorithm is an effective method for automatic interpretation of
SAR images. Traditional image segmentation algorithms based on thresholding, clustering,
level set and edge detection can extract targets quickly. However, meeting the requirements
of disaster assessment is difficult since they are vulnerable to the inherent coherent speckle
noise of SAR images and the complex environment [9,10]. Traditional segmentation algo-
rithms try to use a certain fixed mapping relationship to divide the categories of pixels in
SAR images. Nevertheless, in order to deal with the inherent speckle noise in SAR images,
many parameters in traditional algorithms need to be modified repeatedly, which leads
to the lack of flexibility of these algorithms. With the continuous development of deep
learning technology and GPU hardware, deep learning has been applied to SAR image
segmentation tasks in more and more studies in recent years.

By virtue of its powerful feature learning ability, Convolutional Neural Network
(CNN) has achieved promising results in tasks such as semantic segmentation and target
detection of SAR images [11–13]. Due to the multi-layer structure, CNN can automatically
extract multi-level image features. The shallow layers are able to capture more intuitive
image features, while the deep layers can extract more abstract features. The multi-layer
features in SAR images extracted by convolutional layers are helpful for water segmentation
and object classification [14]. In [15], CNN is employed to segment water bodies in different
scenarios: mountain lakes, plain lakes, wide rivers and narrow rivers, and experimental
results show that the performance of CNN is much better than traditional algorithms such
as OTSU and SVM. Representative deep learning models for segmentation, including U-
Net, Fully Convolutional Network (FCN) and High Resolution Network, are also utilized to
perform water segmentation [16]. In [17], H-A-α polarimetric decomposition is integrated
with FCN to exploit the polarimetric information in PolSAR images. The salient issue of
SAR image flood detection is the accurate localization and maintenance of water boundaries.
However, when current CNNs are directly applied to complex SAR image segmentation,
it is easy to cause edge blurring and visual degradation of segmentation results [18].
In order to effectively preserve the edge structure of the water body, the conditional
random field model is adopted in the U-Net [18]. Meanwhile, the extraction of multi-scale
features is an important approach to improving the accuracy of edge location. In [19],
the multi-scale joint prediction was introduced into DeeplabV3+, which could not only
achieve accurate identification of water body details but also improve the generalizability
of the model. To overcome the inherent limitation that the convolution operation in
CNN cannot access the global information of the image [20,21], Long Short-Term Memory
(LSTM) and Recurrent Neural Network (RNN) have also been introduced for SAR image
detection and segmentation [22,23]. These methods improve the capability of contextual
information retrieval by learning long-range spatial dependencies to some extent but greatly
increases the complexity of models and the difficulty of training. In addition, most related
studies ignore the structural features of water embedded in multi-polarization (cross-
polarization and co-polarization) SAR images [24]. Due to the influence of other dark
surfaces (such as asphalt roads) and radar shadows in SAR images, flood detection from
single-polarization SAR images is difficult. However, multi-polarization SAR images can
provide more information about water body properties. Furthermore, rough water surfaces
may be blanketed in copolarization SAR data, whereas cross-polarization SAR data can still
provide water evidence [25]. In [17], H-A-α polarimetric decomposition is integrated with
FCN to exploit the polarimetric information in PolSAR images, with an overall accuracy rate
of up to 95%. The segmentation accuracy is improved by the polarimetric decomposition
of PolSAR images, but polarimetric decomposition instead of direct application of multi-
polarization SAR data increases the complexity of the detection process. As far as flood
detection in SAR images, multi-polarization features and more contextual information are
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both required to guide the prediction of local water pixels in the case of complex scenes.
Thus, it is still a challenge to develop a network that can efficiently exploit the structure
features of water embedded in multi-polarization SAR data.

According to the above-mentioned analysis, this study aims to develop a deep learning
method to improve the accuracy of flood detection in dual-polarization SAR images.
Firstly, the SAR-BM3D algorithm based on the nonlocal approach is used for speckle
noise suppression. Meanwhile, two-level image enhancement operation is adopted to
further improve the identifiability of targets in SAR images. Then, multi-scale Deeplab
(MS-Deeplab) for flood detection in dual-polarization SAR images is constructed based
on a lightweight MobileNetV2 backbone and the classic DeeplabV3+. In MS-Deeplab,
the dual-channel backbone is designed to train dual-polarization SAR images, and a multi-
scale feature fusion module is introduced in the backbone to concatenate the multi-layer
features of SAR images. Last but not least, a joint loss function based on cross-entropy and
a dice coefficient is constructed to improve the generalization ability of the model. Finally,
the final flood detection results are obtained by the difference method for time series of
SAR images. In summary, the main contributions of this paper are as follows:

• An improved MS-Deeplab is proposed for flood detection in dual-polarization (VV
and VH polarization) SAR images. The novel MS-Deeplab model can directly make
full use of dual-polarization characteristics of water to realize the accurate detection
of a flood.

• A dual-channel backbone based on MobileNetV2 is designed to fuse dual-polarization
information of SAR images. The dual-polarization (VV and VH polarization) SAR
images are separately trained by the dual-channel backbone, and the training parame-
ters obtained from two channels are weight fused to compensate for the limitations
of feature extraction from single-polarization data, which is helpful to enhance the
structural features of water bodies.

• A more effective multi-scale feature fusion module is introduced to concatenate multi-
layer features in the backbone and enrich the representation ability of water features.
Under the guidance of more contextual information, the ambiguities of local prediction
can be resolved to accurately segment the water body pixels.

• A joint loss function is constructed based on cross-entropy and a dice coefficient to
deal with data imbalance, which can reduce the risk of overfitting caused by a large
range of background pixels.

The remainder of this paper is organized as follows. In Section 2, related work in
this paper, including MobileNetV2 and DeeplabV3+, is briefly introduced. In Section 3,
the research data are presented. In Section 4, the flood detection method is proposed
in detail. The experimental results based on time series of SAR images are presented in
Section 5. The discussion of experimental results is provided in Section 6. Finally, the whole
paper is concluded in Section 7.

2. Related Work

During the past few years, water body segmentation in SAR images based on CNNs
has achieved great success. Recently, the representative models of segmentation bench-
marks are FCN, U-Net and Deeplab series. In Deeplab series, DeeplabV3+ can pay attention
to more contextual information in the huge remote sensing background due to the atrous
convolution. Meanwhile, the result of segmentation can be refined by the improved de-
coder in DeeplabV3+, which is helpful in accurately locating the boundary of water bodies.
Thus, an improved MS-Deeplab model is constructed for flood detection based on the
framework of DeeplabV3+ in this paper. Considering the efficiency of MobileNetV2 during
feature extraction, the lightweight MobileNetV2 is used as the backbone for water feature
extraction. In this section, related works, including MobileNetV2 and DeeplabV3+, are
briefly reviewed as below.
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2.1. MobileNetV2

The lightweight MobileNetV2 network is an efficient and powerful feature extractor
for real-time operation. Depth-wise separable convolution and the inverted residual with
a linear bottleneck are both adopted in MobileNetV2 [26], which can reduce the number
of parameters and speed up the convergence rate while retaining the accuracy. Therefore,
for large amounts of SAR data, MobileNetV2 can quickly and accurately extract water
features. In comparison with a standard convolution, a depth-wise separable convolution
is factorized into a depth-wise convolution and a point-wise convolution. In the depth-
wise separable convolution, the depth-wise convolution performs lightweight filtering
with a single convolutional filter for per input channel, while a point-wise convolution
builds new features by computing linear combinations of channels. As shown in Figure 1,
the residual block with a linear bottleneck in MobileNetV2 consists of a 1× 1 convolutional
layer, a depth-wise separable convolutional layer and another 1× 1 convolutional layer.
If the stride of the depth-wise separable convolution in the residual block is set to 1,
the input feature map is no longer down-sampled, and the input and output of the block
are added element by element. The benefit from the above operation is that the computation
complexity of MobileNetV2 is drastically reduced.

Input

1×1 conv 
Relu

1×1 conv 
Linear

Stride=1 block

Input

1×1 conv 
Relu

1×1 conv 
Linear

Stride=2 block

3×3 Dwise conv, stride=1 

depth-wise conv

point-wise conv

Relu

3×3 Dwise conv, stride=1 

depth-wise conv

point-wise conv

Relu

Figure 1. The schematic diagram of residual blocks with a linear bottleneck in MobileNetV2. ⊕ de-
notes element-wise addition, and Dwise conv represents depth-wise separable convolution.

As shown in Table 1, for the fragmented SAR image patches of 512 × 512 pixels,
the MobileNetV2 backbone adopted in this paper is composed of a convolution layer and
16 residual bottleneck layers. In each line of Table 1, the same layer is repeated n times, c
denotes the output channels of each operator, s denotes the stride of the first layer in each
operator and the stride of the other layers in each bottleneck is set to 1. Finally, the size of
output feature map is 32 × 32 pixels in our experiment.

Table 1. The structure of MobileNetV2 used in this paper.

Input Size Operator c n s

512 × 512 × 2 Conv2D 32 1 2
256 × 256 × 32 bottleneck 16 1 1
256 × 256 × 16 bottleneck 24 2 2
128 × 128 × 24 bottleneck 32 3 2
64 × 64 × 32 bottleneck 64 4 2
32 × 32 × 64 bottleneck 96 3 1
32 × 32 × 96 bottleneck 160 3 1
32 × 32 × 160 bottleneck 320 1 1
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2.2. DeeplabV3+

The Deeplab series is one the most effective segmentation models, and DeeplabV3+ is
honored as a new peak in the field of image segmentation. Compared with the previous
version of Deeplab series, a simple yet effective decoder module is introduced to gradually
recover the spatial information captured by the backbone and refine the segmentation
results. The Atrous Spatial Pyramid Pooling (ASPP) module is also introduced in the
encoding–decoding structure of DeeplabV3+ to obtain image feature information of more
scales. Recently, DeeplabV3+ has been widely used in remote sensing image segmen-
tation such as water extraction and ship image segmentation, apart from natural scene
segmentation [27,28].

The schematic diagram of DeeplabV3+ is presented in Figure 2 [29]. The encoder–
decoder structure of DeeplabV3+ has shown great prospects in various computer vision
tasks [30,31]. In the encoder module shown in Figure 2, a Deep Convolutional Neural
Network (DCNN) gradually down-samples feature maps and captures complex semantic
features. Additionally, ASPP at the end of the encoder probes convolutional features at dif-
ferent scales. During the upsampling process of the decoder module, a 3 × 3 convolutional
layer is adopted to refine the semantic features.

DCNN

1×1 conv

1×1 conv

upsampling

1×1 conv concat 3×3 conv upsampling

Encoder

Decoder

Low-level 
features

ASPP

image pooling

atrous conv

atrous conv

atrous conv

Input

Prediction

Figure 2. The schematic diagram of DeeplabV3+.

Compared with the traditional linear model, ASPP at the end of the backbone expands
the receptive field of the convolutional kernel by adopting parallel atrous convolution
with different dilation rates [32]. Assuming a convolution kernel w, for each location i,
the output feature map y is given as follows:

y[i] = ∑
k

x[i + rk]w[k], (1)

where x represents the input feature map, r denotes the expansion rate. Thus, the encoder
module in DeeplabV3+ is able to learn richer semantic information, which is helpful in
capturing the contextual information in large-scene SAR images.

In order to reduce the loss of spatial information in the backbone, shallow features of
the DCNN are fused with the output of the encoder in DeeplabV3+. As shown in Figure 2,
the feature maps captured by the encoder are divided into two parts. One part is the output
of ASPP, and the other part is low-level features from DCNN. In the decoder module,
the two parts are concatenated to enhance detailed features and spatial information. In this
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paper, the DCNN is replaced with the lightweight MobileNetV2 to extract water features
accurately and quickly.

3. Materials
3.1. Study Data and Area

In this paper, Sentinel-1A Ground Range Detected (GRD) products provided by the
Scientific Data Hub of the European Space Agency (ESA) are used to validate the ef-
fectiveness and reliability of the proposed method. Sentinel1 data products are made
available systematically and can be downloaded from the Alaska Satellite Facility (https:
//search.asf.alaska.edu/, accessed on 3 March 2022 ). Sentinel-1A is an active microwave
remote sensing satellite, launched by ESA in April 2014. The Sentinel-1 constellation offers
a continuity of wide area coverage, achieving higher resolution and global coverage over
landmasses. The C-band SAR instrument operating at a center frequency of 5.405 GHz sup-
ports operation in dual polarization implemented through one transmit chain (switchable
to H or V) and two parallel receive chains for H and V polarization.

The study areas are related to the regions near the Anyang River and Xinxiang City,
Henan Province, China. Anyang, located in the north of Henan province and lying at the
junction of Henan, Shanxi and Hebei provinces, is one of the eight ancient capitals of China,
a national famous historical and cultural city, as well as an excellent tourist city of China. It
is really worthy of its reputation for being an imperial capital 3000 years ago. Xinxiang,
the political, economic, cultural and traffic center of Northern Henan province, has often
suffered from floods throughout history due to the low-lying terrain. On 20 July 2021,
Henan suffered a large-scale extreme heavy rainfall, leading to a serious flood disaster.
In view of the important geographical locations of Anyang and Xinxiang and the huge
impact on flood disasters, parts of the two cities are selected as the study areas in this paper.
Image locations of the study areas are shown in Figure 3, and the SAR image information
is presented in Table 2.

Figure 3. Locations of study areas.

https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
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Table 2. Parameters of the Sentinel-1A SAR image used in the experiment.

Sentinel-1A Parameter

Product format Level-1 GRD
Beam mode Interferometric Wide swath
Polarization VV+VH
Resolution 20 × 22 m

Band C
Number of looks 5 × 1
Collected Date 15 July 2021, 27 July 2021, 8 August 2021

3.2. SAR Image Pre-Processing

The Sentinel-1A data were firstly pre-processed on the Sentinel Application Platform
software provided by ESA. The pre-processing of dual-polarization SAR images mainly
consists of: (1) Orbit file application, (2) image alignment, (3) radiometric calibration,
(4) geocoding.

In order to reduce the brightness differences of time series of SAR images acquired at
different times, a brightness equalization operation is adopted as follows:

y =
x 1

N ∑N
i=1 mean(xi)

mean(x)
, (2)

where x represents the amplitude before image correction, y represents the amplitude
after image correction, N is the number of scenes of the time series SAR images, mean(·)
denotes the amplitude average of a SAR image, and xi represents the amplitude of the ith
scene image.

Then, the speckle noise suppression and image enhancement are performed to improve
the accuracy of subsequent segmentation. Due to the coherent imaging mechanism of SAR,
coherent speckle noise inevitably exists in SAR images, which is manifested by the presence
of randomly scattered bright pixels in the homogeneous regions. Thus, the backscattering
coefficient of the object cannot be correctly reflected in SAR images, and the fine structure
of the SAR image is easy to be covered. In addition, the areas with low contrast in SAR
images may seriously affect interpretation and readability [33].

In order to reduce the interference of speckle, the SAR-BM3D algorithm is performed
in the pre-processing of SAR images. Based on the nonlocal approach and wavelet domain
shrinkage, SAR-BM3D algorithm consists of two main steps [34]. As shown in Figure 4,
in the first step, a basic estimation x̂, and the statistics α are generated for the subsequent
Wiener filtering. Then, the actual despeckling is carried out in the second step based on the
estimated results generated by the first step. Both steps are carried out by the following
operations: grouping, collaborative filtering and aggregation. In the implementation
process, there exist some differences between the two steps.

step 1 computation  
of statistics

step 2

Figure 4. The schematic diagram of the SAR-BM3D algorithm. x denotes the input image, and y
denotes the filtered image.
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For the first step, in the grouping operation, the most similar target blocks in the L-look
SAR image are clustered into a 3D stack according to the following distance criterion [33]

d = [a(Bs), a(Bt)] = (2L− 1)∑
k

log[
a(s + k)
a(t + k)

+
a(t + k)
a(s + k)

], (3)

where d denotes the similarity, and Bs and Bt represent the block centered on s and t,
respectively, a(·) represents the amplitude, and k is used to scan the block. The collaborative
filtering of the clustered 3D stack is carried out by wavelet shrinkage and inverse wavelet
shrinkage. In the aggregation operation, all filtered blocks are returned to their original
positions through a weighted average.

For the second step, the blocks are located based on the pilot generated in the first
step. Each clustered 3D stack undergoes wavelet shrinkage, Wiener filtering, and inverse
transform. Finally, the aggregation operation is the same as that in the first step.

Finally, a two-level image enhancement operation is introduced for analysis conve-
nience. As shown in Figure 5, the histogram equalization and logarithmic transformation
are both adopted to improve the contrast of filtered SAR images in the two-level image
enhancement operation. Since an SAR image is generally dark overall, the components
of its histogram are mostly concentered on the low side of the image amplitude. The his-
togram equalization operation can extend the histogram of SAR images and effectively
enhance the image contrast by redistributing the image element values [35]. In order to
further enhance the details of the water region and the edges with lower gray values that
are easily obscured, the image amplitude is extended again by logarithmic transformation.
The two-level image enhancement operation in this paper, based on histogram equalization
and logarithmic transformation, is beneficial to improve the accuracy of subsequent SAR
image detail and edge interpretation to a certain extent.

Histogram
Equalization

Logarithmic
Transformation

filtered 
 SAR image

enhanced
SAR image

Figure 5. The two-level image enhancement operation.

3.3. Generation of Dataset

The flood detection training dataset is generated based on Sentinel-1A VV and VH
polarization SAR images. In order to obtain the comprehensive and accurate ground truth,
the SAR images are labeled manually according to Google Earth on the Labelme software.
Then, both training SAR images and the ground truth are cropped into a common size of
512 × 512 pixels.

The testing dataset is generated based on the time series of Sentinel-1A SAR images
related to the regions near Anyang River and Xinxiang City. The sizes of SAR images for
Anyang River and Xinxiang City are 2048 × 1024 pixels and 5120 × 5120 pixels, and all of
the testing SAR images are also cropped into a common size of 512 × 512 pixels.

4. Methodology
4.1. Overview

The flowchart of the proposed flood detection method is presented in Figure 6. Af-
ter the data acquisition and SAR image pre-processing, the dual-polarization Sentinel-1A
SAR images are fed into the proposed MS-Deeplab model. The proposed MS-Deeplab
model is mainly divided into four parts. In the part of the encoder, a dual-channel back-
bone (MobileNetV2) is constructed to extract water features from dual-polarization SAR
images. In the second part, a multi-scale feature fusion module is introduced to concatenate
multi-level feature maps, which is able to obtain richer semantic information and more
contextual information. In part of the decoder, the aggregated feature maps from the output
of the encoder and the multi-scale feature fusion module are subjected to convolution and
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upsampling operations to refine the water segmentation results. Subsequently, a joint loss
function is obtained by comparing the ground truth and the prediction results. Finally,
based on the water extraction results, the flood detection results for time series of SAR
images of study areas can be obtained by the difference method.

Data 

acquisition

Dual-polarization Sentinel-1A SAR images

SAR image 

pre-processing

Orbit correction

Image alignment

Radiometric calibration

Geocoding

Speckle suppression with SAR-BM3D

Image enhancement

Water 

segmentation

Multi-scale feature fusion module

Joint loss function

Convolution 

Upsamling

Dual-channel feature extraction

MobileNetV2 MobileNetV2

Dual-channel feature extraction

MobileNetV2 MobileNetV2

MS-Deeplab model

Flood

detection

VVVH
Ground

truth

Map of flood

Encoder

Decoder

Difference methodPost-processing

Figure 6. The flowchart of the proposed flood detection method.
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4.2. The Proposed MS-Deeplab Model

As a new peak in the field of semantic segmentation, the encoding–decoding architec-
ture in DeeplabV3+ can extract spatial information and refine segmentation results when
recovering semantic features. However, the original DeeplabV3+ model is designed to
process close-range images and natural scene segmentation and is not suitable to directly
segment SAR images. SAR images contain less information than color images, and color fea-
tures are one of the primary features for discriminating objects [36]. Furthermore, blurred
edges and low contrast make it difficult to detect floods directly in SAR images.

In large-scene SAR images, extensive connected water bodies and isolated tiny water
bodies exist together, and the boundaries of flooded areas are usually blurred. These charac-
teristics put higher requirements on the detection accuracy and applicability of the segmen-
tation model. Combining the dual-polarization features of SAR data and the multi-scale
water features in large-scene SAR images, MS-Deeplab based on the DeeplabV3+ architec-
ture is constructed to be applicable to flood detection in SAR images in this work. Firstly,
the dual-channel feature extraction backbone (MobileNetV2) is constructed to capture the
features of dual-polarization SAR images, and the model parameters of VH-polarization
channel and VV-polarization channel are weight-fused to enhance the structural character-
istics of water areas. Then, a multi-scale feature fusion module is introduced to fuse the
output of the encoder with the multi-layer features of the backbone in the channel dimen-
sion. Finally, a joint loss function based on cross-entropy loss and dice loss is constructed
to improve the generalization performance of the model. The schematic diagram of the
proposed MS-Deeplab model is shown in Figure 7.

4.2.1. Dual-Channel Feature Extraction Backbone

Considering the lack of color information in SAR images, in the encoder module,
the lightweight MobileNetV2 network is adopted as the backbone to extract the limited
features from SAR images. The depth-wise separable convolution and the inverted residual
in the MobileNetV2 structure can speed up the convergence rate while retaining the high-
dimensional features. Additionally, in order to maintain small-scale water bodies in SAR
images, down-sampling is implemented only three times after the first convolutional layer
in the backbone.

Usually, only single-polarization SAR data are used in previous studies based on
deep learning [24]. This ignores the different characteristics of co-polarization and cross-
polarization in SAR images and easily leads to the incomplete extraction of complex waters.
Compared with single-polarization SAR data, multi-polarization SAR images contain
richer target features since the backscatter coefficient of the target is a function of the
radar frequency, polarization mode, etc. [37]. Rough water surface may be covered in
co-polarization SAR images, while water features can still be revealed in cross-polarization
SAR images [38]. In addition, shallow water is hard to segment due to the albedo of the
underlying substrate and the mixed spectral response from the water, and other dark
surfaces, such as asphalt roads and radar shadows caused by tall buildings and trees,
are major obstructions of accurate flood detection [39,40]. In such case, it is difficult to
accurately detect floods with single-polarization SAR data, while the rich water features
in multi-polarization SAR data are helpful in reducing detection errors. Therefore, a dual-
channel feature extraction backbone is constructed in the model in order to improve the
ability to capture water features from dual-polarization SAR data. Dual-polarization (VV,
VH) SAR images are separately trained by the dual-channel backbone, and the parameters
are merged with the linear weighting as follows:

z = m fVV + n fVH , (4)

where fVV and fVH represent the two channel parameters, and m and n denote weighted
values. In this work, m and n are both set to 0.5. This operation makes the best use of the
dual-polarization information and enhances the structural characteristics of water areas.
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Figure 7. The schematic diagram of the proposed MS-Deeplab model.
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4.2.2. Multi-Scale Feature Fusion

CNNs are constructed by stacking convolutional and pooling layers, and each layer
of CNNs can contribute to image understanding [31]. The features of objects consisting
of only low-level features are clustered in the shallower layers of the network, while the
features of objects with high-level features are clustered in the deeper layers. In a CNN,
deep feature maps containing more semantic information help in category prediction,
and shallow feature maps containing more image spatial information help in the generation
of fine boundaries. Thus, multi-scale features can obtain different scales of the targets,
which should be highly considered in many computer vision tasks [41,42]. However,
the model generally has difficulty in reaching a balance between classification accuracy
and edge localization as the depth of the network increases. Due to the loss of some feature
information, a single output feature map can lead to the missing detection of tiny water
bodies in large-scene SAR images with water areas of different sizes. Although ASPP in
the original DeeplabV3+ can obtain features at different scales with atrous convolution
from the last convolutional layer, it cannot make effective use of shallow features and
loses the continuity of features due to the grid effect. Since the low-level feature spectrum
(high-resolution) is conducive to generating fine boundaries while the high-level feature
spectrum (low-resolution) is conducive to category prediction, an effective multi-scale
feature fusion module is introduced into the backbone to further expand the feature space
of the proposed MS-Deeplab model. A schematic diagram of the multi-scale feature fusion
module introduced in this paper is shown in Figure 8.

upsampling upsampling

concat

Multi-scale features

Output of 

MobileNetV2 

backbone

Input

1feat 2feat 3feat

1×1 conv

Figure 8. The schematic diagram of multi-scale feature fusion module.

Compared with the single output of the linear model, multi-scale feature output of the
backbone can compensate for the low resolution of high-level features. In the multi-scale
feature fusion module shown in Figure 8, feature maps ( f eat1, f eat2, f eat3) from three
layers are concatenated together to generate a combined feature that contains richer and
more discriminative water features, and multi-scale water features obtained by connecting
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the features of multiple convolutional layers can enhance the representation ability of MS-
Deeplab. By fusing the features of different depths in the backbone, both high-dimensional
features and low-dimensional features are taken advantage of to obtain a larger range of
contextual information. The series of operations are beneficial to accurately detect water
bodies of different scales. Here, the three feature maps are 1/2, 1/4, 1/16 times the input
SAR image, respectively. In this module, no operations are performed on f eat1,and f eat2
and f eat3 from two deeper layers are upsampled by a factor of two and eight, respectively,
to obtain the same scale as f eat1. Then, f eat1, f eat2 and f eat3 are concatenated in the
channel dimension by the concat operation. Subsequently, a 1× 1 convolution operation
is performed after the concat operation to reduce the number of channels. The obtained
multi-scale features can be used in the subsequent decoder to improve the accuracy of the
prediction. The ambiguities of local pixel prediction can be resolved under the guidance of
contextual information from multi-scale features. Meanwhile, larger-scale feature maps in
shallow layers are helpful for the localization of fine boundaries and the segmentation of
small water bodies. As a result, the multi-scale feature fusion module shown in Figure 8
can accurately segment the high-dimensional semantics while making full use of the
low-dimensional details and texture information.

4.2.3. Joint Loss Function

In order to deal with the imbalanced categorical distribution in the training dataset
and improve the generalization ability of the proposed model, a joint loss function is
constructed based on cross-entropy loss and dice loss in this work.

In the semantic segmentation task, cross-entropy loss Lce refers to the contrast between
the ground truth and the prediction of pixels [43], which is defined as:

Lce = −
1
N ∑

i
∑

j∈{0,1}
yij log pij, (5)

where N represents the number of pixels, yij denotes the ground truth of a pixel, and pij
denotes the prediction of a pixel. Since the pixel-wise error is calculated equally for each
pixel, cross-entropy loss may lead to the over-representation of a larger background and
reduce the generalization performance of the model.

Dice loss Ld is used to evaluate the similarity between two samples based on the dice
coefficient, which is defined as:

Ld = 1− 2|X ∩Y|
|X|+ |Y| , (6)

where X represents the ground truth, and Y represents the prediction. In the binary
classification task, assuming that 0 represents the background and 1 represents the target,
|X ∩Y| pays more attention to the target if |X ∩Y| = 0, which can weaken the class
imbalance [44].

Considering that water segmentation in SAR images is a task with highly imbalanced
classes, where there are far more background pixels than water pixels, the joint loss function
L in this paper is constructed by

L = Lce + Ld. (7)

5. Results

In this section, Level-1 GRD products in VV and VH channels are used to test the
performance of the proposed method. Figures 9 and 10 present the tested time series of
Sentinel-1A images related to the regions near Anyang River and Xinxiang City in Henan
Province, China. It can be seen that the edges of the flood area in the two tested regions are
both blurred. The complex terrain features of tested regions present a great challenge for
detecting the water bodies accurately.
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Figure 9. Time series of SAR images and segmentation results of the area near Anyang River. The first
row is the time series of SAR images. The second row is the ground truth. The third row is the
segmentation results generated by PSPNet. The fourth row is the segmentation results generated
by UNet. The fifth row is the segmentation results generated by DeeplabV3+. The sixth row is the
segmentation results generated by the proposed MS-Deeplab model.
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Figure 10. Time series of SAR images and segmentation results of the area near Xinxiang City.
The first row is the time series of SAR images. The second row is the ground truth. The third row is
the segmentation results generated by PSPNet. The fourth row is the segmentation results generated
by UNet. The fifth row is the segmentation results generated by DeeplabV3+. The sixth row is the
segmentation results generated by the proposed MS-Deeplab model.
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The proposed MS-Deeplab model in this paper and other mainstream deep learning
methods, including PSPNet [45], UNet [46] and original DeeplabV3+, are used to extract
the water bodies before and after the flood. All of these models adopt MobileNetV2 as
the backbone. The experiments are carried out based on PyTorch Library, accelerated by
Tesla A100 GPU in this work. In order to avoid the impact of hyper-parameters on the
experimental results, hyper-parameters in the proposed MS-Deeplab model and other
models are configured uniformly as follows: initial learning rate 1× 10−4, batch size 5,
epoch 300 and optimizer Adam.

The segmentation results generated by different methods are presented in Figures 9 and 10.
For a 512 × 512 pixel SAR image, the inferring time of the proposed MS-Deeplab mode is
26 ms on 2060 MAX-Q GPU. The segmentation results on 15 July show that only strip rivers
and lakes are detected in the two regions. On 27 July, after the rainstorm, the detection
results directly reflect that the rainstorm caused large areas to be submerged. After several
days, most of the floods in the affected areas have faded, and the flood situation has
stabilized, but relatively dense isolated water bodies can still be detected. As shown in
Figures 9 and 10, the proposed MS-Deeplab model can not only locate the water bodies but
also maintain the weak edges of complex water bodies better overall.

In order to further verify the effectiveness and accuracy of the proposed method, six
typical regions enclosed by red rectangles in Figures 9 and 10 are enlarged in Figure 11.
The segmentation results of six typical regions A-F generated by the proposed MS-Deeplab
model and other mainstream deep learning methods are also enlarged in Figure 11. The first
column is the SAR images, and the second column is ground truth, where white represents
the water body and black represents the background. The water bodies in six selected
representative SAR images are all complex. As shown in Figure 11, there exist blurred
boundaries, tiny water bodies and isolated land, which greatly increases the difficulty of
water body detection. Comparing the ground truth with the detection results generated by
various methods, PSPNet has poor adaptability to complex scenes. It not only misses many
isolated tiny water bodies but also fails to detect the background pixels in the water bodies.
Compared with PSPNet, UNet improves the detection ability of tiny water bodies but is
less resistant to interference in complex scenes. Though DeeplabV3+ has improved the
detection accuracy in comparison with the former two, it is poor at maintaining strip water
bodies. It can be seen that the boundaries of the water bodies detected by the proposed
method are accurately maintained even in blurred water bodies. In addition, MS-Deeplab
is more sensitive to tiny and strip waters and is less susceptible to interference in complex
scenes. Comparing the experimental results in Figure 11, the water bodies detected by
MS-Deeplab become closer to the ground truth since the proposed MS-Deeplab model
can make better use of contextual information and multi-scale feature maps. Further,
for regions A-F, the comparison between the ground truth and the results generated by
MS-Deeplab is presented in Figure 12 to better visualize its successes and possible errors.
As shown in Figure 12, MS-Deeplab can accurately detect both large-scale water bodies
and isolated water bodies and is less sensitive to noise in the water area. However, due to
the complexity of the land cover and imaging characteristics of SAR images, such as edge
blur, radar shadow and interference of other dark surfaces, there are still some deviations
in the segmentation results generated by MS-Deeplab, especially in ambiguous areas.
The improvement of detection accuracy is still worthy of research and investigation in
the future.
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SAR image Ground Truth PSPNet UNet DeeplabV3+ MS-Deeplab

Figure 11. Comparison of the segmentation results of typical regions (A–F). The SAR images are
enlarged versions of the regions enclosed by red rectangles in Figures 9 and 10.

A B C D E F

Figure 12. The comparison between the ground truth of regions (A–F), and the results generated
by MS-Deeplab. Yellow denotes omission errors, red denotes commission errors and blue denotes
correctly classified water bodies.
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Based on the confusion matrix shown in Table 3, the intersection over union (IoU) and
the pixel accuracy (PA) are both adopted to quantitatively evaluate the performance of the
proposed method in this section, which are calculated by

IoU =
TP

TP + FP + FN
, (8)

PA =
TP + TN

TP + TN + FP + FN
, (9)

where true positive (TP) indicates the number of water body pixels that are correctly
predicted, false negative (FN) indicates the number of water body pixels that are incorrectly
predicted as background, false positive (FP) indicates the number of background pixels
that are incorrectly predicted as water body, and true negative (TN) indicates the number
of background pixels that are correctly predicted. For the six typical regions, the IoU and
PA of segmentation results generated by different methods are shown in Table 4. It can be
seen that MS-Deeplab achieves the highest accuracy, with an average IoU score of 86.33%
and an average PA score of 95.72%, i.e., the proposed MS-Deeplab model is effective and
robust in these complex scenes.

Table 3. The confusion matrix.

Prediction

Flood Background

Ground Truth
flood TP FN

background FP TN

Based on the segmentation results generated by MS-Depplab in Figures 9 and 10,
the more intuitive flood change results obtained with the difference method are represented
in Figure 13. Then, the flood situation in the area near the two cities is obtained by
overlaying the flood change detection results with SAR images. On both sides of the
Anyang River, large areas of farmland and villages were flooded on 27 July. In the area
near Xinxiang City, several towns along the Weihe River basin were seriously affected by
rainstorms. Among them, Huaxian County, Weihui and Xinxiang were the heavy disaster
areas. Even when the flood situation had been stable on 8 August, most of the urban areas
in Huaxian County were still flooded. The analysis results show that the MS-Deeplab
model proposed in this paper is a powerful method in SAR flood mapping.

Table 4. Evaluation of segmentation results by different methods.

Region Index PSPNet UNet DeeplabV3+ MS-Deeplab

A IoU (%) 72.02 81.24 75.98 78.94
PA (%) 84.14 89.25 95.08 97.36

B IoU (%) 58.86 68.65 65.57 70.26
PA (%) 82.10 77.80 90.22 95.31

C IoU (%) 75.78 81.96 83.76 88.48
PA (%) 87.02 86.32 90.22 93.33

D IoU (%) 88.52 88.92 91.55 92.93
PA (%) 94.89 92.04 99.02 98.51

E IoU (%) 68.06 78.90 74.70 78.98
PA (%) 80.17 84.55 88.59 96.41

F IoU (%) 61.03 62.67 73.95 79.31
PA (%) 71.32 65.81 89.70 89.55

mean IoU (%) 77.03 81.53 83.06 86.33
PA (%) 87.66 86.03 94.03 95.72
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Figure 13. The color-coded maps of flood detection results. The first column shows the change
maps between 15 July and 27 July. The second column shows the change maps between 15 July and
8 August.

6. Discussion

In this work, an MS-Deeplab model is proposed to study the flood detection in
dual-polarization SRA images. In the proposed MS-Deeplab model, the dual-polarization
SAR images are directly exploited in the dual-channel MobileNetV2 backbone, and the
information on VV and VH polarization can be quickly and efficiently extracted to enhance
water features. Meanwhile, the multi-scale feature fusion module concatenates multi-layer
features of backbone to expand the feature space and obtain the contextual information.
Furthermore, the joint loss function is introduced to handle the class imbalance in the
training set. The experimental results indicate that the proposed MS-Deeplab is an effective
model for water body detection in SAR images and, even in complex scenes, benefit from
all of the three key points.

Of course, there are still limitations and shortcomings in this work. On the one hand,
some errors still exist in the experimental results. The problem is mainly caused by the
influence of other dark surfaces and radar shadows in SAR images, as well as the complexity
of land cover. For example, in urban areas, the dark surfaces (such as asphalt roads) and
radar shadows caused by tall buildings will be misclassified as water bodies. Furthermore,
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rough water surfaces and shallow waters in SAR images will be blanketed. On the other
hand, real-time detection is also a key point in SAR image interpretation. As polarimetric
SAR images tend to be massive and have high resolution, higher requirements are placed on
the efficiency of detection. In future work, further research will be continued to improve the
accuracy of segmentation in more complex environments. Moreover, model compression,
including model pruning and knowledge distillation, will be considered to improve the
efficiency of the detection algorithm.

7. Conclusions

In this paper, a flood detection method is proposed based on the constructed MS-
Deeplab model. The proposed MS-Deeplab model introduces the dual-channel feature
extraction backbone and the multi-scale feature fusion module to improve the accuracy of
water segmentation. The dual-channel feature extraction backbone can make full use of
dual-polarization information of SAR images to compensate for the limitations of feature ex-
traction from single-polarization data. The multi-scale feature fusion module can construct
high-resolution feature maps by concatenating multi-layer feature maps to improve the
capacity to capture contextual information and detailed features of large-scene SAR images.
Therefore, the architecture of MS-Deeplab greatly improves the ability of feature extraction
and contextual information fusion. Additionally, the proposed MS-Deeplab model is able
to cope with imbalanced water and background to some extent by constructing a joint
loss function based on cross-entropy loss and dice loss. The experimental results show
that MS-Deeplab can not only improve the pixel accuracy but also improve the boundary
accuracy even in complex scenes in comparison with other mainstream deep learning
methods. Since the proposed method for flood detection has a stronger generalization
ability and robustness, as well as higher accuracy, it has great potential in flood disaster
assessment and post-disaster reconstruction.
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